文档库 最新最全的文档下载
当前位置:文档库 › 异氰酸酯胶(PMDI)

异氰酸酯胶(PMDI)

异氰酸酯胶(PMDI)
异氰酸酯胶(PMDI)

异氰酸酯胶(PMDI)

异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B 和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水性高分子异氰酸酯胶粘剂,将交联剂所用异氰酸酯用低温亚硫酸氢钠法进行封闭处理,使-NCO封闭率达到50%以上,同时加入一定量的DBP结果表明低成本API胶粘剂能够适应胶合板、细木工板的生产要求,所生产出的胶合板、细木工板性能满足国标要求。徐信武等研究了改性异氰酸酯对于稻草刨花板性能的影响。当密度超过0.75g/cm3时,稻草刨花板抗弯性能达到美国ASTM A208.1标准中M3级木质刨花板的要求。目前研究者们正在研究新型热塑性聚氨酯弹性树脂,干式复合用聚氨酯胶粘剂的研制,反应型阻燃聚氨酯改性酚醛胶粘剂,水基型聚氨酯改性丙烯酸酯系列胶粘剂等。

目前异氰酸酯胶粘剂在木材工业中的应用主要有如下几种形式:水性高分子异氰酸酯胶粘剂(API);异氰酸酯预聚体胶粘剂;异氰酸酯共混复合胶粘剂、最常见的是异氰酸酯与脲醛树脂、单宁等的共混、多异氰酸酯单体直接做为胶粘剂使用,其中以水性高分子一异氰酸酯胶粘剂(API)、异氰酸酯预聚体胶粘剂应用最为广泛。

(l)、水性高分子一异氰酸酯胶粘剂(API)水性高分子一异氰酸酯胶粘剂(API)是以水溶性高分子(通常为醋酸乙烯酯乳液:PVAc),乳液(通常为苯乙烯一丁二烯胶乳:SBR,聚丙烯酸酚乳液,乙酸乙酯一乙烯共聚乳液:EVA等),填料(通常为碳酸钙粉末:CaCO3)为主要成分的主剂,和多官能团的异氰酸酯化合物(通常为P-MDI)为主要成分的交联剂所构成。两者混合产生的三维交联使其胶接耐水性大为提高,因此可将其作为高耐水性木材胶粘剂使用。API 胶粘剂在我国的应用开发较晚,起步于20世纪90年代,目前有生产厂家将其用于拼板胶的

生产。价格高是限制API应用的一个主要因素,另外API的适用期短,工艺操作不便也为生产带来许多麻烦。但作为水性聚氨酯胶粘剂的一颗新星,API胶粘剂以其优异的胶接性能和环境友好特性而引起了人们的重视,积极从事于对它的研究。

(2)、异氰酸酯预聚体胶粘剂,预聚体胶粘剂的结构可根据不同使用场合进行结构设计,得到性能各异的胶粘剂。在木材加工领域,应用较多的异氰酸酯预聚体胶粘剂类型是湿固化异氰酸酯胶粘剂。湿固化型聚氨酯胶粘剂中含有活泼的-NCO基团,当暴露于空气中时能与空气中的微量水分发生反应。胶接时,它能与基材表面的水以及表面羟基等活性基团发生化学反应,生成脲键结构,因此,湿固化型聚氨酯胶粘剂固化后的胶层组成是聚氨酯一聚脲结构。湿固化型聚氨酯胶粘剂是制造人造薄木的理想胶粘剂,湿材的胶接不仅有利于刨切工序的顺利进行,提高刨切质量,还一可提高人造薄木的出材率。利用湿固化型异氰酸酯胶粘剂不仅可以将速生材、小径木、抚育间伐材等小材直接胶接成任意大幅面的板材,而且直接胶接还可以节约大量的能源消耗。既做到了小材大用、劣材优用,又可节约能源,降低生产成本。

聚合MDI(PMDI) 4,4一二苯甲烷二异氰酸酯(MDI)是刨花板制造工业中最适用的二异氰酸酯类。聚合MDI胶粘剂中含有60%以上的高分子量的二异氰酸酯异构体,其聚合度近于6。异氰酸酯基和木材组分中的羟基反应在木材和胶层之间生成氨酯共价键。同时和木材中的水分反应生成聚脲,这些反应都是MDI用做木材胶粘剂的主要反应。其中聚脲的生成有利于木材的胶接,因为,第一,增大了胶粘剂分子的分子量及其分布,产生较好的填隙性能;第二,酰胺基团及其进一步与异氰酸酯反应生成的氨酯基团将加速固化反应,同时,木材和异氰酸酯反应共同构成一个自催化体系。

多异氰酸酯

异氰酸酯 中文名称:异氰酸酯[1] 中文别名:异氰酸 英文名称:isocyanicacid 英文别名:Isocyanicacid;Hydrogenisocyanide;Polyisocyanates; CAS号:75-13-8 分子式:CHNO 分子量:43.0247 密度:1.04g/cm3 沸点:39.1℃ 闪点:<-15℃(闭杯) 自燃点:534℃ 蒸汽压:6750mmHgat25°C 外观:无色清亮液体,有强刺激性。 溶解性:15℃时水中溶解度:1%;20℃时6.7%。 用途:用于家电、汽车、建筑、鞋业、家具、胶粘剂等行业。 危险性:除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 化学反应:容易与包含有活泼氢原子的化合物:胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳;在过量水存在时,甲胺再与MIC反应生成1,3-二甲基脲,在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下,发生自聚反应并放出热能。 遇热、明火、氧化剂易燃。燃烧时释出MIC蒸气、氮氧化物、一氧化碳和氰化氢。 高温(350~540℃)下裂解可形成氰化氢。

遇热分解放出氮氧化物烟气。 制备方法:工业上主要采用伯胺光气法生产异氰酸酯,其反应如下:由二胺光气法可制得二异氰酸酯:随着科技的进步和合成理论的不断深入,硝基化合物直接与一氧化碳高温高压催化合成异氰酸酯的工艺越来越来成熟。 由于异氰酸酯结构中含有不饱和键,因此具有高活性,容易与一些带活性基团的有机或无机物反应,生成聚氨酯弹性体。 (1)与羟基化合物的反应:如与多元醇、聚醚、聚酯酰胺、蓖麻油等含活性羟基化合物反应生成氨甲基酸酯。 (2)与含氨基化合物的反应:与胺类化合物反应通常生成取代脲,如果进一步发生反应则最终生成缩二脲。 (3)与水反应:与水反应生成胺和二氧化碳,胺进一步与异氰酸酯反应生成取代脲。 (4)与含羧基化合物的反应:与有机羧酸、末端为羧基的聚酯等化合物反应,先生成混合酸酐,最后分解放出二氧化碳而生成酰胺。 (5)与氨基甲酸酯的反应:反应生成脲基甲酸酯。 此外,异氰酸酯在适当的条件下还可以发生自聚反应,形成二聚体或高分子量的聚合物,因此,异氰酸酯一般要求在低温、无光照条件下储存。 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(TolueneDiisocyanate,简称TDI);二苯基甲烷二异氰酸酯(MethylenediphenylDiisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的1,6-己二异氰酸酯(HDI)。

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度就是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值就是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224、0,水份含量0、01%,酸值12,求聚酯羟值 羟值校正 = 224、0 + 1、0 + 12、0 = 257、0 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量就是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总与。 (56、1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总与。 羟值 官能度分子量1000 1.56??=336650 100031.56=??=分子量

异氰酸酯

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。 2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH2) 6-NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼.

6、二环己基甲烷二异氰酸酯(H12MDI) 是一种常用的脂肪族二异氰酸酯。 上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄: 还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜. 另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式C3H3O ,分子量61.0 ,结构式(CH3)2-CHOH ,它是正丙醇CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重 0.7851 、熔点- 88 ℃、沸点 8 2.5 ℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限 3.8 ~10.2%( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下

15种胶水配方

15种胶水配方 胶水配方1; 乙烯-醋酸乙烯共聚体 100 香豆酮-茚树脂 25 合成石蜡树脂 7 滑石粉 20 2,6-二叔丁基对甲酚 1 此配方为通用型品种,软化温度72-80°C ,脆化温度在-40°C 以下,可在-40-60°C内长期使用。对各种材料均有较好的胶接性能,尤其对一些难粘塑料具有较高的胶接强度。 胶水配方2; 乙烯-醋酸乙烯共聚体 100 丁基橡胶 30 丁基苯酚树脂 20 邻苯二甲酸二丁酯 5 碳酸钙 5 此配方的基体是醋酸乙烯含量为28%的低分子量乙烯-醋酸乙烯共 聚体,添加丁基橡胶以改善胶液的柔韧性和弹性,提高胶接强度,缩短固化时间。 胶水配方3; 乙烯基吡咯烷酮-醋酸乙烯共聚体 100 蓖麻油加氢化合物 4 水溶性聚乙烯乙二醇蜡 2.5 环氧树脂 1.6 2,6-二叔丁基对甲酚 1.4 此配方为水溶性热熔胶。基体是经过吡咯烷酮改性的乙烯-醋酸乙烯共聚体。分子量较大,胶接强度较高。与一般蜡类化合物的相溶性较差,加入了水溶性聚乙烯乙二醇蜡,大大改善了相溶性。主要用于木材、陶瓷、混凝土构件、织物、纸张等多孔性材料的胶接,也可用作其它胶粘剂的底胶。 胶水配方4; 乙烯-醋酸乙烯共聚体 100 松香脂 75 硫酸钡 75 抗氧剂 1.25 此配方中基体是熔融指数为24、醋酸乙烯含量为32%的乙烯-醋酸乙烯共聚体。主要用于木材工业中的人造板的封边加工。 胶水配方5: 乙烯-醋酸乙烯共聚体 100 石蜡 20 聚合松香(软化点>120°C) 30 N-苯基-B- 萘胺 1 此配方中基体醋酸乙烯含量大于28%。可在230°C 左右熔融施工涂布,主要用于拼接单板木材,也可用于浸渍玻璃纤维。 胶水配方6: 乙烯-醋酸乙烯共聚体 70 丁基橡胶 30 抗氧剂 0.25 此配方为低熔融粘度热熔胶,在200°C时的熔融粘度为40Pa.s ,伸长率为30%。具有优良的涂布性和粘弹性。 胶水配方7:

双组分聚氨酯胶粘剂概述讲解

双组分聚氨酯胶粘剂概述 双组分聚氨酯胶粘剂是聚氨酯胶粘剂中最重要的一个大类,用途广,用量大。通常由甲、乙两个组分组成,两个组分是分开包装的,使用前按一定比例配制即可。甲组分(主剂)为羟基组分,乙组分(固化剂)为含游离异氰酸酯基团的组分。也有的主剂为端基NCO的聚氨酯预聚体,固化剂为低分子量多元醇或多元胺,甲组分和乙组分按一定比例混合生成聚氨酯树脂。 双组分聚氨酯胶粘剂具有以下特点。 (1)属反应性的胶粘剂在两个组分混合后,发生交联反应,产生固化产物。 (2)制备时,可以调节两组分的原料组成和分子量,使之在室温下有合适的粘度,可制成高固含量或无溶剂双组分胶粘剂。 (3)通常可室温固化,通过选择制备胶粘剂的原料或加入催化剂可凋节固化速度。一般,双组分聚氨酯胶粘剂有较大的初粘合力,叫加热固化,其最终粘合强度比单组分胶粘剂大,可以满足结构胶粘剂的要求。 (4)两个组分的用量可在一定范围内调节,一般存在着一定容忍度。两组分的NCO/OH摩尔比在一般情况下大于或等于l,当固化时,一部分NCO基团参与胶的固化反应,产生化学粘合力,多余的NC0基团在加热固化时,还可产生脲基甲酸酯、缩二脲等,增加交联度,提高了胶层的内聚强度和耐热性。对于无溶剂双组分聚氨酯胶粘剂来说,因各组分起始分子量不大,一般来说NCO/OH摩尔比等于或稍大于l,有利于固化完全,特别在粘合密封件时,注意NCO组分不能过量太多。而对于溶剂型双组分胶粘剂来说,其主剂分子量较大,初粘性能较好,两组分的用量可在较大范围内调节,NCO/OH摩尔比可小于1或大于1的数倍。

当NCO组分(固化剂)过量较多的场合,多异氰酸酯自聚形成坚韧的胶粘层,适合于硬材料的粘接;在NCO组分用量少的场合,则胶层柔软,可用于皮革、织物等软材料的粘接。 双组分聚氨酯胶粘剂自问世以来,由于具有性能可调节性、粘合强度大、粘接范围广等优点,已成为聚氨酯胶粘剂中品种最多、产量最大的产品。 通用型双组分聚氨酯胶粘剂 通用型聚氨酯胶粘剂是以聚己二酸乙二醇酯为原料、以溶剂聚氨酯树脂为主成分(甲组分),以三羟甲基丙烷—T1)I加成物为固化剂(乙组分)的双组分聚氨酯胶粘剂。通用型双组分聚氨酯胶粘剂亦称101-聚氨酯胶粘剂,是上海新光化工厂最早投入工业化生产、至今仍是国内生产量最大的聚氨酯胶粘剂,国内用户达千家以上,主要用于绝缘材料、包装材料、复合膜、多孔材料、深冷保护材料等的粘接。 1.产品规格 通用型双组分聚氨酯胶粘剂要制订国家标准,目前正在起草行业标准,其主要技术指标见表。 表通用型双组分聚氨酯胶粘剂产品的规格

封闭型多异氰酸酯

封闭型多异氰酸酯-正文 多异氰酸酚用苯酚、ε-己内酰胺等封端,形成的封闭型异氰酸酯,可与各种低聚物多元醇组合,在常温下稳定,可配制单组分烘烤型涂料,用于各种金属、塑料涂层,如电线漆包线漆、卷材涂料。 以Bayer Materials sciencc公司公司的封闭型异氰酸酯为例,介绍部分封闭型异氰酸酯的特性和用途。 Desmodur AP stable是苯酚封闭的多异氰酸酯,该固体树脂软化点约100℃,溶于醋酸乙酯、丙二醇单甲醚醋酸酯、甲乙酮及醇类溶剂,一般可用二甲苯、溶剂石脑油调节粘度。使用催化剂可加快固化速度。在140℃以上解封闭。它与苯酐聚酯多元醇结合,配制漆包线该,得到可直接焊接的漆包线。 Desmodur BL1100是己内酰胺封闭四芳香族多异氰酸能,与环脂族二胺(如BASF公司Laromin C260)组成高柔韧性单组分烘烤漆。易溶于醚、醇、酯及芳烃溶剂,有限溶于脂肪烃。可用氨酯级溶剂稀释。用于浸渍涂布或幕涂的涂料、以及胶粘剂。BL1100与C260以10/1质量比配合,在40℃以下贮存稳定,烘烤固化条件为150℃/45min、160℃/30min或180℃/10min。 Desmodur RL1265为己内酰胺封闭型芳香族多异氰酸酯,与多元醇组分或多元胺结合,配制单组分烘烤漆。易溶于醚、酯、酮、芳烃和松节油,脂肪烃只能有限稀释。需用氨醋级溶剂稀释。一般与聚酯多元醇配合,也可与增塑剂、环氧树脂混溶。当用作多元醇的交联剂组分,得到的涂料具有高硬度、优良的耐变形性、耐冲击性和耐化学品性能。应用领域包括管内涂料、罐头漆和耐碎石涂料。可在150℃/30mln固化。可与BLll00配合,改善卷材涂料等的硬度。 Desmodur BL3165是丁酮亏封闭的HDI性多异氰酸酯交联剂,用于烘烤漆,以100号石脑油/二元酸酯(2 5/10)为混合溶剂。BL3165用作固化剂刘,与聚酯多元醇等配制耐黄变、耐候的单组分聚氨酯烘烤漆。BL3165可用酯、酮及芳烃类溶剂稀释,固含量可稀释到40%,也可用高沸点的溶剂如溶剂石脑油稀释到60%。主要用途为卷材涂料、汽车漆、电器涂料、罐头漆等。典型固化条件(与支化聚酯配合)在无催化剂下160℃/60min、180℃/15min或200℃/7min,加DBTL可明显降低烘烤温度,而不降低贮存稳定性,催化固化条件为130℃/60min 、150℃/15min或175℃/7min。

聚氨酯树脂

聚氨酯树脂 第一节 概 述 1937年,德国化学家Otto Bayer 及其同事用二或多异氰酸酯和多羟基化合物通过聚加成反应合成了线形、支化或交联型-聚合物,即聚氨酯,标志着聚氨酯的开发成功。其后的技术进步和产业化促进了聚氨酯科学和技术的快速发展。最初使用的是芳香族多异氰酸酯(甲苯二异氰酸酯),60年代以来,又陆续开发出了脂肪族多异氰酸酯。聚氨酯树脂在涂料、黏合剂及弹性体行业取得了广泛、重要的应用。据有关文献报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右,美国人均年消耗聚氨酯材料约5.5kg ,西欧约4.5kg 。而我国的消费水平还很低,年人均不足0.5kg ,具有极大发展空间。 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基( NH C O O )。它由二(或多)异氰酸酯、 二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯基(简称为氨酯基, NH C O O ) 外,大分子链上还往往含有醚基( O )、酯基( C O O )、脲基( NH C O NH -)、 酰胺基( NH C O )等基团,因此大分子间很容易生成氢键。 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控、配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行以及高新技术领域必不可少的材料之一,其本身已经构成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 第二节 聚氨酯化学 一、异氰酸酯的反应机理 异氰酸酯指结构中含有异氰酸酯(-NCO ,即-N==C==O )基团的化合物,其化学活性适中。一般认为异氰酸酯基团具有如下的电子共振结构: R N C O O C N R O C N R 根据异氰酸酯基团中N 、C 、O 元素的电负性排序:O(3.5)>N(3.0)>C(2.5),三者获得电子的能力是:O >N >C 。另外:—C=O 键键能为733kJ/mol,-C=N-键键能为553kJ/mol,所以碳氧键比碳氮键稳定。 因此,由于诱导效应在-N=C=O 基团中氧原子电子云密度最高,氮原子次之,碳原子最低,碳原子形成亲电中心,易受亲核试剂进攻,而氧原子形成亲核中心。当异氰酸酯与醇、酚、胺等含活性氢的亲核试剂反应时,-N=C=O 基团中的氧原子接受氢原子形成羟基,但不饱和碳原子上的羟基不稳定,经过分子内重排生成氨基甲酸酯基。反应如下: 二、异氰酸酯的反应 异氰酸酯基团具有适中的反应活性,涂料化学中常用的反应有异氰酸酯基团与羟基的反应,与水的反应,与胺基的反应,与脲的反应,以及其自聚反应等。 其中多异氰酸酯同羟基化合物的反应尤为重要,其反应条件温和,可用于合成聚氨酯预聚体、多异氰 R 1N H OR 2[R 1N C OR 2OH]R 1N H C O OR 2 C O +

异氰酸酯胶粘剂在木材加工中的应用

异氰酸酯胶粘剂在木材加工中的应用 目前,木材加工行业仍主要使用传统的甲醛系列胶粘剂,这己无法满足新形势下原料体系的胶接要求。伴随环境保护要求的日益加强,人们环保意识的提高,开发和使用无公害的高效木材加工用合成树脂胶粘剂己成为人们普遍关注的问题。异氰酸酯胶粘剂中不含有甲醛类有害物质且其分子设计灵活,从化学结构和原料组合出发,可实现异氰酸酯树脂不同的使用性能,在众多领域被广泛应用。 异氰酸酯胶粘剂是由分子链中含有异氰酸基(-NCO)及少量氨酯基(-NHCOO),具有很高极性和活泼性的一类胶粘剂。1848年Wurtz首先用硫酸二乙酯和氰酸钾合成异氰酸酯。19世纪Hofmann和Curtius等著名的化学家都对其性质进行过研究。1869年Gentier初步确定了异氰酸酯的结构。1940年德国法本公司的研究人员发现异氰酸酯具有特殊的胶接性能。并在第二次世界大战期间将4,4一二苯基甲烷二异氰酸酯(MDI)应用于战车的履带胶接上。第二次世界大战以后,拜尔公司开发了DesmodurR系列的多异氰酸酯和Desmocoll系列的端羟基聚酯多元醇,至今仍被广泛应用。 异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水

异氰酸酯行业

2012年TDI、MDI等投资市场研究观点 异氰酸酯是异氰酸的各种酯的总称。若以-NCO基团的数量分类,包括单异氰酸酯 R-N=C=O和二异氰酸酯O=C=N-R-N=C=O及多异氰酸酯等。随着聚氨酯工业的高速发展,异氰酸酯成为聚氨酯树脂合成的重要原料。单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。目前应用最广、产量最大的是有:甲苯二异氰酸酯(TDI);二苯基甲烷二异氰酸酯(MDI)。主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。 中国行业研究网发布的《2012-2016年中国混合型聚异氰酸酯固化剂行业投资策略及深度研究咨询报告》显示:“十二五”期间,异氰酸酯行业发展方向是按照大型化和循环一体化、基地化和产业集群发展的原则优化产业布局;按照低碳、安全、环保绿色的原则组织生产和技术进步;按照精细化、高性能化、高附加值化的原则来开发新型异氰酸酯产品。鼓励有能力的国内企业做大做强,参与国际化竞争;根据市场调研需求控制行业规模;缔造资源节约型和环境友好型的异氰酸酯行业。2015年,预计我国异氰酸酯总需求量达250万~300万吨,总产能达到398。5万吨。其中MDI产能290万吨,TDI产能99万吨,特种异氰酸酯9。5万吨,除满足国内需求外,25%以上出口到国际市场,供需相对平衡。在“十二五”期间异氰酸酯行业整体发展向好的情况下,混合型聚异氰酸酯固化剂行业同样具有广阔的前景。 混合型聚异氰酸酯固化剂行业产量集中度市场研究 目前应用最广、产量最大的是有:甲苯二异氰酸酯(TDI);二苯基甲烷二异氰酸酯(MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1。22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。

甲基异氰酸酯

甲基异氰酸酯化学品安全技 术说明书 第一部分:化学品名称化学品中文名称:甲基异氰酸酯 化学品英文名称:methyl isocyanate 技术说明书编码:319CAS No.: 624-83-9 分子式: C 2H 3NO 分子量:57.05第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述健康危害:吸入低浓度本品蒸气或雾对呼吸道有刺激性;高浓度吸入可因支气管和喉的炎症、痉挛,严重的肺水肿而致死。蒸气对眼有强烈的刺激性,引起流泪、角膜上皮水肿、角膜云翳。液态对皮肤有强烈的刺激性。口服刺激胃肠道。 燃爆危险:本品易燃,高毒,具强刺激性。第四部分:急救措施皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。食入:用水漱口,给饮牛奶或蛋清。就医。第五部分:消防措施危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。化学反应性强,易聚合,易吸湿。遇水、酸类或与有机物、氧化剂接触,都可放出大量热而引起剧烈燃烧,并放出有毒和易燃的二氧化硫。遇水或水蒸气反应放出有毒和易燃的气体。在火场中,受热的容器有爆炸危险。有害燃烧产物:一氧化碳、二氧化碳、氧化氮、氰化氢灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:二氧化碳、干粉、砂土。第六部分:泄漏应急处理 有害物成分 含量 CAS No.: 甲基异氰酸酯 624-83-9

封闭型多异氰酸酯

封闭型多异氰酸酯 多异氰酸酚用苯酚、ε-己内酰胺等封端,形成的封闭型异氰酸酯,可与各种低聚物多元醇组合,在常温下稳定,可配制单组分烘烤型涂料,用于各种金属、塑料涂层,如电线漆包线漆、卷材涂料。 以Bayer Materials sciencc公司公司的封闭型异氰酸酯为例,介绍部分封闭型异氰酸酯的特性和用途。 Desmodur AP stable是苯酚封闭的多异氰酸酯,该固体树脂软化点约100℃,溶于醋酸乙酯、丙二醇单甲醚醋酸酯、甲乙酮及醇类溶剂,一般可用二甲苯、溶剂石脑油调节粘度。使用催化剂可加快固化速度。在140℃以上解封闭。它与苯酐聚酯多元醇结合,配制漆包线该,得到可直接焊接的漆包线。 Desmodur BL1100是己内酰胺封闭四芳香族多异氰酸能,与环脂族二胺(如BASF公司Laromin C260)组成高柔韧性单组分烘烤漆。易溶于醚、醇、酯及芳烃溶剂,有限溶于脂肪烃。可用氨酯级溶剂稀释。用于浸渍涂布或幕涂的涂料、以及胶粘剂。BL1100与C260以10/1质量比配合,在40℃以下贮存稳定,烘烤固化条件为150℃/45min、160℃/30min或180℃/10min。 Desmodur RL1265为己内酰胺封闭型芳香族多异氰酸酯,与多元醇组分或多元胺结合,配制单组分烘烤漆。易溶于醚、酯、酮、芳烃和松节油,脂肪烃只能有限稀释。需用氨醋级溶剂稀释。一般与聚酯多元醇配合,也可与增塑剂、环氧树脂混溶。当用作多元醇的交联剂组分,得到的涂料具有高硬度、优良的耐变形性、耐冲击性和耐化学品性能。应用领域包括管内涂料、罐头漆和耐碎石涂料。可在150℃/30mln固化。可与BLll00配合,改善卷材涂料等的硬度。 Desmodur BL3165是丁酮亏封闭的HDI性多异氰酸酯交联剂,用于烘烤漆,以100号石脑油/二元酸酯(2 5/10)为混合溶剂。 BL3165用作固化剂刘,与聚酯多元醇等配制耐黄变、耐候的单组分聚氨酯烘烤漆。BL3165可用酯、酮及芳烃类溶剂稀释,固含量可稀释到40%,也可用高沸点的溶剂如溶剂石脑油稀释到60%。主要用途为卷材涂料、汽车漆、电器涂料、罐头漆等。典型固化条件(与支化聚酯配合)在无催化剂下160℃/60min、180℃/15min或200℃/7min,加DBTL可明显降低烘烤温度,而不降低贮存稳定性,催化固化条件为130℃/60min 、150℃/15min或175℃/7min。 Dcsmodur BL3175是基于HDI的交联烘烤漆树脂,溶剂为100号石脑油。其用途与BL3165相似,同含量比BL3165高。 Desmodur BL3272是脂肪族封闭异氰酸酯树脂,溶剂为MPA。BL3272与聚酯多元醇配制耐黄变单组分聚氨酯烘烤漆。它可用酯、酮及芳烃类溶剂稀释到35%。它与Desmophen T1665结合可配制高质量卷材涂料,也可用于涂层厚度在40μm以内的底涂和顶涂涂料。耐候性比BL3175和BL 4265的好。它与DesmoPhen T1665配制的涂料,无催化剂时的典型固化条件为165℃/40min、170℃ /30min、180℃/20min或200℃/10min;加占固体分0.3%的催化剂DBTL,固化条件为160℃/30min、180℃/10min或200℃/5min。 Desmodur BL 3370是基于HDI的烘烤漆树脂,溶剂MPA,可用酯、酮及芳烃类溶剂稀释到40%。BL3370与聚酯多元醉配制耐黄变单组分烘烤漆。主要用途是高级工业整修涂料,如罐头漆、卷材漆、汽车表面涂料。典型固化条件为100℃/50min、120℃/20min或160℃、7min。无需催化剂。峰值金属温度为210℃。 Desmodur DL3475是脂肪族交联烘烤漆树脂,溶剂为石脑油/醋酸丁酯(1/1),可稀释到40%,浓度过低时贮存会浑浊和沉淀。它具有较高的反应性,与饱和聚酯多元醇配制低烘烤温度的耐黄变单组分烘烤漆。主要用于配制高质量工业涂料,特别是罐头漆和管材漆。根据所用多元醇的类利,烘烤固化湿度可低至100℃。典型固化条件为120℃/20min或160℃/7min。无需催化剂。峰值金属温度为216℃。 BL3165、BL3175、BL3272、RL170、BL3475可作为常规烘烤漆的添加剂以改善柔韧性、始附性和耐候性。 Desmodur BL4265是丁酮亏封闭的脂肪族多异氰酸酯交联剂,溶剂为石脑油。它可与柔性聚酯结合,配成单组分耐黄变、耐候、耐化学品的烘烤型涂料,用于高级工业整修涂料及卷材涂料。加催化剂DBTL可降低烘烤温度。例如与聚酯多元醇Desmophen A365/670(1/1)配合,无催化剂下固化需180℃/20mIn,有催化剂固化条件为150℃/15min或125℃/60min。它添加到常规烘烤涂料中以

(无醛)异氰酸酯胶粘剂研究现状及发展趋势

前言 胶粘剂用量的多少,已成为衡量一个国家、一个地区木材工业技术发展水平的重要标志。根据联合国粮农组织报道,2000年世界人造板的产量达到1.54亿立方米,耗用370万吨胶粘剂(以固体含量100%计)。据《中国林业统计资料》和已发表的有关数据推算,我国1997年木材胶粘剂用量为92万吨,预测2005年和2010年人造板用胶量将分别增至141万吨(干)和169万吨。 人造板使用胶粘剂主要有脲醛树脂(UF)、酚醛树脂(PF)、三聚氰胺-甲醛树脂(MF),其中尤以UF用量大。人造板工业的这三大胶种都使用甲醛作为原料之一。随着人们对安全意识和环保意识的增强,甲醛的释放越来越受到关注,同时也影响了人造板的销售。因此,开发环保型的胶粘剂,重点开发无甲醛或低游离甲醛型胶粘剂成为大势所趋。 异氰酸酯胶粘剂是首选胶种。 异氰酸酯胶粘剂自二战开始应用,并很快被人们喻为“可粘接任意物品的胶”。1951年,Dcppc最先用异氰酸酯胶接刨花板,1957年德国生产出第一批异氰酸酯刨花板。50多年来,对异氰酸酯胶粘剂的研究及应用已经有了长足的发展。在北美和欧洲,超过20%的OSB(定向结构板)及常规MDF(中密度纤维板)生产厂家使用MDI胶粘剂。MDI世界年产量超过150万吨。美国的道化学公司及亨斯公司,德国的拜尔公司及巴斯夫公司,日本的聚氨酯公司及三井公司的研究开发及生产应用均处于世界领先地位。 1 异氰酸酯胶粘剂的使用特点 异氰酸酯胶粘剂由于含有高反应活性的异氰酸酯基(-NCO),一方面可与木质及非木质纤维素原料如竹材、秸杆、棉杆等大分子中的羟基(-OH)化学键合,另一方面该胶粘剂还可以与水反应,它是人们寻找的唯一的既可以与人造板原料分子反应又可以与水反应的胶粘剂。反应式如下所示(P表示木质或非木质原料): P—OHOCN—R—NCO→P—OCONH—R—NCO P—OCONH—R—NCOP—OH→P—OCONH—R—NHCOO—P OCN—R—NCOH20→[HOOC—NH—R—NH—COOH]—NH2—R—NH2 CO2 nNH2—R—NH2 nOCN—R—NCO→OCN—[R—NHCONH]n—NCO n>1 —NH—COO—(氨基甲酸酯)将碎料分子有机地“桥接”起来,—NH—CO—NH—(脲键)与—NH—COO—,在加热条件(大于100℃)下可进一步与游离的—NCO发生三维交联固化反应,使粘接强度进一步提高。并且—NH—COO—和—NH—CO—NH—都可与原料中纤维素等大分子形成氢键,使得原料大分子间相互缔合、缠绕更加牢固。它显示出传统三大胶种难以比拟的特点;高的粘接强度,短的热压时间,优异的耐水性、防潮性和耐侯性,低的用量,并彻底消除了甲醛排放的污染。但该胶并未获得广泛的商业接受,主要原因: (1)价格问题假设人造板异氰酸酯用胶量为4%,产品耗胶量为30kg/m3,单位价格以12元/kg计算,则产品胶成本为360元/m3;若用UF胶粘剂,用胶量为10%,产品耗胶量为150kg/m3,单位价格以1.5元/kg计,产品胶成本为225元/m3,二者相差甚远。 (2)对压板粘附问题甲醛基胶粘剂通常不用脱膜剂,而异氰酸酯胶粘剂由于优良的粘接性能,热压时造成胶合板与台板粘合,因此,必须通过内或外脱膜剂的使用来解决这一问题,这也增加了产品的成本。 2人造板用异氰酸酯胶粘剂的研究进展 为解决上述问题,国内外科技工作者进行了卓有成效的研究,其方法主要有: 2.1 水乳化异氰酸酯法

常见的胶黏剂及其粘结机理

一、胶黏剂的定义: 通过界面的黏附和内聚等作用, 能使两种或两种以上的制件或材料连接在一起的天然的 或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。 二、胶黏剂的分类: 胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、 溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。 三、六大胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论: 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利 于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 2、化学键形成理论: 化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 3、弱界层理论:

异氰酸酯

异氰酸酯 主要异氰酸酯 TDI 甲苯二异氰酸酯 应用:软质PU泡沫塑料、涂料、弹性体、胶粘剂、密封胶。 生产厂商:河北沧州大化、甘肃银光化学工业公司、山西太原蓝星化工有限公司、Bayer、BASF、Lyondell、Dow、日本三井武田、韩国精细化工公司(KFC)、韩国东方化学公司(OCT)、NPU、匈牙利Borsodchem公司、Rhodia、波兰Aaklady、美国Rubicon、印度NARMADA石油化工公司、印度Hindustan无机公司。 MDI 二苯基甲烷二异氰酸酯 应用:纯MDI用于生产热塑性PU弹性体、氨纶、PU革浆料、鞋用胶粘剂、也用于微孔PU弹性材料(鞋底、实心轮胎、自结皮泡沫、汽车保险杠、内饰件)、浇注型PU弹性体;不纯的MDI用于各类PU弹性制品、胶粘剂、涂料、汽车部件、内饰件的生产,可替代TDI用于PU软泡。 生产厂商:Bayer、Dow、Huntsman、BASF、山东烟台万华、日本三井武田、NPU、韩国锦湖三井。 IPDI 异佛尔酮二异氰酸酯 应用:耐光耐候PU涂料、耐磨耐水解PU弹性体、不黄变微孔PU泡沫塑料。 生产厂商:Degussa、Rhodia、Bayer。 HDI 己二异氰酸酯 应用:制成的PU弹性体硬度和强度都不太高,柔韧性好。非黄变PU涂料、涂层、PU革。 生产厂商:Bayer、Degussa、NPU、日本三井武田、日本旭化成株式会社、Rhodia、法国Rhone‐Poulenc。 H12MDI 4.4‐二环己基甲烷二异氰酸酯 应用:适合生产具有优异光稳定性、耐候性和机械性能的PU材料,适合于生产PU弹性体、水性PU、织物涂层和UV固话PU‐丙烯酸涂料、除了优异的力学性能H12MDI还赋予制品杰出的耐水解性和耐化学品性能。生产厂商:Bayer、Degussa NDI 萘二异氰酸酯 应用:NDI是高熔点芳香族二异氰酸酯,具有刚性芳香族萘环结构,用于制造高弹性和高硬度的PU弹性体。用NDI制成的浇注型弹性体具有优异的动态特征和耐磨性,可用于高动态载荷和耐热场合。NDI基微孔PU 弹性体制品在动态载荷下,内生热低,永久变形小,能保持良好刚性,用于汽车减震缓冲部件。 生产厂商:Bayer、日本三井武田 PPDI 对苯二异氰酸酯 应用:特殊浇注型基热塑性PU弹性体。湿热环境、油性环境使用的部件,需耐磨、耐撕裂的场合、动力驱 动重复运动的部件,如密封圈和密封垫、水泵皮线、油田设备材料、动力联轴节、传送带、减震器、辊基 承载轮等。 生产厂商:Dupont、 CHDI 1.4‐环己烷二异氰酸酯 应用:有优异的高温动态力学性能、光和色稳定性、耐溶剂性和耐磨性乙基耐水解性能。制的的弹性体适 电话:021‐51078280 https://www.wendangku.net/doc/bb8793258.html,

异氰酸酯的其它反应

异氰酸酯的其它反应 2.1.9.1 异氰酸酯与羧酸的反应 异氰酸酯与羧酸反应,先生成热稳定性差的羧酸酐,然后分解,生成酰胺和二氧化碳(如下式)。COOH与NCO的反应活性比OH低得多。 这类反应比较少见,不过在含-COOH的聚酯体系或含侧羧基的离聚体体系,过量的异氰酸酯可与羧基反应。 芳香族异氰酸酯与羧酸反应,主要生成酸酐、脲和二氧化碳: 2ArNCO+2R-COOH→ArNHCONHAr+RCOOCOR+CO2 2.1.9.2 异氰酸酯与环氧树脂的反应 异氰酸酯与环氧基团在胺类催化剂的存在下生成含噁唑烷酮(oxazolidone)环的化合物(见下式)。噁唑烷酮环具有较高的耐热性,含噁唑烷酮基的聚合物具有较高的耐热性。 二异氰酸酯与二环氧化合物在催化剂作用下可竹成聚噁唑烷酮;含羟基的环氧树脂。如低环氧值的双酚A环氧树脂与二异氰酸酯(含端NCO预聚体)生成聚氨酯-噁唑烷酮;在过量多异氰酸酯、环氧树脂及三聚催化剂的存在下,可生成聚氨酯-噁唑烷酮-异氰脲酸酯聚合物,这些反应可用于制造耐高温硬质聚氨酯。 2.1.9.3 异氰酸酯与羧酸酐的反应 异氰酸酯基与酸酐反应,生成具有较高耐热性的酰亚胺环,二异氰酸酯能与二羧酐反应生成耐热性高的聚酰亚胺。酰亚胺基的耐热性与异氰脲酸酯相当: 异氰酸酯还可以与许多化合物反应,例如:与氰酸反应可生成亚氨乙内酰脲,继而再与异氰酸酯反应制得聚乙内酰脲:异氰酸酯与氨基酸或与其有关酯反应可合成出乙内酰脲。若再与异氰酸酯反应,可制得聚乙内酰脲;与氨反应生成单取

代脲,并可继续反应;与肼(联氨)反应生成二脲(见下式);还可与硫醇、卤化氢等反应;等等。 RNCO+NH3→RNHCONH2 RNCO+RNHCONH2→RNHCONHCONHR RNCO+NH2-NH2→RNHCONHNHCONHR RNCO+R′SH→RNHCOSR′

异氰酸酯化学结构

异氰酸酯化学结构 Prepared on 24 November 2020

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH 2) 6 -NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼. 6、二环己基甲烷二异氰酸酯(H 12 MDI) 是一种常用的脂肪族二异氰酸酯。

上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄:还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜.另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式 C3H3O ,分子量,结构式(CH3)2-CHOH ,它是正丙醇 CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重、熔点- 88 ℃、沸点℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限~ %( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下可代替乙醇使用。也可用作涂料,松香水,混合脂等方面;无色透明;纯天然产品。 PS 聚苯乙烯化学和物理特性大多数商业用的PS都是透明的、非晶体材料。PS具有非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶剂中膨胀变形。典型的收缩率在~%之间。

相关文档