文档库 最新最全的文档下载
当前位置:文档库 › 利用响应面法优化茶叶中EGCG 的浸提条件

利用响应面法优化茶叶中EGCG 的浸提条件

利用响应面法优化茶叶中EGCG 的浸提条件
利用响应面法优化茶叶中EGCG 的浸提条件

基金项目:杭州市科技局农业科研攻关项目。

作者简介:王贤波(1979-),男,农艺师,从事茶叶生物技术、农残检测研究。

收稿日期:2011-03-08

利用响应面法优化茶叶中EGCG 的浸提条件

王贤波

黄海涛

陆清儿

(杭州市农业科学研究院实验中心,浙江杭州310024)

摘要:用30%乙醇水溶液浸提茶叶中的EGCG ,用高效液相色谱仪检测EGCG 并计算浸出率。在单因素实验基础

上,利用Box -Benhnken 实验设计进行3因素3水平的响应面分析实验,确定最优浸提条件:料液比1?12、pH6.0,浸提温度60.0?、浸提时间23min 、浸提次数2次。采用该条件浸提,EGCG 浸出率达8.2%。关键词:响应面法;EGCG ;浸提;茶叶中图分类号

S571.1

文献标识码

A

文章编号1007-7731(2011)07-27-03

茶叶中儿茶素(catechin )是茶叶中重要的一类天然活性物质,是天然的抗氧化剂和自由基清除剂,被广泛应用于食品加工、医药保健等领域

[1-3]

。儿茶素占茶叶中茶多

酚总量的60% 80%,主要有表没食子儿茶素没食子酸酯(EGCG )、表儿茶素没食子酸酯(ECG )、表没食子儿茶

素(EGC )及表儿茶素(EC )等

[3-4]

。其中EGCG 含量最高,约占儿茶素的50% 60%。大量实验已证明EGCG 具有多种作用,

EGCG 是儿茶素中抗氧化作用最强的一种成分,具有抗肿瘤、降血压、降血脂、清除自由基、抑制黑色素合成等作用

[2]

。随着人们对茶叶成分保健功能认识的深

入,

EGCG 的提取制备研究越来越受到人们的关注。响应面方法(Response Surface Methodology ,RSM )是20世纪中后叶发展起来的优化试验条件统计学方法[5],利用合理的试验设计并通过实验得到的一定数据,采用多元二次回归方程来拟合因素与响应值之间的关系,通过对回归方程的分析来寻求最优工艺参数,它可快速有效地确定多因子系统的最佳条件,它已成为精度高、应用广并具有实用价值的优化技术[6]

,因此被广泛地应用于条件优化

和模型建立中。

本文用30%的乙醇水溶液浸提茶叶中的EGCG ,在单因素实验的基础上,利用响应面法对EGCG 的浸提条件进行优化,得到最佳浸提条件,为后期提纯提供基础。

1

材料和方法

1.1试验材料

茶叶:采自杭州市农科院茶叶研究所

茶园。

1.2

主要仪器和试剂

高效液相色谱仪(美国Waters 公

司),电子天平(METTLER 公司),数显恒温水浴锅(国华电器有限公司);甲酸、乙腈为色谱纯,乙醇为分析纯,EGCG 标准品(Sigma 公司)。1.3试验方法

1.3.1

茶叶中EGCG 浸提

茶叶磨碎后过20目筛,称取

50g 绿茶粉末于烧杯中,用30%的乙醇水溶液浸提,在恒温水浴锅中于一定温度下浸提一定时间后,过滤,得茶多酚浸提液,用高效液相色谱法检测EGCG 含量。1.3.2

EGCG 浸出率的测定

取EGCG 标准品用HPLC

法测定,浓度-峰面积标准线性方程如下:

Y =0.00776X +4.9120168

式中,Y 为峰面积(μV ·S );X 为EGCG 的质量浓度(mg /L );方程的线性相关系数为0.9990905;色谱条件:以0.5%的甲酸和乙腈为流动相梯度洗脱,检测波长为280nm ,流速为1mL /min 。

EGCG 浸出率由下式计算:EGCG 浸出率(%)=

EGCG 浸出量(g )

茶叶质量(g )

?100

2

结果与分析

图1浸提时间对EGCG

浸出率的影响

图2

浸提温度对EGCG 浸出率的影响

2.1单因素实验结果浸提时间、浸提温度、料液比、浸

提pH 值和浸提次数对茶叶中EGCG 浸出率的影响见图1

5。

图3浸提料液比对EGCG

浸出率的影响

图4

浸提pH 对EGCG

浸出率的影响

图5

浸提次数对EGCG 浸出率的影响

由图1可知,在20min 时EGCG 浸出率最大,之后逐渐下降,这可能是随着时间增长EGCG 发生了转化。由图2可知,随着温度升高,EGCG 浸出率先升高后减少,这是因为随着温度的升高EGCG 变得不稳定,易发生异构化作用

[7]

。由图3可知,随着料液比的增加,

EGCG 浸出率随之增加,但是1?12之后变化不明显,而且随着溶剂的增加会给后续处理带来麻烦,所以料液比不宜过大,本实验选择料液比为1?12。由图4可知,

EGCG 的浸出率随着pH 值的变化不明显。由图5可知,

EGCG 浸出率随着次数的增加而增加,但从浸提2次以后浸出率的变化也不是很显著[8]

2.2

响应面法确定EGCG 的浸提条件

根据单因素试验

结果,在选定料液比为1?12,pH 值为6.0的前提下,采用Box -Benhnken 实验设计进行3因素3水平的响应面分析实验,包括12个析因试验和3个中心试验。以浸提温度,浸提时间,浸提次数为自变量,以EGCG 浸出率为响应值,试验因素与水平的选取见表1,响应面实验结果见表2。

表1

因素与水平取值

因素水平-10+1温度(?)A 506070时间(min )B 102030次数(次)

C

1

2

3

表2

Box -Behnken 响应面实验设计及实验结果实验号A B C EGCG 浸出率(%)

110-1 6.62-1

-10 5.83101 6.84110 6.750-11 6.860008.070008.180008.290117.4100-1-1 6.511-101 6.712-10-1 6.513-1107.01401-17.215

1

-1

6.4

利用统计软件MINITAB15对实验数据进行二次多项回归拟合,然后对回归方程进行方差分析,结果见表3。

表3

回归方程的方差分析

方差来源自由度DF 平方和SS

均方MS

F 值相关系数R 2

回归9 6.536500.72628132.0

0.9958

误差50.027500.00550

总计

14

6.56400

利用MINITAB15回归拟合实验数据,获得EGCG 浸出率对浸提温度、浸提时间、浸提次数的三元二次回归方程:Y =-35.6000+1.2213A +0.4350B +2.0625C -0.0098A2-0.0065B2-0.4750C2-0.0022AB +0.0000AC

-0.0025BC 。由回归方程的方差分析结果(表3)可以看出,该模型失拟不显著,回归显著。另外该模型决定系数R 2=0.9958,说明回归方程的拟合程度较好,预测值和实测值之间具有高度的相关性,因此该模型可以应用于EGCG 浸出率的理论预测。EGCG 浸出率响应面分析关键点值见表4。

表4

EGCG 浸出率响应面分析关键点值

因素编码值

未编码值温度(?)A 0.060.0时间(min )B 0.272722.7273次数(次)C 0.1111

2.1111

EGCG 浸出率(%)

Y

8.1503

由表4可知,该回归模型存在稳定点,EGCG 浸出率的最大估计值8.1530%,

3个因素取值分别为:浸提温度60.0?、浸提时间22.7273min 、浸提次数2.1111。结合单因素实验结果,为计算方便各因素取整数得到EGCG 浸提优化条件为:浸提温度60.0?、浸提时间23min 、浸提次数2次、料液比1?12、pH6.0。图6 8为通过MINITAB15得到的响应面分析图及其等高线图,每个响应面分别代表着2个独立变量之间的相互作用,此时第三个变量保持在最

佳水平,由响应面图可以看出:浸提温度、浸提时间、浸提次数与EGCG 浸出率存在相关性。利用得到的优化条件进行浸提验证,得到EGCG 浸出率为8.2%,说明该模型可以应用于EGCG 浸出率的预测。

图6

温度和时间交互影响EGCG 浸出率的曲面图及其等高线图(浸提次数2.1111次

图7温度和次数交互影响EGCG 浸出率的曲面图及其等高线图(浸提时间22.7273min

图8时间和次数交互影响EGCG 浸出率的曲面图及

其等高线图(浸提温度60.0?)

3结论

本实验用30%的乙醇水溶液浸提茶叶中的EGCG ,在

单因素实验的基础上,利用响应面法对EGCG 的浸提条件进行优化,得到最佳浸提条件:料液比1?12、pH6.0、浸提温度60.0?、浸提时间23min 、浸提次数2次。通过验证

实验表明,该模型可以应用于EGCG 浸出率的预测。参考文献

[1]刘学铭,梁世中.茶多酚的保健和药理作用及应用前景[J ].食品

与发酵工业,

1998,24(5):47-51,71.[2]赵丽萍,邵宛芳.茶叶中EGCG 功效研究进展[J ].中国农学通

报,

2007,23(7):143-147.[3]焦蓓蓓.茶多酚的药理作用研究进展[J ].亚太传统医学,2009,5

(1):131-133.

[4]刘世初,孙志洪,王斌.茶多酚的提取工艺及其应用机理研究进

展[J ]

.家畜生态学报,2009,30(4):91-94.[5]胡运权.试验设计方法[M ].哈尔滨:哈尔滨工业大学出版社,

1997:153-154.

[6]慕运动.响应面方法及其在食品工业中的应用[J ].郑州工程学

院学报,

2001,22(3):91-94.[7]严明潮,徐向群,单夏锋.提取条件对茶多酚制品儿茶素组成的

影响[

J ].茶叶科学,1996,16(2):155-156.[8]石晶,郭兴凤,李露.响应面法优化茶多酚的提取工艺[J ]

.河南工业大学学报,

2007,28(2):23-26,30.(责编:施婷婷)

(上接15页)以利用地处花孟工业园和西接贵阳南站的区位优势,发展农产品贸易、商贸及二、三产业。(3)中心城区:中院、大坡、洛解、大寨及珠显村,围绕城市需求,发展房地产、物流、商贸、社区服务、通讯、餐饮及物业管理等产业。3.3

加强基础设施建设

完善农业农村基础设施是建设

社会主义新农村的重大任务。小河区农业农村基础设施建设要重点抓好5个方面:一要结合新农村建设、城中村改造,实施环境绿化、排污收集、文化广场、社区活动室等公共基础设施配套建设。二要抓好农村人畜饮水工程、农村供水管网和水库的除险加固建设工作;结合发展现代生态农业,

大力发展节水农业,搞好水土保持和水资源保护工作。三要完善农村串户路、种养殖基地和龙头企业的机耕道及水利设施等建设;结合发展生态循环农业,完善种植基地杀虫灯安装和节水灌溉设施;大力引进高科技的农业龙头企业。四要结合统筹城乡一体化,完善“五纵四横”

的交通体系。实施珠江路南明段、西南环线、开发大道延伸段、长江路延伸段改造,配合完成贵阳环城高速路、花溪二道、金戈路等重点道路建设工程,使小河与南明、云岩真正融为一体;实施县乡公路改造升级,使城区与农村融为一体。五要加强对农村现有基础设施的维护、管理工作,将农村基础设施的维护、管理列入农村日常管理工作中,确保现有农村基础设施能真正长效的发挥作用。3.4

提高农民科学文化素质,发挥农民建设新农村的主

力作用提高农民科学文化素质:一要加快发展农村基础

教育,继续推行农村义务教育“两免一补”政策。继续加大对农村义务教育的投入,使农村在义务教育阶段真正实现全面免费教育;二要加强农业科技培训,

加大先进实用技术的开发推广力度。分期分批对农民进行农业实用技术等培训,大力推广无公害农业生产技术规范,开发绿色农产品的生产技术。建立健全农产品及其加工质量标准体系和监测、

检测体系,发展优质无公害、绿色产品,确保农产品和食品的安全性;三要加强农民的实用技能培训。加快失地农民和农村剩余劳动力转移就业培训,加大非农技能培训,增强他们自主发展能力。加大职介信息宣传,举办专场招聘会,引导他们就业和创业;四要加大职业技术教育力度。职业技术教育是开发农村人力资源的重要措施。完善省、

市、县职业技术教育网络,开展包括学历教育、远程教育等形式的职业技术教育,加快提高小河区农村劳动力素质的步伐;五要加强新农村建设的政策宣传。建设社会主义新农村是一项系统工程,需要农民的积极参与,需要全社会的支持。通过广播、电视等新闻媒体及网络进行政策宣传;通过建立宣传栏、召开农民动员大会,对农民进行深入广泛的思想动员;通过广泛深入的宣传,激发广大人民群众参与建设社会主义新农村的积极性;通过各种途径提高农民素质,加强农民对新农村建设的思想认识,

突出农民在新农村建设的主体地位,发挥他们参与新农村建设的积极性、主动性和创造性。

(责编:陶学军)

9

217卷07期王贤波等利用响应面法优化茶叶中EGCG 的浸提条件

响应面法优化酵母多糖的提取工艺

92 2012, V ol.33, No.24 食品科学 ※工艺技术 响应面法优化酵母多糖的提取工艺 王 慧1,2,程富胜3,罗永江3,董鹏程3,张 霞1,* (1.甘肃农业大学生命科学技术学院,甘肃 兰州 730070;2.甘肃农业大学动物医学院,甘肃 兰州 730070;3.中国农业科 学院兰州畜牧与兽药研究所-农业部兽用药物创制重点实验室,甘肃省新兽药工程重点实验室,甘肃 兰州 730050)摘 要:为提高酵母多糖提取率,对其提取过程进行优化。在单因素试验的基础上,利用中心组合试验设计原理,以高压时间、超声功率和超声时间为试验因素,以多糖提取率为响应值,采用3因素3水平的响应面分析法建立数学模型,获得最佳提取工艺。通过二次回归模型响应面分析得出酵母多糖提取的最佳工艺条件为高压时间35min 、超声功率510W 、超声时间26min ;在此条件下,多糖提取率的预测值为29.82%,验证值为29.84%。证明采用响应面法对酵母多糖提取条件进行优化,方法可行,可用于实际操作与实验预测。关键词:酵母多糖;响应面法;提取;优化 Optimization of Polysaccharide Extraction from Yeast by Response Surface Methodology WANG Hui 1,2,CHENG Fu-sheng 3,LUO Yong-jiang 3,DONG Peng-cheng 3,ZHANG Xia 1,* (1. College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China ; 2. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China ; 3. Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China) Abstract :Response surface methodology was used to optimize polysaccharide extraction from yeast to enhance polysaccharide yield. Polysaccharide yield was investigated with respect to high pressure treatment time, ultrasonic power and ultrasonic treatment time. A quadratic regression model was established based on a three-variable, three-level Box-Behnken design. The optimum conditions of high pressure treatment time, ultrasonic power and ultrasonic treatment time were found to be 35 min, 510 W and 26 min, respectively. Under these conditions, the predicted value of polysaccharide yield was 29.82%, whereas the actual value was 29.84%. Thus, the optimized extraction procedure is feasible for practical operation and experimental prediction. Key words :yeast polysaccharide ;response surface methodology ;extraction ;optimization 中图分类号:Q81 文献标识码:A 文章编号:1002-6630(2012)24-0092-05 收稿日期:2011-11-29 基金项目:甘肃省科技支撑项目(0708NKCA082;090NKCA070);甘肃省农业生物技术项目(GNSW-2007-12;GNSW-2010-07) 作者简介:王慧(1985—),男,硕士研究生,研究方向为动物生理学及药物免疫学。E-mail :wang_hui_1011@https://www.wendangku.net/doc/b98857119.html, *通信作者:张霞(1972—),女,副教授,博士,研究方向为动物生理药理学。E-mail :zhxcfs@https://www.wendangku.net/doc/b98857119.html, 微生物多糖是目前生物发酵工程和生物医药领域的研究热点之一[1]。现代科学研究表明,绝大多数真菌多糖都具有一定的生物学活性,其生理活性物质既可存在于子实体中,也可存在于培养菌丝体和发酵液中[2]。酵母(yeast)是一类与人类生产生活密切相关的真核微生物,在其细胞膜的外面包裹着一层厚度为100~400nm 的细胞壁[3],酵母细胞壁干质量的近75%为多糖[4],其中50~60%为β-D -葡聚糖[5]。酵母多糖在抗炎、抗诱变、抗氧化、抗肿瘤、促生长、免疫促进等方面发挥着重要的生物活性作用[6-9],是一种很有发展前景的饲料添加剂和具有抗生素兼益生素双重作用的免疫促进剂。但由于酵母细胞壁独特的结构,使其破壁不易,给相关科研工作的开展带来不少的 困难。目前,酵母多糖有效成分提取的方法较多,如研磨法、冻融法、高压均质法、超声波法、碱溶法、常规水提法、索氏提取法等[10-11],这些传统方法存在着提取温度高、时间长、能耗大、活性受损、提取率低等不足。对于将冻融法、高压均质法、超声波法、碱溶法综合为一体的提取方法目前还未见报道。响应面法(response surface methodology ,RSM)利用合理的试验设计并通过试验得到一定的数据,采用多元二次回归的方法,将多因子试验中因子指标的相互关系用多项式近似拟合,通过对函数响应面和等高线的分析,能够精确地研究各因子与响应值之间的关系,以最经济的方式、较少的试验次数和时间对所选试验参数进行全面的分析和研究,已

Design-Expert软件在响应面优化法中的应用详解

Design-Expert 软件在响应面优化法中的应用 (王世磊郑州大学450001) 摘要:本文简要介绍了响应面优化法,以及数据处理软件Design-ExpertDesign-Expert的相关知识,最后结合实例,介绍该软件在响应面优化法上的应用实例。 关键词:数据处理,响应面优化法,Design-Expert软件 1.响应面优化法简介 响应面优化法,即响应曲面法( Response Surface Methodology ,RSM),这是一种实验条件寻优的方法,适宜于解决非线性数据处理的相关问题。它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和统计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值[1]。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。 响应面优化法,考虑了试验随机误差;同时,响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量、解决生产过程中的实际问题的一种有效方法[2]。 响应面优化法,将实验得出的数据结果,进行响应面分析,得到的预测模型,一般是个曲面,即所获得的预测模型是连续的。与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的实验点进行分析。 当然,响应面优化法自然有其局限性。响应面优化的前提是:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法师不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。 结合文献报道,一般实验因素与水平的选取,可以采用多种实验设计的方法,常采用的是下面几个: 1.使用已有文献报道的结果,确定响应面优化法实验的各因素与水平。 2.使用单因素实验[3],确定合理的响应面优化法实验的各因素与水平。 3.使用爬坡实验[4],确定合理的响应面优化法实验的各因素与水平。 4.使用两水平因子设计实验[5],确定合理的响应面优化法实验的各因素与水平。 在确立了实验的因素与水平之后,下一步即是实验设计。可以进行响应面分析的实验设计有多种,但最常用的是下面两种:Central Composite Design-响应面优化分析、Box-Behnken Design-响应面优化分析。 Central Composite Design,简称CCD,即中心组合设计,有时也成为星点设计。其设计表是在两水平析因设计的基础上加上极值点和中心点构成的,通常实验表是以代码的形式编排的,实验时再转化为实际操作值(,一般水平取值为0,±1,±α,其中0为中值,α为极值, α=F*(1/ 4); F 为析因设计部分实验次数, F = 2k或F = 2 k×(1/ 2 ),其中 k为因素数,F = 2 k×(1/ 2 一般 5 因素以上采用,设计表有下面三个部分组成[6]:(1) 2k或 2 k×(1/ 2 )析因设计。(2)极值点。由于两水平析因设计只能用作线性考察,需再加上第二部分极值点,才适合于非线性拟合。如果以坐标表示,极值点在相应坐标轴上的位置称为轴点(axial point) 或星点( star point) ,表示为(±α,0,…, 0) , (0,±α,…, 0) ,…, (0, 0,…,±α)星点的组数与因素数相同。(3)一定数量的中心点重复试验。中心点的个数与CCD设计的特殊性质如正交

响应面优化实验方案设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域; ④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。

响应面优化实验(优选借鉴)

实验报告课程名称:发酵工艺及其优化实验名称:响应面优化实验专业:生物工程 学号: 060512212 姓名:韦达理 实验地点:笃行楼303 实验日期:2015年5月16日常熟理工学院

[实验目的和要求] 1. 了解响应面优化实验的原理。 2. 熟悉design expert软件的基本操作。 3. 熟悉响应面优化实验的具体流程。 4. 优化香菇多糖发酵培养基 [实验器材] Design expert软件 [实验原理和方法] 香菇多糖:是一种生理活性物质。它具有抗病毒、抗肿瘤、调节免疫功能和刺激干扰素形成等功能。 提取方法:从香菇子实体或经深层发酵后的发酵液中提取。香菇子实体生长周期长,产量和多糖得率均较低。而深层发酵培养香菇菌丝体不仅发酵液中含有与子实体相当或更高的营养物质,同时还可利用农副产品作原料,成本低,周期短,易于大规模生产,因此已得到广泛应用于重视。 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程

食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。 2.1 数据的输入

2.2 Box-Behnken响应面试验设计与结果 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 图 5 由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。

最新响应面优化实验方案设计

响应面优化实验方案 设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 7.0 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过 0.45μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。 C × V E/%= ———× 100

响应面法实验

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.等等………… 2注意事项 对于构造高阶响应面,主要有以下两个问题: 1,抽样数量将显著增加,此外,普通的实验设计也将更糟。 2,高阶响应面容易产生振动。 响应面法(response surface methodology,记为RSM)最早是由数学家Box和Wilson于1951年提出来的。就是通过一系列确定性的“试验”拟合一个响应面来模拟真实极限状态曲面。其基本思想是假设一个包括一些未知参量的极限状态函数与基本变量之间的解析表达式代替实际的不能明确表达的结构极限状态函数。响应面方法是一项统计学的综合试验技术,用于处理几个变量对一个体系或结构的作用问题,也就是体系或结构的输入(变量值)与输出(响应)的转换关系问题。现用两个变量来说明:结构响应Z与变量x1,x2具有未知的、不能明确表达的函数关系Z=g(x1,x2)。要得到“真实”的函数通常需要大量的模拟,而响应面法则是用有限的试验来回归拟合一个关系Z= g’(x1,x2),并以此来代替真实曲面Z=g(x1,x2),将功能函数表示成基本随机变量的显示函数,应用于可靠度分析中。响应面方法实际上源于一种试验设计方法,试验设计方法是用来研究设计参数对模型设计状况影响的一种取样策略,决定了构造近似模型所需样本点的个数和这些点的空间分布情况。目前广泛应用于计算机仿真试验设计的主要方法是拉丁超立方体抽样和均匀设计,这两种试验设计能应用于多种多样的模型,且对模型的变化具有稳健性。 3响应面分析

基于kriging的改进响应面法

基于kriging的改进响应面法 摘要:Kriging法是一项估计技术,相比传统插值技术,有两方面的优点[1]:第一,模型的建立只使用估计点附近的部分信息,而不是采用所有的信息对未知信息进行模拟;第二,Kriging法同时具有局部和全局的统计特性,这使得它可以分析、预测己知信息的趋势。本文将Kriging模型作为响应面函数,采用拉丁超立方抽样进行初始样本试验设计,应用ANSYS建立参数化有限元模型,结合MATLAB软件,用基于Kriging的改进响应面法计算结构可靠度,并通过算例验证了方法的高效性和精确性。 关键词:可靠度;kriging;响应面;拉丁超立方抽样 引言 结构可靠性包括:安全性、适用性和耐久性,即结构在规定时间内,在规定条件下,完成预定功能的能力。度量可靠性的指标叫可靠度。可靠度常用计算方法有FORM、SORM、MC法、响应面法等。FORM是近似计算可靠度指标最简单的方法,只需考虑随机变量的均值和标准差、功能函数泰勒级数展开式的常数项和一次项。SORM在计算失效概率过程中考虑极限状态曲面在验算点附近的曲率变化,将功能函数在验算点处展开成泰勒级数,并取至二次项,以此二次函数曲面来代替原失效面,但其计算过程繁琐,不利于工程实际应用。MC法又称为统计实验法,计算机的发展为其提供了高效的计算手段,使其应用范围越来越广。响应面法是用一个简单的显示函数去逼近实际的隐式的极限状态函数,先假设一个包括一些未知参数的极限状态方程,然后用插值方法来确定表达式中的未知参数,确定显式的响应面方程。响应面方程有多项式响应面方程和其它形式的响应面方程。多项式模拟的响应面方法能在一定程度能反映极限状态方程的非线性,但如果隐式极限状态方程是高于二次的,精度是很低的,甚至可能得出错误的结果。针对这些问题,人们开始寻找能替代多项式表达式的其他响应面法,如神经网络模拟响应面法,基于支持向量机的响应面法和基于Kriging的响应面法。 基于Kriging的可靠度计算 Kriging是线性回归分析的一种改进的技术,它包含了线性回归部分和非参数部分,其中非参数部分被视作随机分布的实现,其模型组成形式见下式(1): (1) 可以理解为线性组合的多项式形式,为随机分布过程,随机过程的存在就是Kriging法与传统响应面法的不同之处。 (2) 式中:为线性回归系数;为变量的多项式函数,为的数目。相当于响应面法中的多项式形式,为模型建立提供模拟的全局近似。建立好Kriging模型后,可

响应面法优化黄芪多糖的提取工艺

响应面分析法优化黄芪多糖的提取工艺 高宛莉,杜瑞卿 (河南南阳师范学院生命科学与技术学院,河南南阳473061) 摘要为黄芪的进一步开发利用提供参考,选取黄芪多糖提取时间、提取温度和料液比3个因素进行二次回归正交组合设计试验,对其 提取工艺参数进行优化研究。结果表明:在提取时间为56min 、温度为84?、水体积为276mL 的条件下,黄芪多糖提取最大预测值为8.979μg /mL ,实际提取值8.945μg /mL ,两者基本相符。利用优化工艺参数提取黄芪多糖时,具有最大的提取产量。关键词黄芪多糖;响应面法;提取产量中图分类号TS244文献标识码A 文章编号1004-8421(2012)11-1263-02Optimization of Extraction Technique of Astragalus polysaccharide via Response Surface Methodology GAO Wanli ,DU Ruiqing (College of Life Science and Tchnology Nanyang Normal University ,Nanyang ,He ’nan 473061,China )Abstract The effects of different temperature ,time and the ratio of solid to solution on the extraction yield of Astragalus polysaccharide were investigated based on composite design of quadratic regression.The extraction technique parameters were optimized with Response Surface Methodology.Experimental data were analyzed by solving the regression equation with Design MATLAB 7.0software.It was indicated that the optimum extraction parameters were temperature 84?,time 142minutes and the water volume 276ml.Under those conditions ,the predicted val-ue of polysaccharide extraction yield from Radix Astragali was8.97878μg.mL -1,which was in consistent with the measured value8.945μg.mL -1.It had maximal extraction yield of Astragalus polysaccharide with optimized technique parameters.Key word radix Astragali ;polysaccharide ;response Surface ;extraction yield 基金项目 南阳师范学院科青年科研资助项目(QN2012042) 作者简介 高宛莉(1978-),女,汉族,河南南阳人,实验师,从事生物化学的教学与实验工作。E -mail :duruiqing8@163.com 收稿日期2012-10-14黄芪(Radix Astragali )为豆科植物蒙古黄芪或膜荚黄芪的干燥根,是中药补气药中最为常用、且功效显著的一味药物, 含有多种对人体健康有益的生物成分与微量元素。黄芪多糖(Astragalus polysaccharide , APS )是中药黄芪中的主要成分,近年来研究发现其具有免疫调节、抗氧化、保护心肌、促进骨髓造血干细胞增殖和调节血糖等多方面广泛的药理作用 [1-2] ,是很有价值的免疫增强剂。近年来,黄芪多糖显著 的抗癌作用更受到广泛关注[3-4] 。笔者等参照有关文献 [5-6] 选取提取温度、提取时间、料液比三因素,在单因素试验的 基础上[7] ,利用二次回归正交组合设计试验(响应面分析 法)[8-9] ,对黄芪多糖的水提取过程工艺条件进行了研究,以 期为黄芪的进一步开发利用打下基础。 1材料与方法1.1材料 1.1.1黄芪。黄芪药材,购自河南省医药公司,为蒙古黄芪。1.1.2 仪器与试剂。TU -1901双光束紫外可见分光光度 计,北京普析通用仪器有限责任公司;RE -52旋转蒸发器,上海亚荣生化仪器厂;D (+)-葡萄糖,Sigma 公司;其他试剂皆为国产分析纯。1.2方法 1.2.1 多糖含量测定。糖含量测定采用苯酚一硫酸法 [10] 。 标准曲线的绘制:精确称取D (+)-葡萄糖20mg ,用重蒸水定容至100mL 作为标准液。将标准液分别稀释成浓度为30μg /mL 、60μg /mL 、90μg /mL 、150μg /mL 和180μg /mL 的溶液,取不同浓度的溶液各0.3mL 置于10mL 试管中,加入50g /L 重蒸苯酚溶液0.6mL 混合后,迅速加入3mL 98%浓硫酸, 混匀,室温静置30min 。用直径10mm 石英比色皿测定489nm 处吸光度,用重蒸水进行空白对照试验。在与标准曲线绘制相同条件下测定多糖样品含量。1.2.2 试验设计。在黄芪多糖提取过程中,影响提取液中 多糖含量的因素很多,经初步试验选定提取温度、提取时间、料液比(水体积)作为主要影响因素,以提取液中多糖含 量为指标, 在单因素试验的基础上[7] 采用三因素五水平二次回归正交组合设计试验(响应面分析法)[11] ,对提取工艺 参数进行了优化, 试验因素及水平见表1。表1试验因素、因素水平及水平编码 Table 1Experiment fact0rs ,levels and coding 水平因素 提取时间(x 1)min 提取温度(x 2) ?水体积(x 3)mL 上星号臂γ 72100320 上水平16895310零水平06085280下水平-15275250下星号臂-γ4870240Δj 8 10 30 注:Δj =(x j γ-x j 0)/γ,γ=1.287。 对因素x j 的各个水平进行线性变换,得到水平编码z j = x j -x j 0 Δj ,试验方案见表2。2 结果与分析 三因素五水平二次回归正交组合设计试验结果见表2。利用MATLAB7.0软件,对表2数据进行二次多元回归拟合,得到黄芪多糖提取浓度y 2与三因素z 1、z 2、z 3之间的二次回归方程: y 2=8.69067-0.28795z 1-0.03365z 2-0.09964z 3+0. 17083z 1z 2+0.17758z 1z 3-0.24177z 2z 3-0.40120z 12-0.36497z 22-0.36196z 32 式中, z 1'=z 12-116∑16i =1z i 12=z 12-0.707,z 2'=z 22-116∑16 i =1 z i 22=z 22农技服务,2012,29(11):1263-1264责任编辑胡先祥责任校对胡先祥

响应面优化实验

响应面优化实验 实验报告 课程名称,发酵工艺及其优化 实验名称, 响应面优化实验 专业, 生物工程 学号, 060512212 姓名, 韦达理 实验地点, 笃行楼303 实验日期,2015年5月16日 常熟理工学院 [实验目的和要求] 1. 了解响应面优化实验的原理。 2. 熟悉design expert软件的基本操作。 3. 熟悉响应面优化实验的具体流程。 4. 优化香菇多糖发酵培养基 [实验器材] Design expert软件 [实验原理和方法] 香菇多糖:是一种生理活性物质。它具有抗病毒、抗肿瘤、调节免疫功能和刺激干扰素形成等功能。 提取方法:从香菇子实体或经深层发酵后的发酵液中提取。香菇子实体生长周期长,产量和多糖得率均较低。而深层发酵培养香菇菌丝体不仅发酵液中含有与子

实体相当或更高的营养物质,同时还可利用农副产品作原料,成本低,周期短,易于大规模生产,因此已得到广泛应用于重视。 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。响应面曲线法的使用条件有:?确信或怀疑因素对指标存在非线性影响;?因素个数2-7个,一般不超过4个;?所有因素均为计量值数据;试验区域已接近最优区域;?基于2水平的全因子正交试验。 进行响应面分析的步骤为:?确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;?创建“中心复合”或“Box-Behnken”设计;?确定试验运行顺序(Display Design);?进行试验并收集数据;?分析试验数据;?优化因素的设置水平。响应面优化法的优点:?考虑了试验随机误差?响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法?与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 [实验数据和结果] 实验步骤 1. 输入三因素及其水平,设计响应面实验。

响应面法 试验设计与优化方法

响应面法试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型 作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验 数据().假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建 立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方 程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的 大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验 (试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应 的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进 行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试 验值,为计算值,则两者的相关系数R定义为其中 对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.

DesignExpert响应面分析实验设计案例分析

学校 食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 1 2 3 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

2.1 数据的输入 图 1 2.2 Box-Behnken响应面试验设计与结果 图 2 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

机械可靠性分析的高精度响应面法

文章编号:1000-0887(2007)01-0017-08ν应用数学和力学编委会,ISS N 1000-0887 机械可靠性分析的高精度响应面法 Ξ吕震宙, 赵 洁, 岳珠峰 (西北工业大学航空学院,西安710072) (我刊编委岳珠峰来稿) 摘要: 通过对已有可靠性分析中的响应面法的研究,提出了一种高精度的响应面法,该方法通过迭代线性插值的策略,来保证确定响应面的抽样点比经典的响应面法更接近真实的极限状态方程,并且该方法通过序列线性插值的方法来控制抽样点与插值中心点的距离,保证随着插值中心点收敛于真实设计点,抽样点提供更多的关于设计点附近真实极限状态方程的信息,进而保证了收敛的响应面能够在设计点附近更好地拟合真实的极限状态方程,并得到高精度的失效概率计算结果? 算例充分说明了所提方法的合理性与适用性?  关 键 词: 响应面法; 隐式极限状态; 失效概率 中图分类号: T B114.3 文献标识码: A 引 言 对于具有隐式极限状态方程的结构系统,传统的一次可靠性方法和二次可靠性方法[1-8]难以实施,在此情况下响应面法被广泛地推荐使用[9-24],响应面法的基本思想是:采用响应面函数来构造隐式极限状态方程的近似显式表达式[9-10]? 已有的工作表明,如果响应面函数能够很好的近似实际的隐式极限状态方程,它将可以得到精度相当高的失效概率估计值? 为了提高响应面法的计算精度,必须考虑两个方面的因素:响应面函数的确定和试验点的确定? 最常用的响应面函数是含待定常数的多项式,通过设计试验点采用回归分析或拟合的方法来确定多项式中的待定常数[9,12,14]? 通常多项式次数的提高可以得到更高精度的计算结果,但这是以付出更多的计算工作量为代价的[12,16],考虑计算工作量以及数学概念方面的因素,一般采用二次多项式(更多的是采用不含交叉项的二次多项式)作为响应面函数的形式?  本文主要研究试验点的选取方法,响应面法分析隐式极限状态方程可靠性的精度依赖于试验点[9-16]? 由于设计点附近的区域,或者说失效域中基本变量联合概率密度较大的区域对失效概率的贡献大,因此响应面函数应该在此区域对真实极限状态函数有较高的近似精度,由此得到了试验点选择的一般原则,即试验点应落在设计点附近? 大部分文献中采用序列响应面的方法来实现这个原则以提高计算精度? 文献[18]采用加权响应面法来近似隐式极限状态方程,以提高可靠性分析的精度,并指出极限状态方程才是响应面法应着重近似的? 文献[14] 7 1 应用数学和力学,第28卷第1期 2007年1月15日出版 Applied Mathematics and Mechanics V ol.28,N o.1,Jan.15,2007 Ξ收稿日期: 2005-11-15;修订日期: 2006-10-30 基金项目: 国家自然科学基金资助项目(10572117);新世纪优秀人才支持计划资助项目(NCET -05- 0868) 作者简介: 吕震宙(1966—),女,湖北黄石人,教授,博士生导师(E -mail :zhenzhoulu @nw https://www.wendangku.net/doc/b98857119.html, )?

相关文档