文档库 最新最全的文档下载
当前位置:文档库 › 常减压沸点换算图

常减压沸点换算图

常减压沸点换算图
常减压沸点换算图

常减压沸点换算图

最新真空度与沸点的关系复习课程

标准大气压=760毫米汞柱=76厘米汞柱=1.013×105帕斯卡=10.336米水柱。 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。 1标准大气压=101325牛顿/米2 真空度=(大气压强—绝对压强)真空压力:绝对压力与大气压力之差。真空压力在数值上与真空度相同,但应在其数值前加负号。真空度=(大气压强—绝对压强) 所谓“真空”系指低于一个大气压的气体状态,从工程意义上讲,是不可能把一个容器里的气体全部抽出,只能达到一定的真空度。一个大气压=101325Pa,当容器中的气压低于101325Pa时就称容器处于真空状态。此时,容器内的的压力就称为容器的真空度。

真空表读数所反映的究竟是多少Pa。能不能用直观的数字来显示? 真空表上“0”表示正一个大气压, “-0.1”表示绝对真空。真空表上的指示值不表示真空度的绝对值,只表示了真空度的相对值。 根据本表的刻度示值范围,真空度的绝对值与相对值可用下式换算: P=1×105(1-δ/0.1)P-真空度的绝对值(Pa) δ- 真空表的刻度示值绝对值 例一:表的示值为O,则P=1×105(1-δ/0.1)=1×105 Pa = 1个大气压 例二:表的示值为0.1,则P=1×105(1-0.1/0.1)= 0 Pa 为绝对真空。 (绝对真空是不存在的) 例三:表的示值为0.08,则P=1×105(1-0.08/0.1)= 2×104 Pa 真空度计量单位换算如下: 0.1Mpa =1×105 Pa = 760mmHg = 1个大气压 1乇= 1mmHg = 133.33Pa

二组分溶液沸点-组成图

实验4.5 二组分溶液沸点-组成图的绘制 一、目的要求 1.掌握阿贝折光仪及超级恒温槽的使用方法 2.掌握沸点-组成图的绘制方法 3.掌握用折光率确定二元液体组成的方法 二、实验原理 二组分完全互溶液体系统蒸馏曲线可分为三类: (1)系统中两组分对拉乌尔定律的偏差都不大,在T-x图上溶液的沸点总是介于A、B两纯液体的沸点之间,(如图) (2)两组分对拉乌尔定律都产生较大的负偏差,在p-x图上出现最小值时,在T-x图上将出现最高点,(如图) (3)两组分对拉乌尔定律都产生较大的正偏差,在p-x图上出现最大值时,在T-x图上将出现最低点,(如图) 最高点和最低点分别称为最高恒沸点和最低恒沸点,对应的组成称为恒沸组成,其相应的混合物称为恒沸混合物。

系统中两组分对拉乌尔定律的偏差都不大两组分对拉乌尔定律都产生较大的负偏差 两组分对拉乌尔定律都产生较大的正偏差

本实验是在某恒定压力下则定乙醇—正己烷二组分系统的沸点与组成平衡数据,并绘制该液体混合物的蒸馏曲线,其类型是系统中两组分对拉乌尔定律的偏差都较大的类型。 三、仪器试剂 超级恒温槽、阿贝折光仪、蒸馏瓶、恒流源、精密数字温度计、量筒、移液管、滴管、 环己烷、无水乙醇、丙酮、重蒸馏水、80%、60%、40%、20%环己烷—-乙醇标准混合液; 各种组成的环己烷—乙醇混合液。 四、实验步骤 1.测定沸点与组成的关系:使用折光率仪测量上述混合溶液相应的折光率。以折射率对浓度作图,即可绘制工作曲线。 2. 一定组成环己烷——乙醇混合液沸点及气液两相折射率的测定。按图装好装置后,加入药品,环己烷/乙醇: 26.21ml/0.45ml、25.44ml/1.23ml、23.41ml/3.25ml、 19.46ml/7.21ml、17.15ml/9.52、11.61ml/15.85ml、 6.4ml/20.23ml、1.41ml/25.26ml,加热回流。 3.待温度读数稳定后,将蒸馏瓶稍稍倾斜,使小槽中的冷凝回流蒸气瓶,发福倾倒三次,待小槽收集满后,记下沸点温度,

真空度与温度关系的测量

真空度与温度关系的测量 徐进朋 (东北师范大学物理学院,吉林长春 130024) 摘要:真空是指在给定的空间内,气体分子密度低于该地区大气压下的气体分子密度的稀薄气体状态,不同的真空状态有不同的气体分子密度。真空度是对气体稀薄气体稀薄程度的一种客观量度。本实验旨在分别通过以空气,金属,水为介质探究真空度与温度度的关系。 关键词:真空度温度 Abstract: the vacuum is to point to in a given space, density of gas molecule under the region condition of gas molecule density of rarefied gas under atmospheric pressure, different vacuum state has a different density of gas molecules. The degree of vacuum degree is to thin thin gas an objective measure.This experiment want to make the air, metals, and water as the medium to explore the relationships about vacuum and temperature . 引言 自19世纪以来真空技术发展迅猛,也越来越多的影响了人们的生活。小到真空包装技术大到航空航天工程,无不体现着真空技术的巨大作用与应用前景。从理论上真空度与气体压强直接相关,而温度对于气体压强的影响往往是起着决定性作用。因此探究真空度与温度的关系对于更加广泛的普及真空技术,惠及普通民众有极其重要的现实意义。 1实验部分 1.1实验仪器 图1实验装置实物图图 2 实验装置实物图 实验所用的装置由金属油扩散泵TK-150、机械泵、符合真空计ZDF-I-LED、玻璃阀门(K11~K14)、真空密封胶圈、玻璃钟罩、温度计、透明胶带等组成。如图1、图2所示。1.2实验原理

二组分溶液沸点—组成图的绘制

学号:21 成绩: 基础物理化学实验报告 实验名称:二组分溶液沸点—组成图 的绘制 应用化学二班级3 组号 实验人姓名:xx 同组人姓名:xx 指导老师:周崇松 实验日期:2013.9 湘南学院化学与生命科学系

一.实验目的 1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。 2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。 3.掌握阿贝折射仪的使用方法。 二.实验原理 在一定的外压下,纯液体的沸点是恒定的,但对于完全互溶双液系,沸点 不仅与外压有关,而且还与其组成有关,并且在沸点时,平衡的气-液两相组成往往不同。根据相律:F=C-P+2,一个气液共存的二组分体系,其自由度为2,只需再任意确定一个变量,其自由度就减为1,整个体系的存在状态就可以用二维图来描述。本实验中采用在一定压力下,作出体系的温度T 和组分x 的关系图,即T-x 图。 完全互溶体系的T-x 图可分为三类:①液体与Raoult 定律的偏差不大,在T-x 图上,溶液的沸点介于两种纯液体的沸点之间(图1.a ),如苯-甲苯系统;②由于两组分的相互作用,溶液与Raoult 定律有较大的负偏差,在T-x 图上存在最高沸点(图1.c ),如卤化氢-水系统;③ 溶液与Raoult 定律有较大的正偏差,在T-x 图上存在最低沸点(图1.b ),如乙醇-水系统。②和③类溶液,在最高或最低沸点时的气-液两相组成相同,这些点称为恒沸点,此浓度的溶液称为恒沸点混合物,相应的温度称为恒沸温度,相应的组成称为恒沸组成。 本实验所要测绘的环己烷-乙醇体系即属于第二类溶液。对于一个组成恒定的封闭系统,当系统达到气液平衡温度时,气液两相的组成和温度恒定不变,以此便能得到该温度下的平衡气-液两相组成的一对坐标。依次改变系统的组成就能得到一系列的平衡气-液两相组成坐标点,用光滑曲线连接即成相图。 实验所用的沸点仪结构如图2,冷凝管底部的小球用以收集冷凝下来的 气相样品。电热丝直接浸入溶液中加热可避免暴沸现象,温度计外的小玻璃罩有利于降低周围环境可能造成的温度计读数波动。平衡时气-液两相组成的分析用的是折射率法,因为溶液的折射率与其组成有关。若在一定温度下,测得一系列已知浓度溶液的折射率,作出该温度下溶液的折射率-组成工作曲线,就可通过测量同温度下的未知浓度溶液的折射率得到此溶液的浓度。因折射率是温度的函数,测定时必须严格控制阿贝折光仪的测量温度。 t/℃ t/℃ t/℃ A A A B B B x B (a) x B (b) 气 气 气 液 液 液 x B (c)

水的沸点与真空和压力之间的关系

水的沸点与真空和压力之间的关系 真空(%)沸点(o C)kPa mmHg kgf/cm2 99.40 0 0.613 4.6 0.0062 99.30 2 0.707 5.3 0.0072 99.20 4 0.813 6.1 0.0083 99.08 6 0.933 7.0 0.0095 98.95 8 1.067 8.0 0.0109 98.78 10 1.227 9.2 0.0125 98.62 12 1.400 10.5 0.0143 98.42 14 1.600 12.0 0.0163 98.14 16 1.813 13.6 0.0185 97.89 18 2.066 15.5 0.0210 97.62 20 2.333 17.5 0.0238 97.30 22 2.640 19.8 0.0269 96.95 24 2.986 22.4 0.0304 96.57 26 3.360 25.2 0.0343 96.14 28 3.773 28.3 0.0385 95.68 30 4.240 31.8 0.0432 95.14 32 4.760 35.7 0.0485 94.57 34 5.320 39.9 0.0542 93.94 36 5.946 44.6 0.0606 93.24 38 6.626 49.7 0.0676 92.48 40 7.373 55.3 0.0752 91.64 42 8.199 61.5 0.0836 90.70 44 9.106 68.3 0.0928 89.70 46 10.092 75.7 0.1029 88.60 48 11.159 83.7 0.1138 87.40 50 12.332 92.5 0.1258 86.60 52 13.612 102.1 0.139 85.20 54 14.999 112.5 0.153 83.70 56 16.505 123.8 0.168 78.40 62 21.838 163.8 0.223 76.40 64 23.905 179.3 0.244 69.30 70 31.157 233.7 0.317 66.50 72 33.944 254.6 0.346 56.90 78 43.636 327.3 0.445 53.30 80 47.343 355.1 0.483

物理化学实验报告 - 二元体系沸点-组成图测绘

C7二元体系沸点-组成图测绘 ——实验日期:2014年4月日姓名:马玉仁学号:1120122488 班级:10011202 一、实验目的 (一)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。(二)掌握阿贝折光仪的测量原理和使用方法。 二、原理及实验公式 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。 a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系; b.溶液有最低恒沸点,如环己烷-乙醇体系; c.溶液有最高恒沸点,如丙酮—氯仿体系。 b、c两类溶液在最高或最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液相组成及溶液沸点保持不变,此温度称恒沸点,相应组成称恒沸组成。 图C7.1 二元体系T-x图 下面以a为例,简单说明绘制沸点-组成图的原理。加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少(趋于0),x1、x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点),并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。从相律f = c - p +2可知,当外压恒定时,在气、液两相共存区域自由度等于1,当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下,气、液两相平衡时各相的组成。改变溶

二元液系相图(实验数据分析)

实验名称:二元液系相图 学院:XXXXXXXXXX 班级:XXXXXXXXX 姓名(学号):XXX(XXXXXXXX) 指导教师:XXX 实验时间:XXXXXXXXXXXXXX

二元液系相图 一、实验目的 1.测定环己烷-乙醇系统的沸点组成图(T-X图)。 2.掌握阿贝(Abbe)折光仪的使用方法。 二、实验原理 两种液态物质以任何比例混合都形成均相溶液的系统称这完全 互中溶双液系。在恒定压力下溶液沸点与平衡的气液相组成的关系,可用沸点-组成图(t-x图)表示。 完全互溶双液系的沸点-组成图可分为两三种: 一种为最简单的情况,溶液沸点介于两个纯组分沸点之间,如图6-1所示。纵坐标表示温度,横坐标表示组分B的摩尔分数(x B,y B)。下面一条曲线表示气液平衡时温度(即溶液沸点)与液想组成的关系,称液相线(T-x线)。上面的线表示平衡温度与气相组成的关系,称气相线(T-y线)。若总组成为Z B的系统在压力p及温度t时达到气液两相平衡,其液相组成为x B气相组成为y B(见图6-1)。 另两种类型为具有恒沸点的完全互溶双液系统气液平衡相图,如图6-2所示。其中(a)为具有低恒沸点相图,(b)为具有高恒沸点相图。这两类相图中气相线与液相线在某处相切。相切点对应的温度称为恒沸温度,对应组成的混合物称恒沸混合物。恒沸混合物在恒沸点达气液平衡,平衡的气、液组成相同。同一双液系在不同压力下,恒沸点及恒沸混合物是不同的。

本实验绘制环己烷-乙醇二元液系的T-X图。其方法为将不同组成的溶液于蒸馏仪中进行蒸馏,沸腾平衡后记下温度,依次吸取少量的蒸馏液和蒸出液。分别用阿贝折光计测定其折射率,然后由环己烷-乙醇的折射率-组成标准曲线或其数据表确定相应组成,从而绘制环己烷-乙醇二元液系相图。 三、仪器和试剂 沸点测定仪;取样管;阿贝折光仪。 环己烷(分析纯);无水乙醇(分析纯);环己烷摩尔分数分别为0.2、0.4、0.6、0.8的乙醇溶液。 四、实验步骤 1.纯液体折光率的测定 分别测定乙醇和环己烷的折光率。 2.标准曲线的绘制 测定环己烷摩尔分数分别为0.2、0.4、0.6、0.8的乙醇溶液的折光率,绘制标准曲线。 3.测定沸点-组成数据 1)安装沸点测定仪。 2)溶液配制。 粗略配制环己烷质量百分数分别为0.05、0.1、0.2、0.45、0.55、0.6、0.7、0.8、0.9等组成的环己烷-乙醇溶液约50ml。

乙醇沸点与真空度的对应关系修订稿

乙醇沸点与真空度的对 应关系 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

乙醇沸点与真空度的对应关系 2010-12-10 09:44:28|?分类: |标签: |字号大中小订阅 一.关于溶媒乙醇的浓度 含水乙醇浓度有体积百分浓度、质量百分浓度及摩尔百分浓度等。在具体采用时,这三种浓度之间根据工艺计算的需要常常要相互换算,其换算方法用计算实例演示其后。而一般厂家所指的浓度通常为体积百分浓度: 1.体积百分浓度 体积百分浓度=溶液中纯乙醇所占体积/溶液的总体积 其中,溶液的总体积=溶液中纯乙醇所占体积+溶液中水的体积 2.质量百分浓度 质量百分浓度=溶液单位体积纯乙醇的质量/溶液的比重 其中,溶液单位体积乙醇的质量=体积百分浓度×纯乙醇的比重 而溶液的比重=溶液单位体积中纯乙醇的质量+溶液单位体积中水的质量 3.摩尔百分浓度 摩尔百分浓度=单位质量溶液中乙醇的摩尔数/单位质量溶液中乙醇摩尔数与水的摩尔数之和 其中,单位质量溶液中乙醇的摩尔数=溶液乙醇的质量分数/乙醇的分子量 而单位质量溶液中水的摩尔数=溶液水的质量分数/水的分子量 而溶液中水的质量分数=100%-溶液乙醇的质量分数 下面进一步用实例来说明换算的具体方法: 例:将72%体积浓度乙醇(水溶液)换算成质量百分浓度和摩尔百分浓度 解:由《溶剂手册》【5】查得100%乙醇比重为 乙醇分子式为C2H5OH,分子量为46 水的分子式为H2O,分子量为18 换算如下: 质量百分浓度=72%×(72%×+28%×1)=67% 摩尔百分浓度=67%/46/(67%/46+33%/18)=% 用上面的方法同样可以计算出80%、92%体积百分浓度乙醇所对应的重量百分浓度和摩尔百分浓度,兹将计算结果列表如下: 乙醇的三种浓度表示方法互相对应数值表

二元体系沸点-组成图测绘.

二元体系沸点-组成图测绘 1 实验目的及要求 1)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。 2)掌握阿贝折光仪的测量原理和使用方法。 2 原理 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。 a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系; b.溶液有最低恒沸点,如环己烷-乙醇体系; c.溶液有最高恒沸点,如丙酮—氯仿体系。 b、c两类溶液在最高或最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液 图C7.1 二元体系T-x图 下面以a为例,简单说明绘制沸点-组成图的原理。加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少(趋于0),x1、x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点),并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。从相律f = c - p +2可知,当外压恒定时,在气、液两相共存区域自由度等于1,当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下,气、液两相平衡时各相的组成。改变溶液总组成,得到另一温度下,气、液两相平衡时各相的组成。测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用线连接即为气相线,将液相点用线连接即为液相线,得到沸点-组成图。 气相、液相的成份分析采用折光率法:先绘出折光率~组成(n~x)的等温线,方法是在定温下测定已知各种组成(x)的折光率(n),绘出n~x等温线。对于未知组成的样品,取出各相样品后,迅速测出该温度下的折光率(n),便可以从n~x线查出其相应组成。 3 仪器与试剂 恒温槽 恒沸点仪 折光仪 镜头纸 加热电源 电热丝 导线(带夹子) 橡皮塞 温度计(0.1,50~100℃)放大镜 量筒(30ml)洗耳球 吸管 环己烷(A.R.)无水乙醇(A.R.)

实验 环己烷-乙醇双液系沸点相图..

实验四环己烷-乙醇双液系相图 一.实验目的 1.绘制在p下环已烷-乙醇双液系的气----液平衡图,了解相图和相率的基本概念。 2.掌握测定双组分液系的沸点的方法,找出恒沸点混合物的组成和最低恒沸点。 3.掌握用折光率确定二元液体组成的方法。 4.掌握阿贝折射仪的测量原理及使用方法。 二.实验原理 液体的沸点是指液体的饱和蒸汽压和外压相等时的温度。在一定外压下,纯液体的沸点有确定的值。但对于完全互溶的双液系,沸点不仅与外压有关,而且还与双液系的组成有关。 常温下,两种液态物质以任意比例相互溶解所组成的体系称为完全互溶双液系。在恒定压力下,表示溶液沸点与组成关系的相图称为沸点—组成图,即为T-x相图。完全互溶双液系的T-x图可分为三类: (1)理想双液系,溶液沸点介于两纯物质沸点之间如图(a); (2)各组分对拉乌尔定律发生正偏差,溶液具有最低恒沸点(图中最低点)如图(b); (3)各组分对拉乌尔定律发生负偏差,溶液具有最高恒沸点(图中最高点)如图(c);

绘制双液系的T-x图时,需要同时测定气液平衡时溶液的沸点及气相组成、液相组成数据。例如图(a)中,与沸点t 1 对应的气相组成 是气相线上g 1点对应的,液相组成是液相线上lgBx 1 点对应的。实验测 定整个浓度范围内不同组成溶液的气液相平衡组成和沸点后,即可绘出T-x图。 本实验采用回流冷凝的方法绘制环己烷-乙醇体系的T-x图。其方法是用Abbe折射仪测定不同组分的体系在沸点时气液两相的折光率。在折光率-组成图(标准曲线)找出未知浓度溶液的折光率,就可从曲线上查出相对应的组成 三.仪器试剂 沸点仪1套;超级恒温水浴1台;阿贝折光仪1台;移液管2支;滴管2支 环己烷(A.R.);无水乙醇(A.R.) 沸点仪

常压蒸馏及沸点测定实验

新乡医学院医用化学实验课教案首页授课教师姓名及职称:

新乡医学院化学教研室年月日 实验常压蒸馏及沸点测定 一、实验目的 1.了解沸点测定的原理及意义; 2.掌握常压蒸馏操作技术及沸点测定方法。 二、实验原理 沸点测定实际上是一个蒸馏操作。蒸馏是一个将物质蒸发、冷凝其蒸气,并将冷凝液收集在另一种容器中的操作过程。当混合物中各组分的沸点不同时,可用蒸馏的方法将它们分开,所以蒸馏是分离有机化合物的常用手段。蒸馏的方法主要有以下四种:常压蒸馏、减压蒸馏、分馏和水蒸气蒸馏。下面我们就简单介绍一下,实验室中最常用的常压蒸馏。 基本原理 液体的分子由于热运动有从液体表面逸出的倾向,这种倾向随着温度的升高而增大,进而在液面上部形成蒸气。如果把液体置于密闭的真空体系中,液体分子继续不断地逸出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体中的速度相等,亦即使其蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施加的压力称为饱和蒸气压,简称蒸气压。同一温度下,不同的液体具有不同的蒸气压,这是由液体的本性决定的,而且在温度和外压一定时都是常数。

将液体加热,它的饱和蒸气压就随着温度升高而增大。当液体的蒸气压增大到与外界施于液面上的总压力(通常为大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾。这时的温度称为液体的沸点。显然沸点与外压大小有关。通常所说的沸点是指在101.3 kPa压力下液体的沸腾温度。例如水的沸点为100℃,就是指在101.3 kPa压力下,水在100℃时沸腾。在其它压力下的沸点应注明压力。例如在70 kPa时水在90℃沸腾,这时水的沸点可以表示为90℃/70 kPa。 所谓蒸馏就是将液体加热到沸腾变为蒸气,再将蒸气冷凝为液体这两个过程的联合操作。如将沸点差别较大(至少30℃以上)的液体蒸馏时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏瓶内,这样可达到分离和提纯的目的,故蒸馏为分离和提纯液态有机化合物常用的方法之一。但在蒸馏沸点比较接近的混合物时,各物质的蒸气将同时被蒸出,只不过低沸点的多一些,难以达到分离和提纯的目的,只能借助于分馏(见分馏部分)。在常压下进行蒸馏时,由于大气压往往不是恰好为101.3 kPa,因而严格说来应对观察到的沸点加以校正,但由于偏差一般都很小,即使大气压相差 2.7 kPa,这项校正值也不过 1℃左右,因此可忽略不计。 纯液态有机化合物在蒸馏过程中沸点范围(沸程)很小,为0.5~1℃,所以蒸馏可以用来测定沸点。用蒸馏法测定沸点叫常量法,此法样品用量较大,要10 mL以上。若样品不多,可采用微量法。纯的液态有机化合物在一定压力下具有一定的沸点,但具有固定沸点的液体不一定都是纯的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混合物,它们也有一定的沸点。 将盛有液体的烧瓶放在石棉网上进行加热时,在液体底部和玻璃受热的接触面上就有蒸气气泡形成。溶解在液体内部的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用,这种小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放出大量蒸气至小气泡中,待气泡中的总压力增加到超过大

二组分溶液沸点一组成图的绘制

二组分溶液沸点一组成图的绘制 一内容提要 本实验采用回流冷凝法测定不同浓度的环己烷-乙醇溶液的沸点和气液两相的平衡浓度,绘制沸点—组成图,并从图上确定体系的最低恒沸物及其相应的组成。 二目的要求 1.掌握沸点一组成图的绘制方法。 2.掌握阿贝折光仪及超级恒温槽的使用方法。 三实验关键 1.在测定工作曲线步骤中,配制液体时要求使用移液管准确移液,从而保证绘制工作曲线的准确性。每种浓度样品其沸腾状态应尽量一致,即以气泡“连续”、“均匀”冒出为好,不要过于激烈也不要过于缓慢。 2.由于液体的折射率受温度影响很大,折射仪采和用温槽恒温,恒温水在回路中要保持循环畅通。用阿贝折光仪测液体折射率时,用滴管滴数滴液体于棱镜上,待整个镜面浸润后再进行观察。 3.蒸馏瓶中电热丝一定要被溶液浸没后方能通电加热,否则电热丝易烧断或燃烧着火。四预备知识 1.杠杆原则.当组成以物质的量分数(x)表示时,两相的物质的量反比于系统点的两个相点线段的长度。 2.在恒定压力下,实验测定一系列不同组成液体的沸腾温度及平衡时气液两相的组成,即可绘出该压力下的温度-组成图。最大正偏差系统的温度-组成图上出现最低点,在此点气相线和液相线相切,由于对应于此点组成的液相在指定压力下沸腾时产生气相与液相组成相同,故沸腾时温度恒定,且这一温度又是液态混合物的最低温度,故称之为最低恒沸点,与此类似,最大负偏差系统的温度—组成图上出现最高点,即为最高恒沸点。恒沸混合的组成取决于压力,压力一定,恒沸混合物的组成一定;压力改变,恒沸混合物的组成改变,甚至恒沸点可以消失,这证明恒沸混合物不是一种化合物。 五实验原理 在恒压下完全互溶的二组分溶液体系的沸点一组成图可分三类: 1.理想的二组分溶液,其沸点介于两组分沸点之间,如苯-甲醇体系。 2.对拉乌尔定律发生负偏差的溶液,其溶液有最高恒沸点,如丙酮—氯仿、硝酸—水体系。 3.对拉乌尔定律发生正偏差的溶液,其溶液有最低恒沸点,如苯—乙醇、乙醇—水体系。 了解二组分溶液的沸点—组成图,对两组分的分离——精馏有指导意义。 本实验采用回流冷凝法测定不同浓度的环已烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T-x图。 它们表明了沸点和气、液两相组成的关系,当体系总组成x的溶液开始沸腾时,气相组成为y,继续蒸馏,则气相量增加,液相量相应减少(体系总量不变),溶液温度上升,由于回流的作用,控制了两相的量为一定,其沸点也为一定,此时气相组成为y′,与其平衡的液相组成为x′,系统的平衡沸点为t 沸,此时气液两相的量服从杠杆原理。 压力一定时,对两相共存区进行相律分析:组分K=2,相数 =2,所以自由度F=K+1-=2+1-2=1,就是说,若系统温度一定,气、液两相成分就已确定,当总量一定时由杠杆原理可知,两相的量也一定:反过来,在一定实验装置中,利用回流的方法,控制气液两相的相对量一定,使系统的温度一定,则气、液组成一定。 用精密温度计可以测出平衡温度(即沸点),取出该温度下的气液两相样品,用折射率测定可以求出其组成。因为折射率与组成有一一对应的函数关系。这可以通过测定一系列已知组成的样品的折射率,绘出工作曲线即折射率-组成图表示出来。这样,只要测定出未知样品的折射率就可以从图上找到未知样品的组成。 折射率是用阿贝折光仪测得,仪器的原理、构造及使用方法见附录“阿贝折光仪”。 本实验的工作就是测出溶液的沸点和气液相的折射率。

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制 一实验目的 1.确定不同组成的环己烷——乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点组成图。 2.掌握阿贝折射仪的原理及使用方法。 二实验原理 本实验用回流冷凝法测定不同浓度的环己烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T----x图。 下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD′C和BE′C 为液相线。体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。此时,气相组成为y′,与其平衡的液相组成为x′,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。 当压力一定时,对两相共存区进行相律分析:独立组分K=2,相数P=2,则自由度f=K-P+1=2-2+1=1 即有,体系温度一定,则气液两相成分确定。总量一定时,亮相的量也一定。在一实验装置中,控制气液两相的相对量一定,使体系温度一定, 则气液组成一定。 用精密温度计可以测出平衡温度,取出气液两相样品 测定其折射率可以求出其组成。折射率和组成有一一对应 关系,可以通过测定仪系列已知组成的样品折射率,绘出 工作曲线。测出样品就可以从工作曲线上找到未知样品的 组成。 三仪器与药品 仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压 变压器、1/10℃刻度温度计、25ml移液管一支、5ml、 10ml移液管各两支、锥形瓶四个、滴管若干支 药品:环己烷、乙醇、丙酮 四实验步骤 1.工作曲线的测定 把超级恒温槽调至25℃,连接好恒温槽与阿贝折 射仪,使恒温水流经折射仪。 准确配制下列溶液,测定纯环己烷,乙醇和下列 溶液的折射率,并测定溶液温度。 环己烷 1 2 3 4ml 乙醇 4 3 2 1ml 2.测定环己烷的沸点 按图装好仪器,调压变压器调至最小,将25ml苯加入蒸馏瓶,打开冷凝水,接通电源,

探究真空条件下真空度与温度的关系

真空设计性实验报告 (探究金属做媒介时,真空条件下,压强与温度的关系) 探究真空条件下真空度与温度的关系 (金属做媒介) 摘要:真空是指在给定的空间内,气体分子密度低于该地区大气压下的气体分子密度的稀薄气体状态,不同的真空状态有不同的气体分子密度。真空度是对气体稀薄气体稀薄程度的一种客观量度。本实验研究金属媒介下的真空度与温度的关系。 Abstract: the vacuum is to point to in a given space, density of gas molecule under the region condition of gas molecule density of rarefied gas under

atmospheric pressure, different vacuum state has a different density of gas molecules. The degree of vacuum degree is to thin thin gas an objective measure. The experimental research on metal medium under vacuum and temperature. 关键字:真空度温度金属 Key words: vacuum metal temperature 一、引言 真空技术发展到尽头已广泛地渗透到各项科学技术和生产领域,它日益成为许多尖端科学、经济建设和人们生活等方面不可缺少的技术基础。真空与大气相比,气体分子的密度小,分子之间的相互碰撞不那么频繁,单位时间内碰撞气壁的分子数减少,从而使真空状态下热传导与对流小,绝热性强,可降低物质的沸点和气化点。为了更好的了解真空的特点,本实验将研究以金属为媒介的真空条件下真空度与温度的关系。 二、实验仪器 该实验所用的装置由金属油扩散泵TK-150、机械泵、符合真空计ZDF-I-LED、玻璃阀门(K11~K14)、真空密封胶圈、玻璃钟罩、温度计、透明胶带等组成。如下图所示:

双液系沸点组成图的绘制

实验报告纸 x乙醇0 0.1 0.2 0.3 0.4 0.5 折射率n 1.4232 1.4147 1.4085 1.402 1.3952 1.3882 x乙醇0.5 0.6 0.7 0.8 0.9 1 折射率n 1.3882 1.3850 1.3791 1.3700 1.3624 1.3585 表4-1 实验数据记录表 室温:23.8℃气压:汞柱759.4mm=103278.4Pa 在20ml乙醇中加入环己烷 气相液相沸点(℃) 折射率n x乙醇折射率n x乙醇T沸点ΔT T正常 0.5 1.3606 0.9558 1.3600 0.9640 76.89 -0.1482 76.74 1 1.3750 0.7308 1.3619 0.9358 74.89 -0.1444 74.75 2 1.3860 0.5574 1.3660 0.8779 71.16 -0.1372 71.02 3 1.3927 0.4538 1.3711 0.7919 68.05 -0.1312 67.92 4 1.3940 0.4347 1.3770 0.6964 66.29 -0.1278 66.16 5 1.3940 0.4317 1.3830 0.6009 65.33 -0.1259 65.20 注:乙醇的沸点77.83℃ 表4-2 实验数据记录表 室温:23.8℃气压:汞柱759.4mm=103278.4Pa 在20ml环己烷中加入乙醇 气相液相沸点(℃) 折射率n x乙醇折射率n x乙醇T沸点ΔT T正常 0.5 1.4092 0.1956 1.4209 0.0125 71.61 -0.1380 71.47 1 1.4038 0.2801 1.4174 0.0673 65.83 -0.1269 65.70 2 1.4020 0.308 3 1.4099 0.1847 64.67 -0.1246 64.55 3 1.4011 0.322 4 1.4036 0.2833 64.59 -0.124 5 64.47 4 1.3996 0.3459 1.3956 0.408 5 64.65 -0.124 6 64.53 5 1.3982 0.3678 1.3888 0.5149 64.88 -0.1251 64.75 注:环己烷的沸点80.25℃ΔT=T沸(101325-P)/(101325*10);T正常=T沸+ΔT

二元体系沸点-组成图

二元体系沸点--组成图测绘 1 实验目的及要求 (1)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。 (2)掌握阿贝折光仪的测量原理和使用方法。 2 原理 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点组成图可以分为三类 (a)溶液的沸点介于两纯组分之间; (b)溶液由最低恒沸点; (c)溶液由最高恒沸点。

(b)(c)两类溶液在最高候着最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液相组成及溶液沸点保持不变,此温度称为恒沸点,相应组成称为恒沸组成。 绘制沸点组成图的原理:加热总组成为x1的溶液,体系的温度上升,达到液相线上的1点时溶液开始沸腾,组成为x2的气相开始生成,但是气相量很少,x1x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增加,沸点继续上升,气、液二相组成分别在气相线与液相线上变化,当达到某温度时并维持温度不变时,则x3x4为该温度下液、气两相组成,气相、液相的量按照杠杆原理确定。从相律f=c-p+2得:当外压恒定时,在气、液两相共存区域自由度为1;当温度一定是,则,气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相量与液相量之比也不变时,则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下气、液两相平衡时各相的组成。改变溶液总组成,得到另一温度下,气、液两相平衡时各相的组成。测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用

真空度与节气门的关系

扫盲帖:真空度与节气门的关系,兼谈汽车的刹车优先系统!!! 最近的丰田门让广大车主都关注刹车优先系统已经 相关的刹车安全问题,下面部分转帖谈谈真空度与节气门关系,兼谈汽车的刹车系统! 由此涉及到一些真空助力与节气门的关系。相信不少同学和我以前一样迷惑。 为了更清楚地说明真空助力器和油门和节气门 的关系,解释如下: 大部分的小车采用的是真空液压助力系统,这个是靠发动机的真空助力器和进气歧管这二者共同产生真 空压力来工作。 1、真空助力器什么? 答:所谓的助力器,就是利用真空产生压力,有压力才可以把制动液压入四个轮子里的刹车装置,才能推动刹车片掐住刹车盘或顶住刹车鼓,从而达到刹车的目的。真空助力器是在驾驶舱内的制动踏板和制动主缸之间起到放大压力的作用。我觉得如果把“真空助力器”改名叫“压力助力器”可能更容易让人理解。

当然了,真空是此助力器形成压力的原因。 2、真空压力哪里来? 答:真空助力器利用发动机进气歧管形成的真空(发动机运转才有)与外部大气压力的压力差,借助膜片式动力活塞将制动踏力放大。所以只要你轻轻地踩下刹车踏板,就可以产生数倍的被放大的压力,减轻了各位同学的刹车压力,推动制动液。当然了,如果没有真空度,你要花费更大的力气才能刹住车(70迈的车大约需要200磅的力量才能刹住,就是90kg的力;而真空助力器大约可以放大刹车力度20倍,所以正常来说只需要10磅的力量就可以刹停车了),但恐怕目前大家都没那么大的力气呢.(注意,只有汽油发动机才是利用发动机进气歧管的产生的真空压力,柴油机没有节气门) 3、进气歧管的真空度与节气门之间的关系 答:进气歧管的真空度真空度由节气门之后的进气管负责。随着节气门的开度变化而变化。 (1)如果节气门开到最大(即油门踩到最大)的时候,因为进气量增大,所以真空度就小了。这就是丰田门

二组分气液平衡相图的绘制

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液相线与汽相线组成的完整相图。 分析汽液两相组成的方法很多,有化学方法和物理方法。本实验用阿贝折射仪测定溶液的折射率以确定其组成。预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率-组成对照表。以后即可根据待测溶液的折射率,由此表确定其组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入0.1 ml, 0.2 ml, …, 0.9 ml的环己烷,然后依次移入0.9 ml, 0.8 ml,…, 0.1 ml的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷0.5, 1.0, 1.5, 2.0, 4.0, 14.0 ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入无水乙醇0.1, 0.2, 0.3, 0.4, 1.0, 5.0 ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 五、实验过程原始记录(数据、图表、计算等) 标准曲线 V环己烷(ml) V乙醇(ml) xEtOH x环己烷折射率 0 1 1 0 1.3631 0.1 0.9 0.9437 0.0563 1.3710 0.2 0.8 0.8817 0.1183 1.3735 0.3 0.7 0.813 0.187 1.3814 0.4 0.6 0.7365 0.2635 1.3849

实用文档之乙醇沸点与真空度的对应关系

实用文档之"乙醇沸点与真空度的对应关系" 2010-12-10 09:44:28| 分类:默认分类| 标签:|字号大中小订阅 一.关于溶媒乙醇的浓度 含水乙醇浓度有体积百分浓度、质量百分浓度及摩尔百分浓度等。在具体采用时,这三种浓度之间根据工艺计算的需要常常要相互换算,其换算方法用计算实例演示其后。而一般厂家所指的浓度通常为体积百分浓度: 1.体积百分浓度 体积百分浓度=溶液中纯乙醇所占体积/溶液的总体积 其中,溶液的总体积=溶液中纯乙醇所占体积+溶液中水的体积 2.质量百分浓度 质量百分浓度=溶液单位体积纯乙醇的质量/溶液的比重 其中,溶液单位体积乙醇的质量=体积百分浓度×纯乙醇的比重 而溶液的比重=溶液单位体积中纯乙醇的质量+溶液单位体积中水的质量 3.摩尔百分浓度 摩尔百分浓度=单位质量溶液中乙醇的摩尔数/单位质量溶液中乙醇摩尔数与水的摩尔数之和 其中,单位质量溶液中乙醇的摩尔数=溶液乙醇的质量分数/乙醇的分子量 而单位质量溶液中水的摩尔数=溶液水的质量分数/水的分子量 而溶液中水的质量分数=100%-溶液乙醇的质量分数 下面进一步用实例来说明换算的具体方法: 例:将72%体积浓度乙醇(水溶液)换算成质量百分浓度和摩尔百分浓度 解:由《溶剂手册》【5】查得100%乙醇比重为0.79 乙醇分子式为C2H5OH,分子量为46 水的分子式为H2O,分子量为18 换算如下: 质量百分浓度=72%×0.79/(72%×0.79+28%×1)=67% 摩尔百分浓度=67%/46/(67%/46+33%/18)=44.3%

用上面的方法同样可以计算出80%、92%体积百分浓度乙醇所对应的重量百分浓度和摩尔百分浓度,兹将计算结果列表如下: 乙醇的三种浓度表示方法互相对应数值表 二、计算的理论依据 1)理想溶液的拉乌尔定律【6】 表述:在一定温度下,理想溶液上方蒸汽中任意组分的分压等于此纯组分在该温度下的蒸汽压乘以它在溶液中的摩尔分率。 公式表示:P A=P A0·X A P B=P B0·X B= P B0·(1-X A) 式中:P A、P B——溶液上方组分A及B的平衡分压; P A0、P B0——纯组分A及B的饱和蒸汽压; X A、X B——溶液中组分A及B的摩尔分率。 2)道尔顿定律【7】 表述:溶液上方总的蒸汽压等于各组分溶液蒸汽分压力之和。 公式表示:P= P A+P B 式中:P A、P B意义同上 P——溶液上方总的蒸汽压 3.计算实例 以乙醇(水)溶液为例,为双组分溶液,且近似视为理想溶液(即两者混合不会产生体积变化,也不吸收或放出热量,也即性质相似、分子大小接近的组分)。当然,由于两种物质分子的区别,且提取液中还有药物等其它成分,计算结果只作近似值参考,主要还由实验决定。 例:计算72%(体积浓度)乙醇在50℃沸腾时其对应的外界压力(或需要的真空度)为多少? 解:由前表知,72%体积浓度的乙醇换算为摩尔分数为44.3%

相关文档
相关文档 最新文档