文档库 最新最全的文档下载
当前位置:文档库 › 轻稀土萃取分离新工艺技术研发工作报告

轻稀土萃取分离新工艺技术研发工作报告

轻稀土萃取分离新工艺技术研发工作报告
轻稀土萃取分离新工艺技术研发工作报告

轻稀土萃取分离新工艺技术工作报告

广东富远稀土新材料股份有限公司

2015年1月

目录

一、项目背景 (1)

1.1 立项背景 (1)

2.2 国内外技术发展现状与趋势 (1)

二、项目的工作内容 (5)

2.1项目的组织管理 (5)

2.2 主要研究内容 (7)

2.3 解决的关键技术 (7)

2.4 采用的工艺流程 (8)

三、项目的成果水平及创新性 (8)

3.1 项目达到的主要技术、经济指标 (8)

3.2 成果技术水平 (9)

3.3 技术创新性 (9)

3.4 与国内外同类技术比较 (10)

3.5 知识产权状况 (11)

四、项目产业化现状与趋势 (11)

4.1 科研成果转化状况 (11)

4.3 竞争能力 (13)

4.4 预期经济和社会效益 (13)

一、项目背景

1.1 立项背景

轻稀土含量多,应用范围广,用量大,是稀土元素中重要的部分。我国南方离子型稀土矿(除高钇矿外)普遍以轻稀土(La、Ce、Pr、Nd)为主,约占60%,我国北方的混合稀土精矿和四川的氟碳铈矿也均以轻稀土为主,占96%~98%,南北稀土矿的这一特点决定了稀土分离的关键在于轻稀土的分离,轻稀土的分离成本占到整个分离成本的30%~60%。北方的混合稀土精矿和四川的氟碳铈矿经化学提铈的轻稀土组份与离子吸附型稀土矿的轻稀土组份类似,其数量约占总量的40%,可以使用相同的分离流程。我国对氟碳铈矿稀土萃取分离工艺研究起步较早,在生产工艺和理论研究方面取得了颇具特色的成果,并建立了相应的轻稀土分离工艺流程,这些流程各有不同缺点和不足,是针对高铈的北方轻稀土原料而设计的,特别是对南方离子型稀土矿分组得到的轻稀土和北方矿经化学提铈、分组得到的轻稀土的分离不甚理想,普遍存在充槽物料和酸碱消耗大,固定投资和生产成本过高的问题,因此,有必要研究开发充槽物料和酸碱消耗更省的轻稀土萃取分离的方法。

2.2 国内外技术发展现状与趋势

轻稀土通常是指镧、铈、镨、钕四种稀土元素的总称。它们具有较低的原子序数和较小质量。目前轻稀土的萃取分离普遍采用P204—煤油—盐酸体系或P507—煤油—盐酸体系,其国内外技术发展现状与趋势有以下几个方面。

(1)传统分离方法

轻稀土萃取分离的传统方法和流程是采用P204—煤油—盐酸体系或P507—煤油—盐酸体系按Pr/Nd、Ce/Pr、La/Ce分离顺序先后得到Nd、Pr 和La、Ce产品,或按LaCe/PrNd、La/Ce、Pr/Nd分离顺序先后得到La、Ce

和Pr、Nd产品,这两种传统方法充槽物料和酸碱消耗大,固定投资和生产成本高。

传统的轻稀土分离工艺流程图如下:

La Ce

La Ce

第二种流程的Pr/Nd的分离则可以选择水相进料和有机进料(O F)方式,如采用有机进料方式可减少了LaCePr/CePrNd前一分离槽负载有机相的反萃酸的消耗和Pr/Nd分离时有机相重新负载PrNd的碱的消耗,生产成本会有所下降。但会大大增加Pr/Nd分离槽的体积,造成设备投资变大和充槽物料变多。

目前,在全国稀土分离企业中还有相当数量的企业使用这种传统工艺,究其原因是这种工艺流程短,控制简单,技术要求低,技术人员水平和工人素质要求低。

(2)三出口方法

针对传统方法的不足,严纯华等人对氟碳铈矿稀土萃取分离流程做过改进,开发了带三出口的轻稀土分离工艺流程,其针对高铈的北方轻稀土原料而设计的。带三出口的轻稀土分离工艺流程图如下:

La Ce Pr

Nd 这两个流程均采用三出口技术,三出口能有效利用分离功,它从中间引出高浓度、小体积的富集物溶液,使后续分离槽进料量下降,从而减少后续分离所需的萃取量和洗涤量,后续分离槽的体积变小,减小了设备及充槽的投资,降低了酸碱单耗。第二种流程中Pr/Nd分离也可以选择水相进料和有机进料方式。

这种工艺在1995年前后开始在有些稀土分离企业中应用,由于充槽物料和酸碱单耗没有很大下降,加上三出口控制要求高,三出口组份和出口量波动大,不稳定,易出质量问题,所以未能普及推广。

(3)组合联动法

邓佐国等人也对混合轻稀土萃取分离工艺进行了优化研究,开发了带模糊分离的轻稀土分离工艺流程,其针对高铈的北方轻稀土原料而设计的。组合联动轻稀土分离工艺流程图如下:

在组合联动萃取分离工艺流程中采用了模糊分离、置换萃取、有机相进料技术,将多套具有一定分离功能的分离模块通过一定的方法巧妙

地组合串联在一起,形成联动,组合联动技术实现用一个工序得到多个分离产品,且整个工序酸、碱、料各只有一个加入点,简化了工序环节和操作控制,实现减小固定投资、降低生产成本的目的。模糊分离技术可以选用很小的萃取量来分离,大大减小萃取槽体积和缩短工艺级数,降低了充槽一次性投资和化工材料单耗。置换萃取技术利用La/CePr分离槽的负载有机相的S量顶替CePr/Nd分离槽的S量,CePr/Nd分离槽的W量来顶替La/CePr分离槽的W量,实现La/CePr分离槽反萃不用酸和CePr/Nd分离槽有机相不用碱皂化,大大降低了酸碱单耗,可以节省大量的生产成本。

这种工艺在2003年前后开始在有些稀土分离企业中应用,由于充槽物料和酸碱单耗没有较大下降,由于这种工艺控制稍复杂,技术人员水平和工人素质要求需,只有相当实力的企业采用。

加上三出口控制要求高,三出口组份和出口量波动大,不稳定,易出质量问题,所以未能普及推广。

(4)萃取槽级段配置

在传统的萃取分离工艺中,有机相采用按批次地间歇式皂化,将皂化好的有机相从高位槽流进萃取槽第1级,这种传统的有机相皂化方式既增加了工序,又不方便及时调控工艺参数。而且出口水相浓度低,水相衡接不理想,存在后续分离萃取槽和存贮设备体积增大的问题,降低了分离能力,另还存在出口水相杂质富集,易造成NaCl等结晶盐对槽体的堵塞现象。

在传统的萃取分离工艺中,洗涤段加入洗酸,反萃段加入反酸,经常存在洗涤段和反萃段负载有机相与洗酸、反酸流量相差很大的情况,造成相比失调,产生的后果是负载有机相与洗酸、反酸在混合室未能充分接触反应,造成反应平衡时间延长,洗涤和反萃效果差,级效率低,

生产上需用超过理论值数倍的酸量进行洗涤和反萃,导致体系平衡酸度和反萃液剩余酸度高,降低了洗酸和反酸的利用率,增大了酸的消耗,提高了分离成本,也影响分离产品质量下降,反萃液稀土浓度低、酸度高、体积大,与后续工序的衔接带来许多麻烦。

二、项目的工作内容

公司高度重视研发工作,成立了研发小组,组织人力,安排资金,迅速展开了相关研发工作。自主开发出“一种轻稀土萃取分离的方法”,本工艺技术解决目前轻稀土萃取分离充槽物料和酸碱消耗过大的问题,使生产线达到连续、稳定、低耗的流水线作业要求,降低了生产成本,减小了环境污染,提高了产品质量,产生了较好的经济效益和社会效益。

2.1项目的组织管理

1、研发小组

研发工作由公司工程技术研究开发中心负责。项目成立了由公司领导任负责人的13人研究开发小组,其中2人为辅助人员,成员专业涵盖:治金、机械设备、环境、无机化工等。详见下表2-1。

表2-1 研究开发小组成员名单

2、研发资金

项目投入经费600万元,主要用于研究开发和购买分离设备和原辅材料。项目研发资金使用情况详见下表2-2。

表2-2 项目研发资金使用情况表

3、研发进度

研发从2014年1月展开,历时12个月。项目研发进度包括项目前期工作、勘察设计、建筑施工、设备订货、设备安装调试、试生产、竣工验收交付使用共7个阶段。本项目研发进实施度见表2-3。

表2-3 研发实施进度表

2.2 主要研究内容

项目主要研内容有两方面:

(1)轻稀土萃取分离新工艺技术研究;

工艺设计的指导思想是实现最小的设备和充槽投资、最低的生产成本、最方便的操作控制。

(2)工业化生产设备的研制

根据萃取分离生产要求,研究高效混合澄清萃取槽和能实现液体连续稳定给料的加料装置。

2.3 解决的关键技术

项目需解决的关键技术主要有三点:

(1)尽量减少设备和充槽物料及酸碱单耗,设计可节省投资和降低生产成本的先进合理工艺技术。

(2)提高萃取分离槽级效率和两相流通稳定性,解决槽体密封性,有机和盐酸气体不逸出槽外污染环境。

(3)萃取分离过程中液体的定量加入控制方式,使生产线达到连续、稳定的流水线作业要求。

2.4 采用的工艺流程

工艺设计的指导思想是实现最小的设备和充槽投资、最低的生产成本、最方便的操作控制。为此需使用最小的萃取量和最大程度利用萃取量,经广泛查阅文献资料和深入研究,轻稀土萃取分离新工艺技术拟采用工艺流程如下:

第一步利用较经济合适的萃取量得到最大量的单一产品和最少量的中间组份和难分离元素组份,以减少后续的进料量;第二步利用模糊分离和置换萃取减少萃取量;第三步多次重复利用萃取量并提高单一La的料液质量,把从原料及酸碱中引入的轻金属离子予以大部分去除,生产出钙含量低的镧料液。

三、项目的成果水平及创新性

3.1 项目达到的主要技术、经济指标

我公司采用自主开发的“一种轻稀土萃取分离的方法”,于2010年开始工业化应用,建成了年分离1800吨轻稀土富集物的生产线,经验证

达到了如下技术、经济指标:

(1)存槽有机相(1.5mol/L P507—煤油)减少近125.3M3,稀土存槽量减少18.18吨,充槽投资大幅下降。

(2)萃取分离得到的单一轻稀土产品料液Ca等杂质<10mg/l,与传统萃取分离工艺相比,提高了产品质量档次。

(3)吨轻稀土(REO)萃取分离的总萃取量为9975mol,消耗工业盐酸3.46吨,工业液碱4.04吨,大幅度降低酸碱单耗。

(4)箱式混合澄清萃取槽级效率达85%,分离效果加大,槽体采用水封使槽内气体不外逸。转盘式连续加液装置流量误差小于3%,满足生产要求。

3.2 成果技术水平

经公司应用认为:“该工艺技术合理先进、效果明显,能为公司带来了巨大经济效益和社会效益”。目前国内外未见与本项目技术特点相同的文献报道,也未有企业采用该轻稀土萃取分离工艺技术的报道,该轻稀土萃取分离工艺技术达到国内领先水平。

3.3 技术创新性

该轻稀土萃取分离新工艺技术充分利用了模糊分离、置换萃取、组合联动、三出口、有机进料、稀土洗涤、萃取槽连续碱皂化、萃取槽连续稀土皂、萃取量和洗涤量复用等工艺技术进行优化,工艺先进合理,流程设计独特,具有以下技术创新:

(1)降低了槽存有机相和稀土的物料量,降低了酸碱试剂单耗,减小了设备和充槽投资,降低了生产成本,减少了生产废水排放量;

(2)萃取分离得到的单一轻稀土产品料液Ca等杂质含量少,提高了产品质量档次。

(3)设备结构合理,性能好,操作控制方便。

3.4 与国内外同类技术比较

针对稀土中含量多、应用范围广、用量大的轻稀土组份萃取分离充槽物料和酸碱单耗过大的问题,采用自主研发的新工艺技术,使轻稀土萃取分离生产线达到连续、稳定、低耗的流水线作业要求,减少了充槽投资,降低了生产成本,减小了环境污染,提高了产品质量,创造了较好的经济效益和社会效益,工艺先进合理,流程设计独特,达到国内领先水平,研究取得2项发明专利,发表论文1篇。

通过对传统、三出口、组合联动三种方式的六个流程工艺参数的详细计算,归纳比较技术经济指标如下表:

从对传统、三出口、组合联动三种方式的六个流程的存槽投资与试剂消耗等技术经济指标比较中可以看出,组合联动流程B即本轻稀土萃取分离新工艺技术存槽有机相比传统流程A减少26.4%为125.3m3,稀土存槽量减少22.1%为18.18吨,按2010年充槽期间P507(比重0.9g/cm3)、煤油(比重0.8g/cm3)、轻稀土富集物价格5.2万元/吨、0.78万元/吨、8.5万元/吨计算,充槽物料减少约503万元。每分离1吨(纯REO)轻稀土富集物原料的总萃取量减少47.6%,盐酸消耗减少47.6%

为3.14吨,液碱消耗减少47.6%为3.67吨,按投产时盐酸、液碱价格650元/吨、700元/吨计算,用新工艺每分离1吨(纯REO)轻稀土富集物原料,可减少酸碱生产成本约5096元,每年可减少酸碱生产成本约917.28万元,并分离1吨轻稀土减少生产废水8.19m3。

由此可见,组合联动流程B即本轻稀土萃取分离新工艺技术是最优的,这种带有模糊分离和置换萃取的组合联动轻稀土分离新工艺流程充分利用了模糊分离、置换萃取、组合联动、三出口、有机进料、稀土洗涤、萃取槽连续碱皂化、萃取槽连续稀土皂等工艺技术进行优化,降低了槽存有机相和稀土的物料量,降低了酸、碱试剂耗量,减小了充槽投资、生产成本和生产废水排放量,工艺先进合理,经济效益十分显著。

3.5 知识产权状况

本项目拥有自主知识产权,其核心技术已授权发明专利两项,授权发明专利名称为:

(1)一种轻稀土萃取分离的方法(授权专利号:ZL201210433593.1);

(2)转盘式连续加液装置(授权专利号:ZL201020635592.2)。

四、项目产业化现状与趋势

4.1 科研成果转化状况

本工艺技术已在公司生产中应用,已于2010年开始工业化应用,建成了年分离1800吨轻稀土富集物的生产线,解决目前轻稀土萃取分离充槽物料和酸碱消耗过大的问题,节省充槽物料资金约503万元,满负荷生产时每年可减少酸碱生产成本约917.28万元。工艺先进合理,使生产线达到连续、稳定、低耗的流水线作业要求。降低了建设投资和生产成本,减小了环境污染,提高了产品质量。经过三年多的生产运行,该生产线为我公司带来了巨大经济效益和社会效益,累计新增利润8742.18万元,新增税收8280.9万元,详见下表。

4.2 市场需求

近l0年来,随着稀土在高科技领域的开发应用研究不断取得重大突破,稀土材料的应用越来越广,特别是稀土永磁材料、发光材料、储氢材料等稀土功能材料在高新技术产业中的大规模应用,已成为拉动国民经济及国防建设持续稳定发展的重要支撑条件,并促进了相关产业的发展和科学进步。2012年中国拥有稀土冶炼分离企业100多家,稀土分离能力保守估计已经达到17万吨,实际可能超过20万吨。其中稀土金属的生产能力已经达到4~5万吨的水平,其中单一稀土金属的年生产能力达3万吨,混合稀土金属的年生产能力约为2万吨。

以区域稀土资源为核心,中国稀土产业形成了三大基地和南北两大稀土生产体系的格局。这三大基地一是以包头混合型稀土为原料的北方稀土生产基地,分离能力约8万吨;二是以江西等南方七省的离子型稀土矿为原料的中重稀土生产基地,分离能力约6万吨;三是以四川冕宁氟碳铈为原料的氟碳饰矿生声基地分离能力约3万吨。

2012年稀土冶炼分离产品产量达11万吨(REO),占世界总产量的88%,国内稀土消费量为6.7万吨。广东6家稀土冶炼分离企业,年分离能力1.5万吨;2012年,实际生产稀土冶炼分离产品9130吨;实现销售收入约11亿元;出口稀土产品3361吨(REO),创汇7000万美元,广东已成为我国稀

土生产大省和消费大省,在我国稀土市场上具有举足轻重的地位。广东省离子型稀土资源分布广,资源保有储量大,广东省在未来将会成为我国离子型稀土分离大省。随着稀土产业规模的不断扩大,稀土冶炼分离过程中的节能减排问题日趋严重,需要大力降低产品单耗和提高资源的综合利用率。

目前广东省内南方离子型稀土矿稀土分离厂有5家,年处理能力达15000吨,轻稀土组份约占60%,轻稀土数量为9000吨,同时国内南方离子型稀土矿分离能力达60000吨,轻稀土数量有36000吨。另外我国北方矿年处理能力已达110000吨,其化学提铈后的轻稀土组份约占总量的40%,轻稀土数量约有44000吨。因此本项目有很大的推广市场,能为稀土行业带来较大的技术进步。

4.3 竞争能力

本工艺技术解决目前轻稀土萃取分离充槽物料和酸碱消耗过大的问题,工艺先进合理,使生产线达到连续、稳定、低耗的流水线作业要求。降低了建设投资和生产成本,减小了环境污染,提高了产品质量。目前,国内外未见与本项目技术特点相同的文献报道,也未有企业采用该轻稀土萃取分离工艺技术的报道,该轻稀土萃取分离工艺技术达到国内领先水平,竟争能力强。同时我们还将利用自身的技术优势,进一步提高技术水平量,增强竞争优势。

4.4 预期经济和社会效益

目前广东省内南方离子型稀土矿稀土分离厂有5家,年处理能力达15000吨,轻稀土组份约占60%,按每分离一吨轻稀土可节约生产成本5096元计,广东省内南方离子型稀土矿稀土分离厂每年可节约生产成本4586.4万元。同时国内南方离子型稀土矿分离能力达60000吨以上,按上述计算方式,如果采用本分离工艺技术可年节约生产成本1.83亿元以

上。另外我国北方矿年处理能力已达110000吨以上,其化学提铈后的轻稀土组份约占总量的40%,按上述计算方式,如果采用本分离工艺技术可年节约生产成本2.24亿元以上,即全国推广累计可节约生产成本近4亿元。因此本项目有很大的推广市场,产业化前景广阔,能为稀土行业带来巨大效益和技术进步。

稀土提取与分离技术 (发)

产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期) 编者按: 稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。 本期重点:稀土提取与分离技术专利分析 ●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等 原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。 ●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的 体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。 ●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合 物中回收稀土元素以及提取与分离过程中所使用的萃取剂。此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。 ●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为 北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。 ============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:xxcykb@https://www.wendangku.net/doc/ba9058090.html,

用溶剂萃取法分离镍钴和铜

用溶剂萃取法分离镍、钴和铜 钱东, 王开毅, 蔡春林, 潘春跃, 唐有根, 蒋金枝,化学工程学院、中南大学,长沙414083,中国) 1 [分离] 镍,钴和铜的溶剂萃取分离法。实验结果表明[Co(NH3)6 ] 3 +是在萃取动力学惰性复杂,因此可以从钴镍和铜拜农平衡溶剂萃取分离。25℃温度条件下,两相的接触时间10分钟,相比1:1,水溶液的pH值10.10和20%浓度的P204,[Co(NH3)6 ] 3 +很难提取P204,而提取镍和铜的比例分别为93.9%和79.3%。镍和铜的平衡溶剂萃取法分离。25℃温条件下,两个阶段1分钟,相比1:1的接触时间,pH值和浓度平衡4.01中20%,铜和镍的分离因子为216。 【关键字】非平衡溶剂萃取平衡;溶剂萃取;镍;钴;铜;二(2-乙基己基)磷酸 【中国分类号】TQ028.32;TF 804. 2引言 溶剂萃取是一种溶剂萃取热力学平衡。非平衡溶剂提取溶剂提取[ 1 ]的一种,它利用在动力学萃取速度差异性分离材料等稀有金属和稀土金属[ 2-4 ] [ 5,6 ]。 对钴、镍的提取与二(2-乙基己基)磷酸的分离因子(P204 }在硫酸溶液中一般在20以下,因此可被认为是不适合的钴镍分离[7,8]。因此,P204也是对镍,钴,铜,人们已经注意到湿法冶金分离萃取剂自20世纪60年代一个不称职的。 然而,据报道,[Co(NH3)6 ] 3 +氨溶液和β-羟肟n510 [ 9 ]或n530 [ 10 ]的提取速度很慢动力学惰性复杂。在本文中,发现[Co(NH3)6 ]3+提取速度P204也很慢。所以我们可以氧化钴(Ⅱ)Co(Ⅲ)在氨性溶液中,用非平衡溶剂萃取分离钴的镍和铜,然后分离镍和铜的平衡溶剂萃取法。

稀土溶剂萃取

稀土溶剂萃取 摘要:本文主要介绍了不同稀土萃取剂及其性能和稀土溶剂萃取工艺。 关键词:稀土;溶剂萃取;萃取剂;萃取工工艺 一、前言 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称。稀土元素主要以单矿物形式存在,目前已发现的250多种,但适合现今选冶条件的工业矿物仅有10余种。中国占世界稀土资源的41.36%,是一个名副其实的稀土资源大国。稀土资源极为丰富,分布为南重北轻,这为中国稀土工业的发展奠定了坚实的基础。传统的稀土分离方法有分步结晶法、离子交换法、溶剂萃取法,现在溶剂萃取法是稀土萃取的主要方法。分步结晶法利用氧化或还原反应分步沉淀,需要冗长复杂的结晶步骤,不利于生产大量稀土;离子交换法只适用于溶度较低的稀土溶液。溶剂萃取技术的特点:仪器设备简单,操作简易快速,回收率高,纯度好,选择性好,应用范围广泛;除用于分离外,还能作为浓集手段.该法缺点是有机溶剂的毒性大,多级萃取操作费时、麻烦、操作强度大;有些试剂昂贵,成本高。[1] 二、各种稀土萃取剂及其性能 稀土溶剂萃取研究的关键是萃取剂的研制,几十年来科研工作者以溶液化学及络合物化学为基础,发展了不少有效的萃取体系。 1、酸性磷酸酯 酸性磷(膦)酸酯是各类萃取剂中分离性能最好的萃取剂.在二烷基磷酸中,酯烷基结构对分离性能没有显著影响.具有一定结构的烷基磷酸单烷基酯对稀土的平均分离因素较二烷基磷酸高,如2-乙基己基磷酸单2-乙基己基酯(P507)在硝酸体系的平均分离因数为3.04,高于已见报道的其它萃取剂,在盐酸体系也表现出较P204高的分离性能。[2]这类萃取剂中的甲基磷酸单仲烷基酯CH3P(O) (OR) OH,R=iso -C12H25 -C16H33 ,β-庚基十一烷基,对重稀土具有特别优异的萃取分离性能.酸性磷酸酯对稀土有较大的分离因数,可能与它们跟稀土离子形成螯合物时,对镧系离子具有更大的排水作用有关。 2、羧酸类萃取剂 在研究使用的众多萃取剂中,羧酸是一类有效的萃取剂。但在工业中广泛应用的萃取剂一般是混合物,这给机理研究带来了困难,为了搞清羧酸萃取稀土元素的机理,马淑珍等曾对特戊酸、环己烷甲酸、α-乙基丁酸、正己酸和二乙基己酸等不同结构的稀土羧酸盐进行了研究。羧酸类萃取剂对稀土的平均分离因数较低,这与它们在萃取稀土时,二聚体介聚,并且不形成螯合物有关,它们的分离性能与取代烷基支链化有密切关系,其次序如下:直链羧酸<β-支链羧酸、α-支链羧酸<α,α′-支链羧酸。[3] 3、中性磷酸酯 中性磷酸酯作为萃取剂尤其以甲基膦酸二(1-甲基庚基)酯[P305]体系居多。具有一定支链化程度的烷基取代的异丙基膦酸二(2-乙基己基)酯和异丙基膦酸二(1-甲基庚基)酯对镨/镧的分离系数分别为3.06和2.55,均比TBP的数值1.94高.这是由烷烃基的推电子效应,使-P=O键上电子的密度增大,因此萃取能力(RO)3PO<(RO)2RPO

溶剂萃取分离钍和稀土元素最佳工艺条件的确定

硅化断裂带控制叠加地段往往有富大矿体产出。 5)微晶石英、碱交代、赤铁矿化、绿泥石化、黄铁矿化等近矿围岩蚀变控制铀矿化的分布。 参考文献: [1]刘儒,贺运莲.诸广山岩体南部区域地球化学特征及其找矿意义[C]//核工业华南地勘局.华南铀矿物化探经验论文汇编.广州:[出版者不详],1992:23. Analysis of localization condition on granite type hydrothermal uranium deposit in Zhutongjian area of Xiazhuang ore fields LAI Zhong-x in,WANG E (Geolog ic Par ty N o.293,N uclea r Geo log ical Bureau of G uangdong Pro vince,G uang zhou510800,China) Abstract:Zhutong jian aera is located in the northw est o f Xiazhuang ore fields.Obvious ro ck alteration, hig h fr acturing and gr ow th structure in the mining area are very favo rable for m ineralization.The metallo genic conditions of granite type hydrotherm al uranium deposit in Zhutongjian aera o f the north-w est of Xiazhuang ore fields are analy zed,and its or e-controlling facto rs are discussed. Key words:hy dro thermal uranium deposit;alteration;metallog enic condition;ore-controlling factor 溶剂萃取分离钍和稀土元素最佳工艺条件的确定 M.Eskandari Nasab等人在 H ydrom etallurgy 2011年106卷第(3/4)期发表文章,介绍对溶剂萃取分离钍和稀土元素最佳工艺条件确定的研究结果。 为了确定最佳分离条件,作者分别研究了钍、某些稀土元素(包括镧、铈和钇)及铁的溶剂萃取,Cy-anex272、Cyanex302和T BP(H A)作为萃取剂,3种酸的浓度为0.01~5mo l/L,用Taguchi方法研究试验条件。与常规T BP萃取相比,Cy anex272能更有效分离钍和稀土元素。在选用Cy anex272下,最佳酸浓度为0.5mo l/L H NO3。图解法证实,钍萃合物的组成为Th(OH)2(NO3)A H A。此外,反萃取试验表明,使用1mo l/L H2SO4和2.7 10-4m ol/L EDT A的混合液,可为选择性反萃取钍提供最佳条件。因此,可从0.5mo l/L H NO3溶液中选择性萃取钍,对某种料液钍萃取率达83%。用Cyanex272和TBP的协同萃取剂可从镧系元素中分离钇。 (陈隆玉 供稿) 112铀 矿 冶第30卷

稀土分离冶炼工艺流程图

白云鄂博矿床的物质成分 白云鄂博矿床物质成分极为复杂,已查明有73种元素,170多种矿物。其中,铌、稀土、钛、锆、钍及铁的矿物共近60种,约占总数的35%。主要矿石类型有块状铌稀土铁矿石、条带状铌稀土铁矿石、霓石型铌稀土铁矿石、钠闪石型铌稀土铁矿石、白云石型铌稀土铁矿石、黑云母型铌稀土铁矿石、霓石型铌稀土矿石、白云石型铌稀土矿石和透辉石型铌矿石。 稀土生产工艺流程图

白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 火法生产线 汽车尾气净化器 永磁电机 节能灯 风力发电机 各种发光标牌 电动汽车 电动 核磁共振 自行车 磁悬浮 磁选机

稀土精矿硫酸法分解(decomposition of rare earth concentrate by suIphuric acid method) 稀土精矿用硫酸处理、生产氯化稀土或其他稀土化合物的稀土精矿分解方法。本法具有对原料适应性强、生产成本低等优点,是稀土精矿工业上常用的分解方法,广泛用于氟碳铈矿精矿、独居石精矿和白云鄂博混合型稀土矿精矿的分解。主要有硫酸化焙烧一溶剂萃取法、硫酸分解一复盐沉淀法、氧化焙烧一硫酸浸出法三种工艺。 硫酸化焙烧-溶剂萃取主要用于分解白云鄂博混合型稀土矿精矿生产氯化稀土。白云鄂博混合型稀土矿精矿成分复杂,属于难处理矿,其典型的主要成分(%)为:RE2O350~55,P2.5~3.5,F7~9,Ca7~8,Ba1~4,Fe3~4,ThO2约0.2。精矿中放射性元素钍和铀含量低,冶炼的防护要求不高,适于用硫酸化焙烧法分解。 原理经瘩细的稀土精矿与浓硫酸混合后加热焙烧到423~673K温度时,稀土和钍均生成水溶性的硫酸盐。氟碳铈矿与硫酸的主要反应为: 2REFCO3+3H2SO4=RE2(SO4)3+3HF↑+2CO2+2H2O 独居石与硫酸的主要反应是: 2REPO4+3H2SO4=RE2(SO4)3+2H3PO4 Th3(PO4)4+6H2SO4=3Th(SO4)2+4H3PO4 铁、钙等杂质也生成相应的硫酸盐。分解产物用精矿质量12倍的水浸出,获得含稀土、铁、磷和钍的硫酸盐溶液。控制不同的焙烧温度、硫酸用量和水浸出的液固比,即可改变分解效果。当硫酸与稀土精矿的量比为1.5~2.5、分解温度503~523K、水浸出液含RE2O350~70g/L时,钍、稀土、磷、铁等同时进入溶液。上述焙烧和浸出条件主要用于独居石精矿和白云鄂博混合型稀土矿精矿的分解。当硫酸与稀土精矿的量比为1.2~1.4、分解温度413~433K、水浸出溶液含游离硫酸50%时,主要是钍进入溶液,大部分稀土则留在渣中。当硫酸与稀土精矿的量比为1.2~1.4、分解温度573~623K、水浸出液含RE2O350g/L时,则稀土进入溶液,钍和铁等留在渣中。通过控制焙烧和浸出条件,就可使稀土与主要伴生元素得以初步分离。 工艺过程从稀土精矿到获得氯化稀土,主要经过硫酸化焙烧、浸出除杂质和溶剂萃取转型等过程。 (1)硫酸化焙烧。白云鄂博混合型稀土矿精矿粉与浓硫酸在螺旋混料机内混合后,送入回转窑进行硫酸化焙烧分解。控制进料端(窑尾)炉气温度493~,523K,焙烧分解过程中炉料慢慢移向窑前高温带,氟碳铈矿和独居石与硫酸作用生成可溶性的硫酸稀土。铁、磷、钍等则形成难溶于水的磷酸盐。炉料随着向高温带移动温度不断升高,过量的硫酸逐渐被蒸发掉。当炉料运行到炉气温度为11’73K左右的窑前出料端时,炉料温度达到623K左右,并形成5~10mm的小粒炉料,称为焙烧料,从燃烧室侧端排出。 (2)浸出除杂质。焙烧料含硫酸3%~7%,直接落入水浸槽中溶出稀土,而杂质几乎全部留在渣中与稀土分离。制得纯净的硫酸稀土溶液含RE2O340g/L、Fe0.03~0.05g/L、P约0.005g/L、Th<0.001g/L,酸0.1~0.15mol/L。用此溶液生产氯化稀土。 (3)溶剂萃取转型。用溶剂萃取法使硫酸稀土转变成为氯化稀土的过程。这种工艺已用于取代传统的硫酸复盐沉淀、碱转化等繁琐转型工艺。这是中国在20世纪80年代稀土提取流程的一次重大革新。溶剂萃取转型采用羧酸类(环烷酸、脂肪酸)萃取剂,预先用氨皂化,然后直接从硫酸稀土溶液中萃取稀土离子,稀土负载有机相用含HCl6mol/L溶液反萃稀土,制得氯化稀土溶液。萃取和反萃取过程采用共流萃取(见溶剂革取)方式。萃余液pH为7.5~8.0,含RE2O310mg/L 左右,稀土萃取率超过99%。盐酸反萃液含RE2O3250~270g/L,含游离酸0.1~0.3mol/L。采用减压浓缩方式将反萃液浓缩制成氯化稀土。氯化稀土的主要成分(质量分数ω/%)为:RE2O3约46,Fe0.01,P0.003,Th0.0002,SO42-<0.01,Ca1.25,NH4+1~2。1982年中国用上述流程在甘肃稀土公司建成一条年产氯化稀土约6000t的生产线,经过近十年的生产实践证明,工艺流程稳定、操作简单、经济效益好。

稀土生产与分离工业工艺流程

稀土生产与分离工业工艺流程 一、稀土选矿 选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。 当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将 大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~ 65%Fe2O3的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。 二、稀土冶炼方法 稀土冶炼方法有两种,即湿法冶金和火法冶金。 湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。

稀土萃取分离技术

稀土溶剂萃取分离技术 摘要 对目前稀土元素生产中分离过程常用的分离技术进行了综述。使用较多的是溶剂萃取法和离子交换法。本文立足于理论与实际详细地分析了溶剂萃取分离法。 关键词稀土分离萃取 前言 稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。“稀土”一词系17种元素的总称。它包括原子序数57—71的15种镧系元素和原子序数39的钇及21的钪。由于钪与其余16个元素在自然界共生的关系不大密切,性质差别也比较大,所以一般不把它列入稀土元素之列。 中国、俄罗斯、美国、澳大利亚是世界上四大稀土拥有国,中国名列第一位。中国是世界公认的最大稀土资源国,不仅储量大,而且元素配分全面。经过近40余年的发展,中国已建立目前世界上最庞大的稀土工业,成为世界最大稀土生产国,最大稀土消费国和最大稀土供应国。产品规格门类齐全,市场遍及全球。产品产量和供应量达到世界总量的80%一90%[1]。 稀土在钢铁工业有色金属合金工业、石油工业、玻璃及陶瓷工业、原子能工业、电子及电器工业、化学工业、农业、医学以及现代化新技术等方面有多种用途。由于稀土元素及其化合物具有不少独特的光学、磁学、电学性能,使得它们在许多领域中得到了广泛的应用。但由于稀土元素原子结构相似,使得它们经常紧密结合并共生于相同矿物中,这给单一稀土元素的提取与分离带来了相当大的困难[2]。 常用稀土分离提取技术 萃取分离技术:包含溶剂萃取法、膜萃取分离法、温度梯度萃取、超临界萃取、固—液萃取等萃取方法。 液相色谱分离技术:包含离子交换色谱、离子色谱技术、反相离子对色谱技术、萃取色谱技术、纸色谱技术、以及薄层色谱技术。 常用方法为溶剂萃取法和离子交换法[3]。 稀土溶剂萃取分离技术

万里挑一的稀土萃取剂

“万里挑一”的稀土萃取剂 余东海、陆人杰、杜若冰、肖吉昌 上海有机化学研究所 稀土元素有“工业维生素”的美誉,在催化、激光、农业、生物、电磁等领域都有广泛的应用,是对国计民生有重要意义的战略资源。由于稀土元素的化学性质相近,并且经常是伴生的,其分离纯化一直是科学界难题,但各种高新技术的运用中往往需要高纯单一稀土。目前全世界约有90%的稀土使用溶剂萃取法分离,而正是由于徐光宪、袁承业等老一辈科学家在萃取分离方面的突破,才使我国从“稀土大国”变为“稀土强国”。 所谓溶剂萃取,就是在煤油、溶剂油等与水不相溶有机溶剂中加入萃取剂,使特定的金属离子从水相转移到有机相,两相分开后再通过简单的方法(通常是加入各种酸)使该金属离子脱离有机相,从而实现金属的富集和纯化。

在溶剂萃取分离中,萃取剂是其核心部分。那么什么样的化合物才能作为萃取剂呢?这对一个致力于成为萃取剂的化合物来说可是要“过四关斩五将”,可谓是万里挑一。为什么不是“过五关斩六将”,请听我慢慢道来。 在“过四关斩五将”之前,有机化合物必须具备一个基本素质才能开始优秀萃取剂的角逐。首先该化合物必须有与金属离子发生络合反应的活性基团,又有增加油溶性的疏水基团这一结构要求。为什么要有这个要求?这是由于理想的萃取模式是萃取剂能像九龙戏珠般的“咬住”金属离子,内侧“龙头”与金属离子发生作用,外侧“龙尾”却能溶于有机溶剂,这种组合被称作萃合物。这就要求活性基团的“龙头”能与金属离子形成稳定的化学键,通常是O,N,S或-OH,-NH,-SH;亲油性的“龙尾”有利于萃合物溶于有机溶剂,主要是碳、氢原子为主的烷基或芳基链。萃合物倾向于溶解在有机相中,也就实现了被萃取金属离子与其它水相金属离子的分离。 当化合物能满足这一基本条件后,这些准萃取剂就开始正式“过四关斩五将”的角逐了:

最新萃取分离工艺参数设计

萃取分离工艺参数设计 ——最优化串级萃取工艺设计 1、确定原料和处理能力 根据市场需求现状和发展趋势、本地稀土资源状况和开采能力、企业投资和融资能力大小等因素,确定稀土生产线的原料来源、基本配份、年处理能力。 2、确定产品方案 产品品种和规格要符合主流要求,适销对路,既不要盲目求高而增加分离难度和成本,又不能没有市场竟争能力而遭淘汰。 3、确定分离工艺流程 稀土分离时往往按“四分组”效应首先将原料分为轻、中、重稀土富集物。 分组的切割位置通常选择边界元素间分离系数(或等效分离系数)较大、并保持易萃取组分比例均衡,同时兼顾产品要求、设备条件、工艺衔接、操作稳定性和可行性等因素,以降低生产成本、提高流程的稳定性。 (1)工艺采用了具有世界先进水平分离提纯技术,确保产品质量稳定,纯度较高。 (2)工艺流程在实施过程中容易控制,比较灵活,可以根据市场的不同需求,生产不同规格的产品,充槽投资较省,化工辅料消耗降低,有利于降低产品成本。 (3)整个工艺流程较短,可连续化操作,稀土机械损失少,稀土的总收率高。 (4)实现产品“系列化”“高纯化”“单一化”“规模化”,经济指标较好,市场适应能力较强。 4、最优化串级萃取工艺设计 4.1 确定萃取体系和测定分离系数β 针对要分离的问题,选择一个合适的萃取体系,进行单级试验,确定最适宜的有机相配比、皂化度、料液和洗液的浓度和酸度等。测定萃取段和洗涤段的平均分离系数β和β'。 B A E E =β (1)

' '' B A E E =β (2) 若β和β'值相差不大,通常采用数值较小的β值进行计算。 4.2 确定分离指标 根据料液组成,确定分离切割线位置,确定易萃组分A 和难萃组分B ,B f 为料液中组分B 的摩尔分数,1A B f f =-为料液中组分A 的摩尔分数。 根据市场需求确定产品分离指标,若A 为主要产品,规定其纯度An m p +,回收率为A Y ,则A 的纯化倍数和B 的纯化倍数为: (1) n m n m A A A B P P a f f ++-= (3) (1) A A a Y b a Y -= - (4) 出口水相B 的纯度1B P 和A 的纯度1A P 为: 1B B A B bf P f bf = + (5) 111A B P P =- (6) 出口有机相和出口水相分数A f '和B f ': n m A A A A f Y f P +'= (7) 1 B A f f ''=- (8) 若B 为主要产品,规定其纯度为1B P ,回收率为B Y ,则: 1 1(1) B B B A P P b f f -= (9) (1) B B b Y a b Y -= - (10)

稀土元素的分离方法

稀土元素的分离方法 目前,除Pm以外的16个稀土元素都可提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。 现在稀土生产中采用的分离方法: (1)分步法从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。因为稀土元素之间的溶解度差别很小,必须重复操作多次才能将这两种稀土元素分离开来,因而这是一件非常困难的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操作竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量生产单一稀土。 (2)离子交换法由于分步法不能大量生产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原子弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发

稀土生产工艺流程图矿的开采技术

稀土生产工艺流程图 白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 碱 法生产线 酸法生产线 火法生产线 碳酸稀土 硫酸体系萃取 盐酸体系萃取

钕铁硼永磁体 荧光粉磁致冷材料存贮光盘稀土玻璃镍氢电池 钐钴永磁体 汽车尾气净化器永磁电机节能灯 风力发电机各种发光标牌电 动汽车电动核磁共振 自行车 磁悬浮 磁选机

稀土矿的开采技术和稀土矿开采方法介绍 稀土矿在地壳中主要以矿物形式存在,其赋存状态主要有三种:作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分。这类矿物通常称为稀土矿物,如独居石、氟碳铈矿等。作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和稀有金属矿物中,这类矿物可称为含有稀土元素的矿物,如磷灰石、萤石等。呈离子状态被吸附于某些矿物的表面或颗粒间。这类矿物主要是各种粘土矿物、云母类矿物。这类状态的稀土元素很容易提取。 常用的稀土矿开采技术 离子型稀土的技术是我国完全拥有的自主知识产权。赣州有色冶金研究所是我国离子吸附型稀土矿的发现、命名和二代稀土提取工艺科技成果的主要享有单位。时任赣州有色冶金研究所分管科研副所长、后任所长的丁嘉榆同志,作为离子型稀土矿第二代提取工艺的发明及应用的主要参与者、领导者,对这一事件的历史发展进程有着刻骨铭心的记忆。应记者之约,丁嘉榆同志对这一历史事件进行了全面地、系统地回顾和总结。时至1970年,在过去长达175年的稀土矿产资源开发利用史中,人们发现自然界中含稀土元素及其化合物的矿物多达 200 种。但真正实际有工业利用价值的稀土矿物原料却为数不多,数量约十种左右。主要有独居石、铈硅石、氟碳铈矿、硅铍钇矿、磷钇矿、褐帘石、铌钇矿、黑稀金矿。但这些矿物中却大部份含有一定数量的铀或钍,而且稀土矿物均以固态、矿物相矿物性态存在,它们往往是与放射性元素共生或伴生。 稀土矿开采方法介绍

生物分离工程第四章综合测试

第四章萃取 一、名词解释 萃取:是利用液体或超临界流体为溶剂提取原料中目标产物的分离纯化操作。 反萃取:通过调节水相条件,将目标产物从有机相转入水相的萃取操作成为反萃取。 分配系数:在恒温恒压条件下,溶质在互不相容的两相中达到分配平衡时,其在两相中的浓度之比为一常数,该常数称为分配系数。即K=溶质在萃取相中的浓度/溶质在萃余相中的浓度=C2/C1。 分离因子:萃取剂对溶质A和B的选择或分离能力可以用分离因子表示。即α=(C2A/CIA)/(C2B/C1B)=KA/KB (C:浓度;下标1,2分别表示萃余相和萃取相;A、B:溶质;α越大,A和B越容易分离,分离效果越好) 超临界流体:物质均具有其固有的临界温度和临界压强,在P-T相图上称为临界点,在临界点以上物质处于即非液体也非气体的超临界状态,这时的物质称为超临界流体。 化学萃取:化学萃取是指利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合因子实现水溶性溶质向有机相的分配,主要用于一些氨基酸和极性较大的抗生素的萃取。 双水相体系:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相水分均占有很大比例,即形成双水相系统。 萃取因子:即萃取平衡后萃取相和萃余相中质量之比。用E表示。 盐效应:由于同一双水相系统中添加不同的盐产生的相间电位不同,故分配系数与静电荷数的关系因无机盐而异,这称为盐效应。 二、选择 1.萃取利用的是物质在两相之间的___B___不同来实现分离或纯化。 A.溶解度比 B.分配系数 C.分离系数 D.稳定常数 2.下列搭配中不适合双水相萃取的是____C__。 A.聚乙二醇/磷酸盐 B.葡聚糖/甲基纤维素 C.聚乙二醇/丙三醇 D. 聚乙二醇/葡聚糖 3.荷电溶质分配系数的对数与溶质的净电荷数成___A___关系,称为______。 A.正比/盐效应 B.指数/塞曼效应 C.非线性/道南效应 D.反比/法拉第效应 4.对于超临界流体萃取,溶解萃取物时通常__C____;分离萃取物时通常______。 A.降压降温/加压加温 B.降压加温/加压降温 C.加压降温/降压加温 D.加压降温/降压加温 5. 对于液液萃取时的两相,下列名词中搭配正确的是_A B D_____。 A.上相/下相 B.萃取相/萃余相 C.萃取相/料液相 D.溶剂相/物料相 6. 下列说明中正确的是__BC__。

稀土分离方法概述

稀土分离方法概述 姓名:任嘉琳班级:应化1102 学号:1505110619 摘要:近年来我国许多单位,在稀土分离工艺研究中,取得新的成果,重点是南方离子吸附性稀土矿,特点是单一稀土或部分稀土的分离转向整个镧系元素的全分离,从偏重技术指标到转为重视技术经济指标 关键词:稀土全分离单一分离 引言:稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17 种元素的氧化物。稀土具有4f电子亚层,丰富的跃迁能级,大的原子磁距,多变的配位数,在光电磁材料中显示不可替代的作用,被誉为“工业维生素”。我国是稀土大国,所拥有的稀土储量占世界总工业储量的80%以上,由于稀土元素电子结构相似,化学性质相似,分离十分困难,但是为了探索功能材料。探索其本质特征,发现新的功能体系,拓展应用领域,必须解决分离稀土的难题[1]现在,常用的方法有溶剂萃取和离子交换。除Pm以外的16个稀土元素都可以提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。 1.萃取分离 轻稀土(P204弱酸度萃取)—镧、铈、镨、钕和钷; 中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝; 重稀土(P204中酸度萃取)—钬、铕、铒、铥、镱、镥和钪。 2.萃取工艺 (1)分步法[2] 从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉

课题_稀土萃取槽CAD图纸

稀土萃取槽CAD图纸 本实用新型涉及一种单元稀土萃取槽,属于稀土元素萃取提纯设备技术。 背景技术已有的稀土萃取提纯,是由若干个相互串联的稀土萃取槽分区段实施的。每一个萃取区段使用1个单元萃取槽。 已有的稀土萃取槽的单元稀土萃取槽的技术结构是,包括槽体;槽体由上端与槽体的顶板固定联结的第一挡板和下端与槽体的底板固定联结的第二挡板分隔成混合室和澄清室,在第一挡板与第二挡板之间保持距离;在混合室内设有搅拌器;在澄清室紧挨槽体的侧壁板部位,分别设有可与上一级槽体的混合室相贯通的入口设在上部的上回流通道和可与下一级槽体的混合室相贯通的入口设在下部的下泄放通道。将若干个所说结构的单元萃取槽串联在一起便组成稀土萃取槽。 已有稀土萃取槽的萃取工作过程是,稀土溶液持续缓慢地加入混合室,在搅拌器的搅动下,经第一挡板与第二挡板之间所保持的距离间隙进入澄清室,经沉淀分成由下而上分布的水相层(I)、第三相层(III)和有机相层(II),如附图2所示。其中存在于中间段的第三相层,是一种粘稠体物质,其所含有的有用物质量很少,而水相层富含有用物质,有机相层所含的有用物质的量与水相层相同。浮在上层的有机相层物质通过上回流通道,回流至上一级单元萃取槽的混合室,进行再度搅拌萃取,而存在于最低层的水相层物质,则通过下泄放通道,下泄至下一级单元萃取槽混合室进行更进一步的搅拌提纯,直至最终达到稀土高纯度含量指标为止。 由以上所简要描述的萃取工作过程可以明了这样一个事实,即由于第三相粘稠体层的存在,而阻断有机相与水相的交换,影响了稀土萃取过程的正常进行。为了使稀土萃取过程的正常进行,就必须对存在于澄清室内的第三相层粘稠体物质进行定期或不定期的清理。而这种清理第三相层粘稠体物质的操作是很困难的。因为它很容易破坏上下两相正常分层,使通过混合室与澄清室的混合液中的水相,因其渗透通道被第三相阻断而影响正常渗透,且压迫有机相流失,使第三相下降。一旦第三相混入混合室再返回澄清室,则将进一步加重所说问题的出现。这是目前已有的稀土萃取槽所存在的严重不足。 发明内容 本实用新型所要解决的技术问题,是提供一种萃取过程正常、清理第三相粘稠体前后间隔时间较长的单元稀土萃取槽,以克服已有技术的不足。 本实用新型解决所要解决技术问题的技术方案是,一种单元稀土萃取槽,包括槽体;槽体由上端与槽体的顶板固定联结的第一挡板和下端与槽体的底板固定联结的第二挡板分隔成混合室和澄清室,在第一挡板与第二挡板之间保持距离D1;在混合室内设有搅拌器;在澄清室紧挨槽体的侧壁板部位,分别设有可与上一级槽体的混合室相贯通的入口设在上部的上回流通道和可与下一级槽体的混合室相贯通的入口设在下部的下泄放通道,其改进点在于在澄清室内设有呈“L”形结构的澄清隔板;澄清隔板的两侧边分别与槽体的两侧壁固定联结;澄清隔板的纵向隔板的顶端靠近槽体的顶板,且与第二挡板之间保持距离D2,所说的距离D2由挨近槽体的顶板部位向挨近槽体的底板部位逐步缩小;澄清隔板的横向隔板的自由端靠近槽体的侧壁板且与槽体的底板之间保持距离D3,所说的距离D3由挨近第二挡板的部位向挨近槽体的侧壁板部位逐步缩小。 由以上所给出的本实用新型解决所说技术问题的技术方案可以明了,本实用新型由于在不改变已有技术

液-液萃取分离法

液-液萃取分离法 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形式存在在有机相中以OsO4和(OsO4)4两种形式存在。 (3)分配系数与分配比 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如: CCl4——水萃取体

萃取分离法习题

萃取分离法习题 1、目前常用的萃取方法有哪几种?各有何特点? 2、衡量萃取完全的指标是什么?其影响因素有哪些? 3、衡量萃取速度的指标是什么?其影响因素有哪些? 4、衡量萃取分离效率的指标是什么?它在评价一个萃取分离方法中的作用是什么? 5、试述萃取剂的选择原则。 6、试述萃取溶剂的选择原则。 7、说明分配系数、分配比和分离因数三者的物理意义 8、在形成螯合物的萃取体系中PH1/2表示了什么?它的大小由什么因素决定的?对于PH1/2相差较大的离子,应如何使它们分离?对于PH1/2相差较小的离子又如何使它们分离?分别举例加以说明。 9、什么是盐析剂?为什么盐析剂作用可以提高萃取效率? 10、当HgI2溶液中有I-存在时,形成HgI3-和HgI42-。试推导用有机溶剂萃取HgI2时,HgI2的分配比与[I-]间的关系。 11、A和B化合物的分配比分别为9和2,通过多次萃取可以将它们分开吗?为什么? 12、试计算:当所用提取溶剂与被萃液的相比(R)分别为0.5,1,2时的萃取率E(假设萃取体系的分配比D为1)。由上述计算,可说明什么问题。 13、当三氟乙酰丙酮分配在CHCl3和水中时得到如下的结果:当溶液的PH值为1.16时,分配比为2.00;当PH值为6.39时,分配比为1.40。求它在氯仿和水中的分配系数K D 和离解常数K i。 14、用8-羟基喹啉为萃取剂,用氯仿为溶剂,萃取分离Fe3+,Co2+,Mn2+时,已知它们萃取曲线的PH1/2值分别为1.5、5.2、6.7。问这三种离子是否可用这样的溶剂萃取法进行分离?如果可以,萃取分离时溶液的PH值应控制在什么范围内?(分离完全时β≧104)。 15、若一次萃取的E1=50%,欲达到En=99%,需连续萃取几次?欲达到En=99.9%,又必须连续萃取几次? 16、什么是反胶束萃取?反胶团萃取的特点有哪些?它在蛋白质分离中有何应用? 17、什么是双水相萃取?双水相构成体系有哪些?它在生物分离中有何应用? 18、影响反胶束萃取和双水相萃取的因素有哪些? 19、(1)简述超临界流体萃取的原理和应用,在超临界流体萃取中应注意哪些操作条件? (2)简述超声辅助萃取、微波协助萃取以及固相萃取和固相微萃取技术的原理、特点、操作条件和应用。 20、设计方案,用超临界流体萃取法分离提取银杏内酯的分析方案。 21、设计方案,用超声法或微波协助萃取法分离提取山楂总黄酮的分析方案。 22、设计方案(包括方法、试剂、主要工艺流程等),用固相萃取或固相微萃取技术分离提取牛蒡苷元的分析方案。

稀土元素溶剂萃取

立志当早,存高远 稀土元素溶剂萃取 利用水相中某些组分在有机相中分配比的不同,选择性地进行分离和提纯稀土元素的过程。为稀土元素分离提纯的重要方法之一。由萃取剂和有机溶剂形成的连续有机相与含有被分离稀土元素的水相充分接触而又不相互溶混(即充分混合一澄清),从而实现稀土组分在两相中不相等l 浓度的分配达到稀土元素分离和提纯的目的。 稀土元素的溶剂萃取工艺过程包括萃取体系选择、萃取器和萃取方式选择、 萃取分离工艺条件确定与萃取和反萃取过程实施、分离后各种溶液后处理等四部分(见溶剂革取)。萃取方式有单级与串级之分,为得到高纯度产品通常采用串级萃取方式。串级萃取又有错流、共流、逆流、分馏、回流等不同形式。20 世纪70 年代以来稀土的萃取分离以采用分馏萃取为主,辅以其他工艺。萃取剂、萃取体系及工艺条件的确定主要依据被分离的A、B 二组分(或二元素)的 分离系数βA/B的大小而定: 式中DA 为A 组分在两相的分配比;DB 是B 组分在两相的分配比, CA(0)、CA(a)为A 组分在平衡的有机相和水相的浓度,CB(0)、CB(a)为B 组分在平衡的有机相和水相的浓度。βA/B的大小表示A、B 两组分分离效果的优劣,βA/B值越大分离效果越好,即萃取剂的选择性越高。若DA=DB, βA/B=1,则表明A、B 二组分不能用该萃取体系分离,β的大小与稀土元素的原子序数以及萃取体系有关。 新萃取剂的应用以及萃取理论与工艺研究所取得的进展都有力地推动着稀土 分离和提纯技术的发展。溶剂萃取技术已成为当前稀土元素分离和提纯的主要手段,用它已能从多种稀土组分的原料中分离提纯每一种稀土元素。串级萃取

稀土萃取乳化原因分析及解决措施

第 48 卷 第 7 期2019 年 7 月 Vol.48 No.7 Jul. 2019化工技术与开发 Technology & Development of Chemical Industry 稀土萃取乳化原因分析及解决措施 卢阶主,李飞龙 (中铝广西国盛稀土开发有限公司,广西 崇左 532200) 摘 要:从物料、生产工艺、操作等方面,简要分析了P507-煤油-RECl3体系下,稀土萃取分离工业生产过程中发生乳化的主要原因,并提出了相应的解决措施。 关键词:稀土;萃取分离;乳化 中图分类号:TF 845 文献标识码:B 文章编号:1671-9905(2019)07-0061-03 目前,稀土分离的工业生产的主流工艺是溶剂萃取分离法[1-2]。在稀土的萃取分离过程中,由于各种原因,会在萃取槽中发生有害乳化现象[3],导致槽体流通困难,甚至严重到因无法流通而停产,进而引发一系列严重问题,如级效率降低、有机相损失、稀土收率下降、产品质量下降或不合格、工人劳动强度增加、生产计划被打乱等等。因此,分析发生各类乳化现象的主要原因,并在此基础上采取相应的措施,从而有效防止乳化,消除乳化,是一件非常有必要的事情。笔者结合所在公司的实际情况,重点讨论P507-煤油-RECl3体系下的乳化情况。 1 产生乳化的主要原因 稀土萃取全分离过程本身就是反复的乳状液形成和破坏的过程。有时由于某些原因,生成的乳状液不再是均匀的液体,或者虽然是均匀的液体但却很稳定,以至于在澄清室中难以分相,或分相的时间很长,以第三相存在于萃取槽中,使得萃取分离难以进行下去,这样的乳化现象是有害的。 稀土萃取分离过程中,产生乳化现象的原因有多方面,与料液组成[5-6]、生产工艺参数、生产过程操作条件等都有直接关系。应当特别注意的是,尽管可以将乳化原因进行归类分析,但实际上乳化的发生往往是多方面因素共同作用的结果。笔者结合生产实践经验,经过总结和归纳,将常见的乳化原因概述如下。1.1 水相因素 1.1.1 稀土离子浓度 在萃取分离过程中,增大料液中的金属浓度可减少设备投资,但料液中稀土金属离子的浓度过大,会导致有机相中萃合物的浓度过高,使得有机相的黏度增大,水相黏度也会加大,进而影响到液滴间的聚集,造成分相困难。这种现象容易发生在进料级附近。如果水相浓度太低,水相与有机相的比重差异小,也会使分相难度加大,这种现象在稀土皂化段及空白有机相水洗段较明显。 1.1.2 酸度 在反萃段,酸度太低不利于将稀土离子反萃干净,也不利于使Fe、Al等杂质离子随稀土离子及时排出萃取槽,造成长时间积累。 1.1.3 杂质离子 稀土萃取工艺中,料液中的Fe、Al等非稀土杂质离子容易富集于有机相和萃取槽的某些部位,在酸度较低或皂化剂局部过量的情况下,进入水相的Fe、Al离子很容易发生乳化。Fe、Al 等非稀土杂质引起乳化的原因,是其与水或OH-作用,生成了黏度大的氢氧化物胶体物质。由于萃取槽内的酸度较低,这种胶体物质短时间内不易溶解,与水相、有机相混合后,形成比较稳定的水包油型乳化物状态。这种乳化很容易在萃取段发生。 1.2 有机相因素 1.2.1 皂化度 随着皂化度的提高,有机相黏度增加,当皂化度高到破坏了P507的二聚体结构时,就会因析出萃合物而出现第三相。实际生产中,往往是由于有机相的流量小于与之匹配的皂化剂(碱)的流量,导致发生有机相皂化过饱和,形成三相物乳化。这种现象 作者简介:卢阶主(1983-),男,硕士,工程师,研究方向:稀有、稀土冶金工艺开发及资源回收利用。E-mail:lujiezhu83@https://www.wendangku.net/doc/ba9058090.html, 收稿日期:2019-04-19

相关文档