文档库 最新最全的文档下载
当前位置:文档库 › A simplified model for prediction of pozzolanic characteristics of fly ash

A simplified model for prediction of pozzolanic characteristics of fly ash

A simplified model for prediction of pozzolanic characteristics of fly ash
A simplified model for prediction of pozzolanic characteristics of fly ash

A simplified model for prediction of pozzolanic characteristics

of fly ash,based on chemical composition

Sarat Kumar Das ?,Yudhbir

Department of Civil Engineering,Indian Institute of Technology,Kanpur,Kanpur,Uttar Pradesh-208016,India

Received 13November 2003;accepted 10February 2006

Abstract

The correlation between type and quantity of glassy phase and chemical composition of fly ash has been reviewed.A simplified model based on above has been proposed for assessment of pozzolanic reactivity of fly ash in terms of compressive strength of fly ash cement mortar.The model is fitted for 10%,20%,35%and 50%of fly ash replacement and for 28,91and 365days of curing period using a least squares technique.The model is found to predict well for more than 20%fly ash replacement.The correlation coefficient (R 2)between predicted and experimental values is maximum for 50%replacement.The model fit for 10%replacement of fly ash is poor.?2006Elsevier Ltd.All rights reserved.

Keywords:Fly ash;XRD;Glass content;EDX;Compressive strength

1.Introduction

Unlike high calcium fly ash,low calcium fly ash needs assessment in terms of pozzolanic reactivity before use in cement or concrete industry due to non-reactive minerals,low glass percentage and loss on ignition (LOI).Pozzolanic be-havior of fly ash can be evaluated directly by means of com-pressive strength development with time of fly ash/hydrated lime or fly ash/cement paste,mortar or concrete.Measuring the pozzolanic behavior indirectly by means of electrical resistance of cement paste containing the pozzolan can reduce the test pezriod [1,2].Development of prediction model can save both resource and the test period.

The pozzolanic characteristic of fly ash depends upon the type and quantity of glassy phase,fineness and LOI [3].Various studies have been made to correlate compressive strength of fly ash/lime and fly ash/cement mortar or concrete with chemical composition and fineness of fly ash [4–7].Though factors like LOI,fineness,and pozzolanic content affect the compressive strength but there is not a very strong relationship with only any one of the above [4].Vincent et al.[5]have shown that the

chemical composition of fly ash expressed in mole fraction correlates with strength better than chemical composition expressed in weight percent.Watt and Thorne [6]have discussed about the possibility of correlating crushing strength of fly ash/lime mortar with chemical composition,fineness and glass content.Dhir et al.[7]have shown that there is a good correlation of 28-day compressive strength of Ordinary Portland cement/fly ash concrete with LOI and fineness.However,in the above prediction models the factors are considered separately and the effect of quality and quantity of glassy phase has not been considered.

Mehta [3]and Diamond [8]observed that the amount of analytical calcium content (expressed as an oxide)in fly ash is an indicator of type of glass content.Diamond [8]suggested a chart correlating analytical calcium content (expressed as an oxide)with hump position in X-ray diffraction analysis (XRD)of fly ash as a measure of type of glass in the fly ash.The glass content in a low calcium fly ash can be determined directly by dissolving fly ash in HF acid or indirectly by deducting the glassy phase and LOI from whole fly ash and it may be difficult to conduct these tests for all the projects.Hubbard et al.[9]have defined the pozzolanic performance index (PPI)as a quantita-tive determination of glassy phase in low calcium fly ash.The PPI is 10times the molar ratio of potash to alumina and given

as

Cement and Concrete Research 36(2006)1827–

1832

?Corresponding author.

E-mail addresses:sarat@iitk.ac.in ,saratdas@https://www.wendangku.net/doc/b69346560.html, (S.K.Das).0008-8846/$-see front matter ?2006Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconres.2006.02.020

(K/A)?10.Sharma et al.[10]also found that there is a good correlation between the PPI and soluble silica content and they have given a semi-empirical method for assessment of lime reactivity of fly ashes based on soluble silica content and fine-ness.Sivapullaiah et al.[11]have also observed that there is a good correlation between compressive strength of fly ash and soluble silica content.

Keeping this in mind the correlations for type of glass and analytical lime content as suggested by Diamond[8]for dif-ferent fly ashes are presented.The correlation between quantity of glass and(K/A)?10for different fly ashes along with the data of Hubbard et al.[9]is reviewed.As the type and amount of glass can be represented by chemical composition of fly ash,a simplified method to estimate the pozzolanic characteristics of fly ash based on chemical composition and fineness will be presented.

Though in the above analysis some factors,which affect the cement/fly ash mortar strength,have been considered still there are others which may not have been quantified;the factors like cluster of particles,which may either be due to fused glass contact

Table1

The range of parameters used for model input[4]and present study

Parameters(K/A)?10CaO LOI Fineness

Min Max Ave.Min Max Ave.Min Max Ave.Min Max Ave. Brinks and Halstead[4]0.67 1.73 1.06 1.111.6 4.541187.55243053553643 Present study0.72 1.2 1.0 1.416.8 5.8 1.28.2 3.5341544203913

Table2

Compressive strength of cement mortar cubes for control mortar and with different percent of fly ash replacement and curing period(data from Brinks and Halstead [4])

Sl. https://www.wendangku.net/doc/b69346560.html,pressive strength(N/mm2)

Control mortar Fly ash replacement

10%replacement20%replacement35%replacement50%replacement Curing period(days)Curing period(days)Curing period(days)Curing period(days)Curing period(days) 28913652891365289136528913652891365

135.3743.1648.4732.5439.7147.5029.0040.1449.4423.3536.2647.0218.0432.3742.17 234.6143.8545.2337.3846.0451.1131.8442.5448.4023.1937.2743.8721.8134.6439.35 335.3743.1648.4733.6044.4650.9032.9043.5954.7726.5340.1451.8624.4138.4147.50 433.3741.3744.4033.0434.3445.7429.3739.3045.7424.0336.8246.6215.3526.0633.75 535.5142.6846.7533.3842.6850.4931.2541.4052.8324.5038.8451.8919.5332.4445.81 638.3446.4047.7831.8238.5144.9226.8435.2742.0520.7035.2739.6613.4223.2031.54 736.4743.0244.0632.8339.5843.6228.4537.8644.5023.7136.1441.4216.4128.8340.53 836.4743.0244.0632.1040.8745.8229.5440.4447.1426.9941.7353.3116.4130.1244.94 933.3741.3744.4033.0441.7846.6227.0336.8246.1818.6928.9640.8515.3528.1338.63 1033.3741.3744.4035.0444.2748.4029.0338.4746.6222.0333.9243.0715.3527.7234.19 1135.9944.2048.5429.8740.2244.1724.1135.3643.6917.2828.7337.3811.8822.1031.07 1234.6143.8545.2333.5743.4145.6827.6935.9642.5221.8134.2044.3318.3431.5742.07 1333.3741.3744.4033.0441.3744.8525.7035.5841.7417.0227.3033.7511.6820.6926.64 1433.9943.3745.6431.2737.3043.3625.4934.2642.4518.7029.9238.8012.2422.1228.30 1533.3741.3744.4030.3740.5445.2924.0333.5141.3016.0226.0635.529.3416.5527.53 1635.9944.2048.5431.3141.9947.0826.6338.0146.6020.5234.4746.6016.9231.8244.66 1732.8238.2040.4730.1938.2043.7127.9038.5846.1421.3332.8540.8814.1124.4534.81 1834.6841.6545.0930.1739.5645.0927.4037.4846.9020.1232.4842.8413.8725.4036.98 1933.8539.7843.1629.4539.7844.8926.7535.4141.0019.6429.4437.1212.5320.2930.65 2032.8238.2040.4728.2337.0543.3124.6232.4740.4717.7226.7435.6212.4719.8629.55 2134.6841.6545.0925.3233.7336.0720.1227.9031.1111.4518.7423.00 6.9413.7418.49 2232.8238.2040.4728.2335.9141.6921.3329.7936.8316.7425.9734.4010.1717.1926.71 2333.3740.6845.4429.7037.4342.2622.6929.7036.8015.6824.4132.729.6817.0923.17 2433.3740.6845.4432.3737.8344.5324.0336.6141.8019.6929.7037.2612.3520.7530.44 2538.3446.4047.7828.7538.0534.4027.2234.8038.2318.7826.4531.069.9718.1023.41 2633.3740.6845.4431.3739.8744.5325.3635.8040.8918.0230.1037.7112.3522.7829.08 2735.5142.6846.7530.1833.2942.0723.4430.3039.2715.2723.9030.399.9417.0721.97 2835.9944.2048.5431.3140.6647.0825.1935.8041.2615.8426.9633.499.3618.1226.70 2933.9943.3745.6429.5738.6045.6424.8133.3941.5418.0226.0234.2311.2219.0826.02 3035.9945.7847.7833.1143.4950.6527.7141.6650.1721.6032.5145.8713.3223.3534.88 3135.9945.7847.7830.2338.9244.4422.6732.9637.2715.8426.1033.459.0016.4822.94 3235.9945.7847.7829.8740.2944.4423.0333.4237.7514.4024.2629.158.2815.5721.02 3335.5142.6846.7532.6739.2744.8824.1529.8840.6714.5623.4728.989.9417.5022.91 1828S.K.Das,Yudhbir/Cement and Concrete Research36(2006)1827–1832

or due to carbon contact [20,21].The cluster with carbon contact may reduce the pozzolanic reactivity.Fly ash with iron cover over the cenosphere and plerosphere reduces the pozzolanic reactivity [9,21].In certain cases fineness by air permeability correlates better to strength of cement/fly ash mortar [7,13]whereas in other cases particle size by hydrometer correlates better [4–6].The above correlation is derived from limited data so more data and data from modern plants are required to validate the above model.2.Fly ash data

The fly ash data from different sources were collected for analysis.Fly ash data for the study of analytical calcium content (expressed as an oxide)and hump position (2θvalue)in XRD analysis were considered from [8,12,13].The quantitative glass content data of fly ashes were taken from [9,13–17].In the present study four Indian fly ashes (Parichha,Panki,Angul and Neyveli)of both low calcium and high calcium varieties were also con-sidered for the above analysis.Low calcium fly ashes Parichha,Panki and Angul are characterized by 60–65%of SiO 2,18–28%of alumina,4–8%of iron oxide,1–2%of CaO,and 1–8%of LOI whereas high calcium Neyveli fly ash is characterized by 25–28%of SiO 2,27–29%of alumina,24–28%of iron oxide,16–18%of CaO and 1.5%of LOI.The minimum,maximum and average values for (K/A)?10,CaO,LOI and fineness of the above fly ashes are shown in Table 1.The compressive strength of fly ash cement mortar cube as described in Brink and Halstead [4]is considered for correlation between compressive strength and chemical composition.Table 2shows the variation of (K/A)?10,CaO,LOI and fineness of the above fly ashes.The test specimen of 5cm cube was made in different cement sand ratios of 1:2,1:2.75and 1:3by weight with Ottawa sand.The cement is replaced with fly ash in the proportion of 10%,20%,35%and 50%.In the present study the compressive strength of the cube with 1:2.75cement sand ratio is considered.The compressive strength of the cube as per ASTM standard of C-109-49(ASTM 1949)of control mortar (with no fly ash)and mortar with fly ash replacement of

different proportions at 28,90and 365days of curing are shown in Table 2.The statistical analysis of least squares is used with a minimization algorithm for model fitting.The model is studied in terms of correlation coefficient (R 2)between predicted and ob-served compressive strength values.3.Results and discussion

3.1.Correlation for glass type:XRD pattern for identifying amorphous phase

The location of the hump in XRD analysis depends upon the amount of analytical calcium content (expressed as an oxide)in fly ash [8].Fig.1depicts the variation of hump position (2θ)values of XRD analysis of the four fly ashes used in this study along with data for other fly ashes.The increases in 2θvalues indicate the change in glass type and the quantity of quartz is also reduced.High calcium Neyveli fly ash which has 16%analytical calcium content (expressed as an oxide)gives 2θvalue of 28°for whole fly ash,but finer size fraction (<45μm)indicates 2θ

value

Fig.1.Relationship between analytical lime content (expressed as an oxide)and hump

position.

Fig.2.Relationship between (K/A)?10and glass

content.

Fig.3.Correlation between glass content and (K/A)?10divided into three groups.

1829

S.K.Das,Yudhbir /Cement and Concrete Research 36(2006)1827–1832

of 32°.Evidence of the presence of calcium aluminate in finer fraction and alumino-silicate glass in coarser fraction was found from EDX microanalysis [18].Thus it may be concluded that there is a variation in the type of glass content of fly ash with analytical calcium content (expressed as an oxide).

3.2.Correlation for glass quantity

Based on the relationship given by Hubbard et al.[9]Fig.2presents data from other low calcium fly ashes.Fig.2presents the correlation between the (K/A)?10vs.glass content for different

Table 3

Regression coefficients and correlation coefficient (R 2)for different percent of fly ash replacements and testing periods Coefficients

10%replacement 20%replacement 35%replacement 50%replacement 28days

91days 365days 28days 91days 365days 28days 91days 365days 28days 91days 365days c 1 4.40 2.670.19 1.040.130.20 1.60 1.60 1.680.640.380.66c 20.000.00 6.50 1.30 6.957.05 1.89 2.18 3.32 3.28 4.66 4.97c 3 4.42 1.878.13 4.01 5.69 5.850.0011.7212.339.23 2.64 2.00c 40.000.000.000.000.000.000.000.000.000.000.040.00c 5?7.10?3.96?4.13?5.84?4.41?5.54?1.87?3.34?2.18?7.96?9.75?2.36c 60.210.320.370.340.470.470.690.650.850.350.420.89c 727.3933.4536.6724.3530.0036.7816.6216.3920.3510.4125.9923.63c 8

0.140.190.150.220.230.240.310.440.440.450.370.45Correlation coefficient (R 2)

0.714

0.641

0.693

0.885

0.882

0.877

0.861

0.894

0.876

0.919

0.932

0.900

Fig.4.Observed and predicted compressive strength at 91days for (a)10%fly ash replacement and (b)20%fly ash

replacement.Fig.5.Observed and predicted compressive strength at 91days for (a)35%fly ash replacement and (b)50%fly ash replacement.

1830S.K.Das,Yudhbir /Cement and Concrete Research 36(2006)1827–1832

fly ashes.The data points include the data of Hubbard et al.[9],

and other fly ashes[13–17].As the variation of the Al2O3in the

fly ash ranges from15%to30%,the value of(K/A)?10mostly depends upon the percent of K2O in fly ash,so higher K2O value

may indicate higher percent of glass content in a fly ash.Das and

Yudhbir[18]observed that EDX analysis of floaters of low

calcium fly ashes showed higher K value compared to whole fly

ash and as the floaters in fly ash contains mostly glass phase,the

above relationship seems acceptable.Fig.2suggests that a good

correlation exists between glass content and(K/A)?10.It has also been reported that glass content in fly ash varies up to5%even due to fluctuation in power generation for the same coal and from same plant[19],so it appears that the above relationship may be acceptable to estimate glass content with±12.5%tolerance.Fig.3 shows the above correlation in which the fly ashes may be divided into three categories;it was observed that the fly ashes having low loss on ignition(LOI)(<1.5%)value and high specific surface(air permeability)belong to Group I and Group III represents fly ash with high LOI value(>6.7%)for the fly ash data considered here.

3.3.Correlation for compressive strength

Dhir et al.[7]observed a good correlation of28days strength of fly ash concrete with LOI and fineness.Based on the relationship given by Hubbard et al.[9]and subsequent studies by Sharma et al.[10]and Sivapullaiah et al.[11],(K/A)?10 may be an indicator of strength of fly ash concrete.However,it is difficult to predict the strength of fly ash concrete with any single property of fly ash[7].Thus a simplified model has been proposed for prediction of compressive strength incorporating (K/A)?10ratio,analytical calcium content(expressed as an oxide),LOI and fineness.The model is developed for28,91and 365days compressive strength of1:2.75cement mortars with different percent of fly ash replacement based on data as pre-sented in Table2.To keep the values of model input parameters comparable the fineness is normalized by dividing with1000. Different models were tried with combinations of the above four model input parameters using a least squares technique.It is found that Eq.(1)fits well for the above model.The coefficients of Eq.(1)are given in Table3.

CS?c1eK=AT?10

eTc2tc3eCaOTc4tc5eLOITc6tc7

Fineness

1000

c

8

e1T

where CS is the compressive strength and c1–c8are the coefficients determined by least squares technique.

The values of coefficients vary with percentage of fly ash replacement and curing period.It can be observed that the coefficients c4≈0.0for all percent of replacement and for different curing periods.The values of analytical lime content (expressed as an oxide)in this study varies from1.1%to11.6%, so there may be very less variation in type of glass to effect the compressive strength.The negative values of c5agree with the inverse relationship between LOI and strength of fly ash cement mortar[7].Figs.4and5show typical results of the variation between predicted and observed compressive strength of fly ash as determined from the above analysis.The predicted and observed values are compared in terms of correlation coefficient

(R2)and the results are presented in Table3.It can be seen that R2

is more than0.85for20%,35%and50%fly ash replacement.It

was also observed that the variation in R2value for different

curing periods was negligible(e.g.0.877to0.885for20%

replacement).However,the R2value for a particular curing period

(e.g.91days)varies from0.641to0.932as the percent

replacement varies from10%to50%.The R2for10%replace-

ment varies from0.64to0.714depending upon the curing time

period.As it can been seen from Table3coefficient c2is0.0for

the above case and in all other cases it is more than one.So in the

model effect of quantity of glassy phase(i.e.(K/A)?10)is not considered.The other parameters are comparable with other per-

cent of replacement.This may be the reason for poor fit with10%

replacement.So the above correlation should only be used for

cement mortar with20%–50%of fly ash replacement.

4.Conclusion

From the above study following conclusions may be drawn: 1.The relationship between compressive strength of cement fly ash mortar and chemical composition((K/A)?10,CaO,LOI) and fineness of fly ash was modeled by a linear power equa-tion.The coefficients of the models as determined by least squares techniques vary with percent replacement of fly ash and curing time period.

2.A good correlation(R2>0.85)between predicted and ob-

served values was observed for more than20%of fly ash

replacement.There is better correlation as the percent of fly

ash replacement increases.The variation of R2at different

curing periods for a particular percent of fly ash replacement

is negligible.

3.The model prediction for10%fly ash replacement was poor. References

[1]E.Raask,M.C.Bhaskar,Pozzolanic activity of pulverized fuel ash,Cem.

Concr.Res.5(4)(1975)363–376.

[2]J.Paya,V.Borrachero,J.Monzo,E.Peris-Mora,F.Amahjour,Enhanced

conductivity measurement techniques for evaluation of fly ash pozzolanic activity,Cem.Concr.Res.31(1)(2001)41–49.

[3]P.K.Mehta,Pozzolanic and cementitious by products as mineral admix-

tures for concrete—a critical review,Fly Ash,Silica fume,Slag and Other Mineral by Products in Concrete,ACI Special Publication,SP-79,vol.1, 1983,pp.1–46.

[4]R.H.Brink,W.J.Halstead,Studies relating to the testing of fly ash for use

in concrete,Proc.Am.Soc.Testing Mats.56(1956)(1956)1161–1206.

[5]R.D.Vincent,M.Mateos,D.T.Davidson,Variation in pozzolanic behavior

of fly ashes,Proc.Am.Soc.Testing Mats.(1961)1094–1118.

[6]J.D.Watt,D.J.Thorne,Compaction and pozzolanic properties of pul-

verized fuel ash,Part II,J.Appl.Chem.15(1965)595–604.

[7]R.K.Dhir,J.G.L.Munday,L.T.Ong,Strength variability of OPC/PFA

concrete,Concrete15(6)(1981)33–37.

[8]S.Diamond,On the glass present in low and high calcium fly ashes,Cem.

Concr.Res.13(4)(1983)459–464.

[9]F.H.Hubbard,R.K.Dhir,M.S.Ellis,Pulverized fuel ash for concrete;

compositional characterization of United Kingdom PFA,Cem.Concr.Res.

15(1)(1985)185–198.

[10]R.C.Sharma,N.K.Jain,S.N.Ghosh,Semi-theoretical method for the

assessment of reactivity of fly ashes,Cem.Concr.Res.23(1)(1993)41–45.

1831

S.K.Das,Yudhbir/Cement and Concrete Research36(2006)1827–1832

[11]P.V.Sivapullaiah,J.P.Prashanth,A.Sridharan,B.V.Narayana,Reactive

silica and strength of fly ashes,Geotech.Geolog.Eng.16(3)(1998) 239–250.

[12]S.Schlorholtz,T.Demirel,J.M.Pitt,An examination of the ASTM

pozzolanic activity test for class C fly ashes,Cem.Concr.Res.14(4) (1984)499–504.

[13]G.G.Carratte,V.M.Malhotra,Characterization of Canadian fly ashes and

their relative performance in concrete,Can.J.Civil Eng.14(1987) 667–682.

[14]Y.Hasle,P.L.Pratt,J.A.Dalziel,W.A.Gutteridge,Development of

microstructure and other properties in fly ash–OPC System,Cem.Concr.

Res.14(4)(1984)491–498.

[15]M.Van Roode,E.Douglas,R.T.Hemmings,X-ray diffraction measure-

ment of glass content of fly ashes and slags,Cem.Concr.Res.17(2) (1987)183–197.[16]G.L.Valent,R.Cioffi,L.Santoro,S.Ranchetti,Influence of chemical and

physical properties of Italian fly ashes on reactivity towards lime phospogypsum and water,Cem.Concr.Res.18(1)(1988)91–102. [17]Yudhbir,Y.Honjo,Application of geotechnical engineering to environ-

mental control,9th Asian Regional Conference on Soil Mechanics and Foundation Engineering,Bangkok,1991,pp.431–469.

[18]S.K.Das,Yudhbir,Chemistry and mineralogy of some Indian fly ashes,

Indian Concr.J.77(12)(2003)1491–1494.

[19]S.H.Lee,E.Sakai,M.Daimon,W.K.Bang,Characteristics of fly ash

directly collected from electrostatic precipitator,Cem.Concr.Res.29(11) (1999)1791–1797.

[20]S.Diamond,Particle morphologies in fly ash,Cem.Concr.Res.16(4)

(1986)569–579.

[21]S.K.Das,Morphology of some Indian fly ashes,Indian Concr.J.77(9)

(2003)1300–1303.

1832S.K.Das,Yudhbir/Cement and Concrete Research36(2006)1827–1832

中考必会几何模型:8字模型与飞镖模型

8字模型与飞镖模型模型1:角的8字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C . O D C B A 模型分析 证法一: ∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二: ∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到. 模型实例 观察下列图形,计算角度: (1)如图①,∠A +∠B +∠C +∠D +∠E =________; 图图① F D C B A E E B C D A 图③ 2 1O A B 图④ G F 12 A B E 解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°. 解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E .

∵∠2是△GBD 的外角,∴∠2=∠B +∠D . ∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°. (2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________. 图② F D C B A E 312图⑤ P O Q A B F C D 图⑥ 2 1 E D C F O B A (2)解法一: 如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP . ∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③ 由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°. 解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型) ∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F =360°.(四边形内角和为360°) 练习: 1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ; 图 图① O O E E D D C C B B A A 解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD , ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:

美国常青藤名校的由来

美国常青藤名校的由来 以哈佛、耶鲁为代表的“常青藤联盟”是美国大学中的佼佼者,在美国的3000多所大学中,“常青藤联盟”尽管只是其中的极少数,仍是许多美国学生梦想进入的高等学府。 常青藤盟校(lvy League)是由美国的8所大学和一所学院组成的一个大学联合会。它们是:马萨诸塞州的哈佛大学,康涅狄克州的耶鲁大学,纽约州的哥伦比亚大学,新泽西州的普林斯顿大学,罗德岛的布朗大学,纽约州的康奈尔大学,新罕布什尔州的达特茅斯学院和宾夕法尼亚州的宾夕法尼亚大学。这8所大学都是美国首屈一指的大学,历史悠久,治学严谨,许多著名的科学家、政界要人、商贾巨子都毕业于此。在美国,常青藤学院被作为顶尖名校的代名词。 常青藤盟校的说法来源于上世纪的50年代。上述学校早在19世纪末期就有社会及运动方面的竞赛,盟校的构想酝酿于1956年,各校订立运动竞赛规则时进而订立了常青藤盟校的规章,选出盟校校长、体育主任和一些行政主管,定期聚会讨论各校间共同的有关入学、财务、援助及行政方面的问题。早期的常青藤学院只有哈佛、耶鲁、哥伦比亚和普林斯顿4所大学。4的罗马数字为“IV”,加上一个词尾Y,就成了“IVY”,英文的意思就是常青藤,所以又称为常青藤盟校,后来这4所大学的联合会又扩展到8所,成为现在享有盛誉的常青藤盟校。 这些名校都有严格的入学标准,能够入校就读的学生,自然是品学兼优的好学生。学校很早就去各个高中挑选合适的人选,许多得到全国优秀学生奖并有各种特长的学生都是他们网罗的对象。不过学习成绩并不是学校录取的惟一因素,学生是否具有独立精神并且能否快速适应紧张而有压力的大一新生生活也是他们考虑的重要因素。学生的能力和特长是衡量学生综合素质的重要一关,高中老师的推荐信和评语对于学生的入学也起到重要的作用。学校财力雄厚,招生办公室可以完全根据考生本人的情况录取,而不必顾虑这个学生家庭支付学费的能力,许多家境贫困的优秀子弟因而受益。有钱人家的子女,即使家财万贯,也不能因此被录取。这也许就是常青藤学院历经数百年而保持“常青”的原因。 布朗大学(Brown University) 1754年由浸信会教友所创,现在是私立非教会大学,是全美第七个最古老大学。现有学生7000多人,其中研究生近1500人。 该校治学严谨、学风纯正,各科系的教学和科研素质都极好。学校有很多科研单位,如生物医学中心,计算机中心、地理科学中心、化学研究中心、材料研究实验室、Woods Hole 海洋地理研究所海洋生物实验室、Rhode 1s1and反应堆中心等等。设立研究生课程较多的系有应用数学系、生物和医学系、工程系等,其中数学系海外研究生占研究生名额一半以上。 布朗大学的古书及1800年之前的美国文物收藏十分有名。 哥伦比亚大学(Columbia University) 私立综合性大学,位于纽约市。该校前身是创于1754年的King’s College,独立战争期间一度关闭,1784年改名力哥伦比亚学院,1912年改用现名。

第四章 景观模型制作

第四章景观模型制作 第一节主要工具的使用方法 —、主要切割材料工具的使用方法 (—)美术刀 美术刀是常用的切割工具,一般的模型材料(纸板,航模板等易切割的材料)都可使用它来进行切割,它能胜任模型制作过程中,从粗糙的加工到惊喜的刻划等工作,是一种简便,结实,有多种用途的刀具。美术刀的道具可以伸缩自如,随时更换刀片;在细部制作时,在塑料板上进行划线,也可切割纸板,聚苯乙烯板等。具体使用时,因根据实际要剪裁的材料来选择刀具,例如,在切割木材时,木材越薄越软,刀具的刀刃也应该越薄。厚的刀刃会使木材变形。 使用方法:先在材料商画好线,用直尺护住要留下的部分,左手按住尺子,要适当用力(保证裁切时尺子不会歪斜),右手捂住美术刀的把柄,先沿划线处用刀尖从划线起点用力划向终点,反复几次,直到要切割的材料被切开。 (二)勾刀 勾刀是切割切割厚度小于10mm的有机玻璃板,ABS工程塑料版及其他塑料板材料的主要工具,也可以在塑料板上做出条纹状机理效果,也是一种美工工具。 使用方法:首先在要裁切的材料上划线,左手用按住尺子,护住要留下的部分,右手握住勾刀把柄,用刀尖沿线轻轻划一下,然后再用力度适中地沿着刚才的划痕反复划几下,直至切割到材料厚度的三分之二左右,再用手轻轻一掰,将其折断,每次勾的深度为0.3mm 左右。 (三)剪刀 模型制作中最常用的有两种刀:一种是直刃剪刀,适于剪裁大中型的纸材,在制作粗模型和剪裁大面积圆形时尤为有用;另外一种是弧形剪刀,适于剪裁薄片状物品和各种带圆形的细部。 (四)钢锯 主要用来切割金属、木质材料和塑料板材。 使用方法:锯材时要注意,起锯的好坏直接影响锯口的质量。为了锯口的凭证和整齐,握住锯柄的手指,应当挤住锯条的侧面,使锯条始终保持在正确的位置上,然后起锯。施力时要轻,往返的过程要短。起锯角度稍小于15°,然后逐渐将锯弓改至水平方向,快钜断时,用力要轻,以免伤到手臂。 (五)线锯 主要用来加工线性不规则的零部件。线锯有金属和竹工架两种,它可以在各种板材上任意锯割弧形。竹工架的制作是选用厚度适中的竹板,在竹板两端钉上小钉,然后将小钉弯折成小勾,再在另一端装上松紧旋钮,将锯丝两头的眼挂在竹板两端即可使用。 使用方法:使用时,先将要割锯的材料上所画的弧线内侧用钻头钻出洞,再将锯丝的一头穿过洞挂在另一段的小钉上,按照所画弧线内侧1左右进行锯割,锯割方向是斜向上下。 二、辅助工具及其使用方法 (一)钻床 是用来给模型打孔的设备。无论是在景观模型、景观模型还是在展示模型中,都会有很多的零部件需要镂空效果时,必须先要打孔。钻孔时,主要是依靠钻头与工件之间的相对运动来完成这个过程的。在具体的钻孔过程中,只有钻头在旋转,而被钻物体是静止不动的。 钻床分台式和立式两种。台式钻床是一种可以放在工台上操作的小型钻床,小巧、灵活,使

1第一章 8字模型与飞镖模型(1)

O D C B A 图12图E A B C D E F D C B A O O 图12图E A B C D E D C B A H G E F D C B A 第一章 8字模型与飞镖模型 模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。 结论:∠A+∠D=∠B+∠C 。 模型分析 8字模型往往在几何综合 题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。 热搜精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。 2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。

D C B A M D C B A O 135E F D C B A 105O O 120 D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。 模型分析 飞镖模型往往在几何综合 题目中推导角度时用到。 模型实例 如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。探究∠AMC 与∠B 、∠D 间的数量关系。 热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ; 2.如图,求∠A+∠B+∠C+∠D = 。

O D C B A O D C B A O C B A 模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。 结论:AC+BD>AD+BC 。 模型实例 如图,四边形ABCD 的对角线AC 、BD 相交于点O 。 求证:(1)AB+BC+CD+AD>AC+BD ; (2)AB+BC+CD+AD<2AC+2BD. 模型4 边的飞镖模型 如图所示有结论: AB+AC>BD+CD 。

新整理描写常青藤优美句段 写常青藤作文散文句子

描写常青藤优美句段写常青藤作文散文句子 描写常青藤优美句段写常青藤作文散文句子第1段: 1.睁开朦胧的泪眼,我猛然发觉那株濒临枯萎的常春藤已然绿意青葱,虽然仍旧瘦小,却顽强挣扎,嫩绿的枝条攀附着窗格向着阳光奋力伸展。 2.常春藤是一种常见的植物,我家也种了两盆。可能它对于很多人来说都不足为奇,但是却给我留下了美好的印象。常春藤属于五加科常绿藤本灌木,翠绿的叶子就像火红的枫叶一样,是可爱的小金鱼的尾巴。常春藤的叶子的长约5厘米,小的则约有2厘米,但都是小巧玲珑的,十分可爱。叶子外圈是白色的,中间是翠绿的,好像有人在叶子上涂了一层白色的颜料。从叶子反面看,可以清清楚楚地看见那凸出来的,一根根淡绿色的茎。 3.渴望到森林里探险,清晨,薄薄的轻雾笼罩在树林里,抬头一看,依然是参天古木,绕着树干一直落到地上的常春藤,高高低低的灌木丛在小径旁张牙舞爪。 4.我们就像马蹄莲,永不分开,如青春的常春藤,紧紧缠绕。 5.我喜欢那里的情调,常春藤爬满了整个屋顶,门把手是旧的,但带着旧上海的味道,槐树花和梧桐树那样美到凋谢,这是我的上海,这是爱情的上海。 6.当我离别的时候,却没有你的身影;想轻轻地说声再见,已是人去楼空。顿时,失落和惆怅涌上心头,泪水也不觉悄悄滑落我伫立很久很久,凝望每一条小路,细数每一串脚印,寻找你

的微笑,倾听你的歌声――一阵风吹过,身旁的小树发出窸窸窣窣的声音,像在倾诉,似在安慰。小树长高了,还有它旁边的那棵常春藤,叶子依然翠绿翠绿,一如昨天。我心头不觉一动,哦,这棵常春藤陪伴我几个春秋,今天才惊讶于它的可爱,它的难舍,好似那便是我的生命。我蹲下身去。轻轻地挖起它的一个小芽,带着它回到了故乡,种在了我的窗前。 7.常春藤属于五加科常绿藤本灌木,翠绿的叶子就像火红的枫叶一样,是可爱的小金鱼的尾巴。常春藤的叶子的长约5厘米,小的则约有2厘米,但都是小巧玲珑的,十分可爱。叶子外圈是白色的,中间是翠绿的,好像有人在叶子上涂了一层白色的颜料。从叶子反面看,可以清清楚楚地看见那凸出来的,一根根淡绿色的茎。 8.常春藤是多么朴素,多么不引人注目,但是它的品质是多么的高尚,不畏寒冷。春天,它萌发出嫩绿的新叶;夏天,它郁郁葱葱;秋天,它在瑟瑟的秋风中跳起了欢快的舞蹈;冬天,它毫不畏惧呼呼作响的北风,和雪松做伴常春藤,我心中的绿色精灵。 9.可是对我而言,回头看到的只是雾茫茫的一片,就宛如窗前那株瘦弱的即将枯死的常春藤,毫无生机,早已失去希望。之所以叫常春藤,可能是因为它一年四季都像春天一样碧绿,充满了活力吧。也许,正是因为如此,我才喜欢上了这常春藤。而且,常春藤还有许多作用呢!知道吗?一盆常春藤能消灭8至10平

关于美国常青藤

一、常青藤大学 目录 联盟概述 联盟成员 名称来历 常春藤联盟(The Ivy League)是指美国东北部八所院校组成的体育赛事联盟。这八所院校包括:布朗大学、哥伦比亚大学、康奈尔大学、达特茅斯学院、哈佛大学、宾夕法尼亚大学、普林斯顿大学及耶鲁大学。美国著名的体育联盟还有太平洋十二校联盟(Pacific 12 Conference)和大十联盟(Big Ten Conference)。常春藤联盟的体育水平在美国大学联合会中居中等偏下水平,远不如太平洋十校联盟和大十联盟。 联盟概述 常春藤盟校(Ivy League)指的是由美国东北部地区的八所大学组成的体育赛事联盟(参见NCAA词条)。它们全部是美国一流名校、也是美国产生最多罗德奖学金得主的大学联盟。此外,建校时间长,八所学校中的七所是在英国殖民时期建立的。 美国八所常春藤盟校都是私立大学,和公立大学一样,它们同时接受联邦政府资助和私人捐赠,用于学术研究。由于美国公立大学享有联邦政府的巨额拨款,私立大学的财政支出和研究经费要低于公立大学。 常青藤盟校的说法来源于上世纪的50年代。上述学校早在19世纪末期就有社会及运动方面的竞赛,盟校的构想酝酿于1956年,各校订立运动竞赛规则时进而订立了常青藤盟校的规章,选出盟校校长、体育主任和一些行政主管,定期聚会讨论各校间共同的有关入学、财务、援助及行政方面的问题。早期的常青藤学院只有哈佛、耶鲁、哥伦比亚和普林斯顿4所大学。4的罗马数字为"IV",加上一个词尾Y,就成了"IVY",英文的意思就是常青藤,所以又称为常青藤盟校,后来这4所大学的联合会又扩展到8所,成为如今享有盛誉的常青藤盟校。 这些名校都有严格的入学标准,能够入校就读的学生,必须是品学兼优的好学生。学校很早就去各个高中挑选合适的人选,许多得到全国优秀学生奖并有各种特长的学生都是他们网罗的对象。不过学习成绩并不是学校录取的惟一因素,学生是否具有独立精神并且能否快速适应紧张而有压力的大一新生生活也是他们考虑的重要因素。学生的能力和特长是衡量学生综合素质的重要一关,高中老师的推荐信和评语对于学生的入学也起到重要的作用。学校财力雄厚,招生办公室可以完全根据考生本人的情况录取,而不必顾虑这个学生家庭支付学费的能力,许多家境贫困的优秀子弟因而受益。有钱人家的子女,即使家财万贯,也不能因

角色模型制作流程

幻想之旅角色模型制作流程 1.拿到原画后仔细分析角色设定细节,对不清楚的结构、材质细节及角色身高等问题与 原画作者沟通,确定对原画理解准确无误。 2.根据设定,收集材质纹理参考资料。 3.开始进行低模制作。 4.制作过程中注意根据要求严格控制面数(以MAX为例,使用Polygon Counter工具查 看模型面数)。 5.注意关节处的合理布线,充分考虑将来动画时的问题。如有疑问与动作组同事讨论咨 询。 6.由于使用法线贴图技术不能使用对称复制模型,可以直接复制模型,然后根据具体情 况进行移动、放缩、旋转来达到所需效果。 7.完成后,开始分UV。 分UV时应尽量充分利用空间,注意角色不同部位的主次,优先考虑主要部位的贴图(例如脸,前胸以及引人注意的特殊设计),为其安排充分的贴图面积。使用Relax Tool 工具确保UV的合理性避免出现贴图的严重拉伸及反向。 8.低模完成后进入法线贴图制作阶段。 现在我们制作法线贴图的方法基本上有三种分别是: a.在三维软件中直接制作高模,完成后将低模与高模对齐,然后使用软件工具生成法 线贴图。 b.将分好UV的低模Export成OBJ格式文件,导入ZBrush软件。在ZB中添加细节 制作成高模,然后使用Zmapper插件生成法线贴图。 c.在Photoshop中绘制纹理或图案灰度图,然后使用PS的法线贴图插件将灰度图生成 法线贴图。 (具体制作方法参见后面的制作实例) 建议在制作过程中根据实际情况的不同,三种方法结合使用提高工作效率。 9.法线贴图完成后,将其赋予模型,查看法线贴图的效果及一些细小的错误。 10.进入Photoshop,打开之前生成的法线贴图,根据其贴在模型上的效果对法线贴图进行 修整。(例如边缘的一些破损可以使用手指工具进行修补,或者在绿色通道中进行适当的绘制。如需加强某部分法线贴图的凹凸效果可复制该部分进行叠加可以起到加强

ATMEGA16的IO端口

第九课A Tmega16(L)的IO端口 本教程节选自周兴华老师《手把手教你学A VR单片机C程序设计》教程,如需转载,请注明出处!读者可通过当当网、淘宝网等网站购买本教程,如需购买配书实验器材,可登陆周兴华单片机培训中心网购部自助购买! ATmega16(L)单片机有32个通用I/O口,分为PA、PB、PC和PD四组,每组都是8位。这些I/O 口都可以通过各自的端口寄存器设置成输入和输出(即作为普通端口使用),有些I/O口还具有第二功能(我们在后面使用到这些第二功能时再介绍)。 ATmega16(L)单片机的I/O口在不考虑第二功能时,其基本输入输出功能都是相同的。如图7-1所示为ATmega16(L)单片机I/O口的结构图。每个端口对应3个寄存器,即方向寄存器DDRX(X=A、B、C、D)、端口寄存器PORTX(X=A、B、C、D)、输入引脚PINX(X=A、B、C、D),各个端口的工作状况都可以通过对DDRX、PORTX和PINX的操作来完成。所有的A VR单片机的I/O端口都具有读、写和修改功能。表7-1列出了A Tmega16(L)的I/O端口的组合控制设置。 ATmega16(L)单片机每一组I/O口的所有管脚都可以单独选择上拉电阻。引脚缓冲器可以吸收20mA 的电流,能够直接驱动LED显示。如果设置了弱上拉电阻,当管脚被拉低时,引脚会输出电流。1.DDRX DDRX为端口方向寄存器。当DDRX的某一位置1时相应引脚作为输出使用。反之,当DDRX的某一位置0时,对应的引脚单片机培训作为输入使用。 例如: DDRB=0xF0;//此语句将PB端口的PB0~PB3位设为输入,而PB4~PB7位设为输出。2.PORTX PORTX为端口数据寄存器。 如果引脚设为输出,则对PORTX进行写操作即改变引脚的输出值。

什么是美国常青藤大学

https://www.wendangku.net/doc/b69346560.html, 有意向申请美国大学的学生,大部分听过一个名字,常青藤大学联盟。那么美国常青藤大学盟校到底是怎么一回事,又是由哪些大大学组成的呢?下面为大家介绍一下美国常青藤大学联盟。 立思辰留学360介绍,常青藤盟校(lvy League)是由美国的七所大学和一所学院组成的一个大学联合会。它们是:马萨诸塞州的哈佛大学,康涅狄克州的耶鲁大学,纽约州的哥伦比亚大学,新泽西州的普林斯顿大学,罗德岛的布朗大学,纽约州的康奈尔大学,新罕布什尔州的达特茅斯学院和宾夕法尼亚州的宾夕法尼亚大学。这8所大学都是美国首屈一指的大学,历史悠久,治学严谨,许多著名的科学家、政界要人、商贾巨子都毕业于此。在美国,常青藤学院被作为顶尖名校的代名词。 常青藤由来 立思辰留学介绍,常青藤盟校的说法来源于上世纪的50年代。上述学校早在19世纪末期就有社会及运动方面的竞赛,盟校的构想酝酿于1956年,各校订立运动竞赛规则时进而订立了常青藤盟校的规章,选出盟校校长、体育主任和一些行政主管,定期聚会讨论各校间共同的有关入学、财务、援助及行政方面的问题。早期的常青藤学院只有哈佛、耶鲁、哥伦比亚和普林斯顿4所大学。4的罗马数字为“IV”,加上一个词尾Y,就成了“IVY”,英文的意思就是常青藤,所以又称为常青藤盟校,后来这4所大学的联合会又扩展到8所,成为现在享有盛誉的常青藤盟校。 这些名校都有严格的入学标准,能够入校就读的学生,自然是品学兼优的好学生。学校很早就去各个高中挑选合适的人选,许多得到全国优秀学生奖并有各种特长的学生都是他们网罗的对象。不过学习成绩并不是学校录取的惟一因素,学生是否具有独立精神并且能否快速适应紧张而有压力的大一新生生活也是他们考虑的重要因素。学生的能力和特长是衡量学生综合素质的重要一关,高中老师的推荐信和评语对于学生的入学也起到重要的作用。学校财力雄厚,招生办公室可以完全根据考生本人的情况录取,而不必顾虑这个学生家庭支付学费的能力,许多家境贫困的优秀子弟因而受益。有钱人家的子女,即使家财万贯,也不能因此被录取。这也许就是常青藤学院历经数百年而保持“常青”的原因。

模型制作方法

动画精度模型制作与探究 Animation precision model manufacture and inquisition 前言 写作目的:三维动画的制作,首要是制作模型,模型的制作会直接影响到整个动画的最终效果。可以看出精度模型与动画的现状是随着电脑技术的不断发展而不断提高。动画模型走精度化只是时间问题,故精度模型需要研究和探索。 现实意义:动画需要精度模型,它会让动画画面更唯美和华丽。游戏需要精度模型,它会让角色更富个性和激情。广告需要精度模型,它会让物体更真实和吸引。场景需要精度模型,它会让空间更加开阔和雄伟。 研究问题的认识:做好精度模型并不是草草的用基础的初等模型进行加工和细化,对肌肉骨骼,纹理肌理,头发毛发,道具机械等的制作更是需要研究。在制作中对于层、蒙版和空间等概念的理解和深化,及模型拓扑知识与解剖学的链接。模型做的精,做的细,做的和理,还要做的艺术化。所以精度模型的制作与研究是很必要的。 论文的中心论点:对三维动画中精度模型的制作流程,操作方法,实践技巧,概念认知等方向进行论述。 本论 序言:本设计主要应用软件为Zbrsuh4.0。其中人物设计和故事背景都是以全面的讲述日本卡通人设的矩阵组合概念。从模型的基础模型包括整体无分隔方体建模法,Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作),分肢体组合建模法(奇美拉,合成兽),shadow box 建模和机械建模探索。道具模型制作,纹理贴图制作,多次用到ZBURSH的插件,层概念,及笔刷运用技巧。目录: 1 角色构想与场景创作 一初步设计:角色特色,形态,衣装,个性矩阵取样及构想角色的背景 二角色愿望与欲望。材料采集。部件及相关资料收集 三整体构图和各种种类基本创作 2 基本模型拓扑探究和大体模型建制 3 精度模型大致建模方法 一整体无分隔方体建模法 二Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作) 三分肢体组合建模法(奇美拉,合成兽) 四shadow box 建模探索和机械建模 4 制作过程体会与经验:精度细节表现和笔刷研究 5 解剖学,雕塑在数码建模的应用和体现(质量感。重量感。风感。飘逸感)

单片机IO口定义

单片机I/O口定义 I/O端口又称为I/O接口,也叫做I/O通道或I/O通道。I/O端口是MCS-51单片机对外部实现控制和信息交换的必经之路,是一个过渡的集成电路,用于信息传送过程中的速度匹配和增强它的负载能力。I/O端口右串行和并行之分,串行I/O端口一次只能传送一位二进制信息,并行I/O端口一次可以传送一组(8位)二进制信息。 并行I/O端口 8051有四个并行I/O端口,分别命名为P0、P1、P2和P3,在这四个并行I/O端口中,每个端口都有双向I/O功能。即CPU即可以从四个并行I/O端口中的任何一个输出数据,又可以从它们那里输入数据。每个I/O端口内部都有一个8位数据输出锁存器和一个8位数据输入缓冲器,四个数据输出锁存器和端口号P0、P1、P2和P3同名,皆为特殊功能寄存器SFR中的一个。因此,CPU数据从并行I/O端口输出时可以得到锁存,数据输入时可以得到缓冲。 四个并行I/O端口在结构上并不相同,因此它们在功能和用途上的差异较大。P0口和P2口内部均有一个受控制器控制的二选一选择电路,故它们除可以用作通用I/O口外,还具有特殊的功能。例如:P0可以输出片外存储器的低八位地址码和读写数据,P2口可以输出片外存储器的高八位地址码,等等。P1口常作为通用I/O口使用,为CPU传送用户数据;P3口除可以作为通用I/O口使用外,还具有第二功能。在四个并行I/O端口中,只有P0口是真正的双向I/O口,故它具有较大的负载能力,最多可以推动8个LSTTL门,其余3个

I/O口是准双向I/O口,只能推动4个LSTTL门。 四个并行I/O端口作为通用I/O使用时,共有写端口、读端口和读引脚三种操作方式,写端口实际上是输出数据,是把累加器A或其他寄存器中的数据传送到端口锁存器中,然后由端口自动从端口引脚线上输出。读端口不是真正的从外部输入数据,而是把端口锁存器中的输出数据读到CPU的累加器A中。读引脚才是真正的输入外部数据的操作,是从端口引脚线上读入外部的输入数据。端口的上述三种操作书架上是通过指令或程序来实现的。 串行I/O端口 8051有一个全双工的可编程串行I/O端口。这个串行I/O端口既可以在程序控制下把CPU中的8位并行数据编程串行数据逐行从发送数据线TXD发送出去,也可以把RXD线上串行接收到的数据变成8位并行数据送给CPU,而且这种串行发送和串行接收可以单独进行,也可以同时进行。 8051串行发送和串行接收利用了P3口的第二功能,即它利用P3.1引脚作为串行数据的发送线TDX和P3.0引脚作为串行数据的接收线RXD,串行口I/O口的电路结构还包括串行口控制寄存器SCON,电源及波特率选择寄存器PCON和串行数据缓冲器SBUF等,它们都属于SFR(特殊功能寄存器)。其中,PCON和SCON用于设置串行口工作方式和确定数据的发送和接收波特率,SBUF实际上有两个8位寄存器组成,一个工作方式和确定数据的发送和接收比特率,另一个用于存放接收到的数据,起着数据的缓冲作用。

2019年美国常春藤八所名校排名

2019年美国常春藤八所名校排名享有盛名的常春藤盟校现在是什么情况呢?接下来就来为您介绍一下!以下常春藤盟校排名是根据2019年美国最佳大学进行的。接下来我们就来看看各个学校的状态以及真实生活。 完整的常春藤盟校名单包括耶鲁大学、哈佛大学、宾夕法尼亚大学、布朗大学、普林斯顿大学、哥伦比亚大学、达特茅斯学院和康奈尔大学。 同时我们也看看常春藤盟校是怎么样的?也许不是你所想的那样。 2019年Niche排名 3 录取率5% 美国高考分数范围1430-1600 财政援助:“学校选择美国最优秀的学生,想要他们来学校读书。如果你被录取,哈佛会确保你能读得起。如果你选择不去入学的话,那一定不是因为经济方面的原因。”---哈佛大三学生2019年Niche排名 4 录取率6% 美国高考分数范围1420-1600 学生宿舍:“不可思议!忘记那些其他学校的学生宿舍吧。在耶鲁,你可以住在一个豪华套房,它更像是一个公寓。一个公寓有许多人一起住,包括一个公共休息室、洗手间和多个卧室。我再不能要求任何更好的条件了。这个套房很大,很干净,还时常翻修。因为学校的宿舍深受大家喜爱,现在有90%的学生都住在学校!”---耶鲁大二学生

2019年Niche排名 5 录取率7% 美国高考分数范围1400-1590 综合体验:“跟任何其他学校一样,普林斯顿大学有利有弊。这个学校最大的好处也是我选择这个学校的主要原因之一就是它的财政援助体系,任何学生想要完成的计划,它都会提供相应的财政支持。”---普林斯顿大二学生 2019年Niche排名 6 录取率9% 美国高考分数范围1380-1570 自我关心:“如果你喜欢城市的话,宾夕法尼亚大学是个不错的选择。这里对于独立的人来说也是一个好地方,因为在这里你必须学会自己发展。要确保进行一些心理健康的训练,因为这里的人通常会过量工作。如果你努力工作并且玩得很嗨,二者都会使你精疲力尽,所以给自己留出点儿时间休息。”---宾夕法尼亚大一学生 2019年Niche排名7 录取率7% 美国高考分数范围1410-1590 综合体验:“学校的每个人都很关心学生,包括我们的身体状况和学业成绩。在这里,你可以遇到来自世界各地的多种多样的学生。他们在学校进行的安全防范教育让我感觉受到保护。宿舍生活非常精彩,你会感觉跟室友们就像家人一样。总之,能成为学校的一员我觉得很棒,也倍感荣幸!”---哥伦比亚大二学生2019年Niche排名9 录取率9% 美国高考分数范围1370-1570 学术点评:“新的课程培养学术探索能力,在过去的两年中我

IO端口复用的几种方式

IO端口复用 简介 I/O多路复用(multiplexing):本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作。 适用场景:高并发的服务器端。应对并发,常见的思维是创建多线程,每个线程管理一个并发操作,但是弊端很明显,就是多线程需要上下文切换,这个切换的消耗太大,当连接的客户端很多的时候弊端就很突出了。所示使用单线程的多路复用。 几种方式 1.s elect Linux提供的select相关函数接口如下: #include #include int select(int max_fd, fd_set *readset, fd_set *wri teset, fd_set *exceptset, struct timeval *timeout) FD_ZERO(int fd, fd_set* fds) /* 清空集合 */ FD_SET(int fd, fd_set* fds) /* 将给定的描述符加入集合 */ FD_ISSET(int fd, fd_set* fds) /* 将给定的描述符从文

件中删除 */ FD_CLR(int fd, fd_set* fds) /* 判断指定描述符是否 在集合中 */ 接口解释: 1:select函数的返回值就绪描述符的数目,超时时返回0,出错返回-1。 2:第一个参数max_fd指待测试的fd个数,它的值是待测试的最大文件描述符 加1,文件描述符从0开始到max_fd-1都将被测试。 3:中间三个参数readset、writeset和exceptset指定要让内核测试读、写和异 常条件的fd集合,如果不需要测试的可以设置为NULL。 代码演示: sockfd=socket(AF_INET,SOCK_STREAM,0); memset(&addr,0,sizeof(addr)); addr.sin_family=AF_INET; addr.sin_port=htons(2000); addr.sin_addr.s_addr=IN ADDR_ANY; bind(sockfd,(struct sockaddr*)&addr,sizeof(addr)); listen(sockfd,5); fd_set rset; int max = 0; int fds[5]; for(int i=0;i<5;i++) { memset(&client,O,sizeof(client); addrlen=sizeof(client); fds[i]=accept(sockfd,(struct sockaddr*) &client,&addrlen); if(fds[i]>max) max=fds[i]; } while(1)

美国常青藤大学研究生申请条件都有哪些

我国很多学子都想前往美国的常青藤大学就读于研究生,所以美国常青藤大学研究生申请条件都有哪些? 美国常青藤大学研究生申请条件: 1、高中或本科平均成绩(GPA)高于3.8分,通常最高分是4分,平均分越高越好; 2、学术能力评估测试I(SAT I,阅读+数学)高于1400分,学术能力评估测试II(SAT II,阅读+数学+写作)高于2000分; 3、托福考试成绩100分以上,雅思考试成绩不低于7分; 4、美内国研究生入学考试(GRE)成绩1400分以上,经企管理研究生入学考试(GMAT)成绩700分以上。 大学先修课程(AP)考试成绩并非申请美国大学所必需,但由于大学先修课程考试对于高中生来说有一定的挑战性及难度,美国大学也比较欢迎申请者提交大学先修课程考试的成绩,作为入学参考标准。

有艺术、体育、数学、社区服务等特长者优先考容虑。获得国际竞赛、辩论和科学奖等奖项者优先考虑,有过巴拿马国际发明大赛的得主被破例录取的例子。中国中学生在奥林匹克数、理、化、生物比赛中获奖也有很大帮助。 常春藤八所院校包括:哈佛大学、宾夕法尼亚大学、耶鲁大学、普林斯顿大学、哥伦比亚大学、达特茅斯学院、布朗大学及康奈尔大学。 新常春藤包括:加州大学洛杉矶分校、北卡罗来纳大学、埃默里大学、圣母大学、华盛顿大学圣路易斯分校、波士顿学院、塔夫茨大学、伦斯勒理工学院、卡内基梅隆大学、范德比尔特大学、弗吉尼亚大学、密歇根大学、肯阳学院、罗彻斯特大学、莱斯大学。 纽约大学、戴维森学院、科尔盖特大学、科尔比学院、瑞德大学、鲍登学院、富兰克林欧林工程学院、斯基德莫尔学院、玛卡莱斯特学院、克莱蒙特·麦肯纳学院联盟。 小常春藤包括:威廉姆斯学院、艾姆赫斯特学院、卫斯理大学、斯沃斯莫尔学院、明德学院、鲍登学院、科尔比学院、贝茨学院、汉密尔顿学院、哈弗福德学院等。

初中数学优质专题:8字模型与飞镖模型

1 O D C B A 图1 2图E A B C D E F D C B A O O 图12图E A B C D E D C B A 第一章 8字模型与飞镖模型 模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。 结论:∠A+∠D=∠B+∠C 。 模型分析 8字模型往往在几何综合 题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。 热搜精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。

2 H G E F D C B A D C B A M D C B A O 135 E F D C B A 2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。 模型分析 飞镖模型往往在几何综合 题目中推导角度时用到。 模型实例 如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和 ∠DCB ,AM 与CM 交于M 。探究∠AMC 与∠B 、∠D 间的数量关系。

3 105O O 120 D C B A O D C B A 热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ; 2.如图,求∠A+∠B+∠C+∠D = 。 模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。 结论:AC+BD>AD+BC 。

模型的制作工艺及流程

□所需要的设备有:电脑,设计软件AutoCAD,雕刻机,工作台,油漆喷枪等。 □所需要的原材料有:各种厚度的有机玻璃板,各种厚度的PVC板,普通海绵,大孔海绵,背胶纸,各色绒线末,粗鱼线,铜丝电线,0.5mm漆包线,涂料,各色油漆,绒面墙纸,三氯甲烷,干花,发胶,小彩灯等。 □所需要的工具有:美工刀、锯条刀、木工工具、电工工具等。 一、沙盘台子 首先,要将顾客交付持房地产平面布置图和施工图纸研究透,组装部根据平面布置图及沙盘的比例来制作沙盘的台子。台子一般做成台球桌状,如果是大型的沙盘,要做成几个小台子,拼到一起。 二、PVC板喷漆 喷漆部根据楼房图纸的设色调出相应颜色的油漆来,喷在相应的PVC板上,送到设计部进行雕刻。 三、雕刻楼房部件 设计部根据施工图按比例设计出楼房的结构,并在电脑上分解成不同的板块,按施工的要求设计出墙面的花纹、房顶的瓦棱、窗子等,然后发送到雕刻机在PVC板上雕刻出楼房的板块,送到制作部制作。 四、组合楼房 制作部根据设计部送来的楼房板块,根据说明和粘合方式,用三氯甲烷将PVC板块粘合成楼房的大致形状。窗子的形状是直接雕刻在PVC板上的,用薄而透明的有机玻璃板粘在内部窗子的位置作为窗子的玻璃。 五、置景 置景部根据组装部所作的台子和平面布置图,在台子上划分出平面布局,用绿色绒面墙纸作为草地粘在绿化区,大孔海绵浸上绿色油漆晾干,裁成长条作为绿化带粘在小灌木区。如果布局中有水和湖泊,可以用波纹面的有机玻璃板,背面喷湖蓝色漆,裁成河流或湖泊的形状放在相应的位置。若是有高地,可将有机玻璃板或PVC板层层堆积并修整成形,再抹上涂料填充缝隙,晾干后覆上草地。用灰色的背胶纸粘成公路,用白色背胶纸刻成公路线标粘在上面。 六、制作配件 制作部将铜丝电线剥皮,将铜丝拧成树干的形状,喷上漆。普通海绵浸漆,晾干后粉碎,将树干的枝丫浸胶,粘上碎海绵,做成树。若是绿树,海绵可浸绿漆,若是秋天的树,可浸橙色漆。柳树可用0.2mm的漆包线拧成树干与树枝,然后在树枝上粘上绿色绒线末。松树是将粗鱼线剪成细段,用夹子夹住,再将两根0.5mm的漆包线夹住绞动,松开夹子,就成了松树的形状,修剪一下,粘上绿色绒线末即可。其它的花草可以用干花剪下来染色来制作。用医用棉签或牙签做成路灯。泡沫塑料可以用刀片雕刻成假山石的形状,喷上漆。 七、整体组合 置景部将制作部送来的花草树木及楼房按布置粘在相应的地方。组装部根据每栋楼房所在的位置,打孔并装上小彩灯,使楼房模型内部能发光,如同开灯的效果,并接好线路。

io端口与中断

I/O端口基本知识 (2010-03-06 09:20:50) 转载 1.什么是I/O端口? CPU使用什么指令与外设进行数据交换? 答:CPU与I/O设备通过硬件接口或控制器相连接,这些接口或控制器都有数量不等的端口,这些端口有统一的地址编码,CPU通过这些端口使用输入输出指令IN、OUT与外设进行数据交换。 2.CPU为什么不能用MOV指令进行I/O数据传输? 答:在80x86微机系统中,I/O端口编址在一个独立的地址空间中,它和存储器是完全分离的。因此,对于存储器的存取操作使用MOV指令,而与端口进行信息交换的操作使用专门的I/O指令,二者不能混淆。 3.使用查询方式进行输入输出的优缺点是什么? 答:使用查询方式编程可直接在端口级上输入输出信息,数据的传送速度和吞吐量比较高,另外在控制多个设备的I/O时,可在程序中安排它们的优先级,最先查询的设备,其工作的优先级也最高。修改程序中的查询次序,实际上也就修改了设备的优先级,这样以最简便的方法实现了对设备优先级的控制。查询方式的缺点主要是在查询过程中,要反复的查询等待,浪费了CPU原本可执行大量指令的时间,而且由询问转向相应的处理程序的时间较长,尤其在设备比较多的情况下。 4.什么是中断? 答:计算机在执行程序过程中,遇到需要处理的事件时,暂停当前正在运行的程序,转去执行有关的服务程序,处理完后自动返回原程序,这个过程称为中断(interrupt)。中断在现代计算机系统中是一种非常重要的技术,输入输出设备和主机交换数据、分时操作、实时系统、多处理机系统、计算机网络和分布式计算机系统都要用到这种技术。 5.中断分为几类? 答:中断可分为内中断和外中断。内中断是由计算机内部原因引起的中断,内中断又称为软中断,它通常由三种情况引起: (1) 由中断指令INT引起;

留学美国常春藤八大院校

留学美国常春藤八大院校 美国常春藤声誉: 几乎所有的常春藤盟校都以苛刻的入学标准著称,近年来尤其如此:在过去的10多年里常春藤盟校的录取率正在下降。很多学校还在 特别的领域内拥有极大的学术声誉,例如: 哥伦比亚大学的法学院、商学院、医学院和新闻学院; 康乃尔大学的酒店管理学院和工程学院; 达特茅斯学院的塔克商学院(TuckSchoolofBusiness); 哈佛大学的商学院、法学院、医学院、教育学院和肯尼迪政府学院; 宾夕法尼亚大学的沃顿商学院、医学院、护理学院、法学院和教 育学院; 普林斯顿大学的伍德鲁·威尔逊公共与国际事务学院; 耶鲁大学的法学院、艺术学院、音乐学院和医学院; 美国常春藤八大名校【哈佛大学】 哈佛大学(HarvardUniversity)是一所位于美国马萨诸塞州波 士顿剑桥城的私立大学,常春藤盟校成员之一,1636年由马萨诸塞州 殖民地立法机关立案成立。 该机构在1639年3月13日以一名毕业于英格兰剑桥大学的牧师 约翰·哈佛之名,命名为哈佛学院,1780年哈佛学院更名为哈佛大学。直到19世纪,创建了一个半世纪的哈佛学院仍然以英国的牛津大学、 剑桥大学两所大学为模式,以培养牧师、律师和官员为目标,注重人 文学科,学生不能自由选择课程。19世纪初,高等教育课程改革的号

角在哈佛吹响了,崇尚“学术自由”和“讲学自由”。“固定的学年”和“固定的课”的老框框受到冲击,自由选修课程的制度逐渐兴起。 哈佛大学是一所在世界上享有顶尖大学声誉、财富和影响力的学校, 被誉为美国政府的思想库,其商学院案例教学也盛名远播。作为全美 的大学之一,在世界各研究机构的排行榜中,也经常名列世界大学第 一位。 美国常春藤八大名校【耶鲁大学】 耶鲁大学(YaleUniversity)是一所坐落于美国康涅狄格州纽黑 文(纽黑文市CityofNewHaven)的私立大学,创于1701年,初名“大学学院”(CollegiateSchool)。 耶鲁起初是一所教会学校,1718年,英国东印度公司高层官员伊莱休·耶鲁先生向这所教会学校捐赠了9捆总价值562英镑12先令的 货物、417本书以及英王乔治一世的肖像和纹章,在当时对襁褓之中的耶鲁简直是雪中送炭。为了感谢耶鲁先生的捐赠,学校正式更名为 “耶鲁学院”,它就是今日耶鲁大学的前身。18世纪30年代至80年代,耶鲁在伯克利主教、斯泰尔斯牧师、波特校长等的不懈努力下, 逐渐由学院发展为大学。至20世纪初,随着美国教育的迅猛发展,耶 鲁大学已经发展到了惊人的规模,在世界的影响力也达到了新的高度。耶鲁大学是美国历建立的第三所大学(第一所是哈佛大学,第二所是 威廉玛丽学院),该校教授阵容、学术创新、课程设置和场馆设施等 方面堪称一流,与哈佛大学、普林斯顿大学齐名,历年来共同角逐美 国大学和研究生院前三的位置。哈佛大学注重闻名于研究生教育,威 廉玛丽学院闻名于本科生教育,耶鲁则是双脚走路,都非常,在世界 大学排名中名列前茅。 美国常春藤八大名校【宾夕法尼亚】 宾夕法尼亚大学(UniversityofPennsylvania)是一所私立大学, 是在美国开国元勋本杰明·富兰克林的倡导下于1740年建立起来的。 它是美国东北部常春藤大学之一,坐落于合众国的摇篮——费城,独

相关文档
相关文档 最新文档