文档库 最新最全的文档下载
当前位置:文档库 › 自噬及其相关调节通路(精)

自噬及其相关调节通路(精)

自噬及其相关调节通路(精)
自噬及其相关调节通路(精)

目前, 作为自噬调控的中心分子TOR(target of rapamycin 是控制细胞自噬的关键蛋白, 能感受细胞的多种变化信号, 加强或降低自噬的发生水平。细胞内ATP水平、缺氧等细胞信号都可直接或间接通过TOR将其整合, 从而改变细胞的自噬发生, 应对不同的外界环境刺激。 TOR本身是一个调控细胞周期、生长和增殖的丝氨酸/苏氨酸激酶。在哺乳动物中TOR的同源物mTOR(mammalian targetof rapamycin处于活化状态 , 磷酸化抑制自噬起始分子ULK1的功能, 抑制自噬的发生。

是细胞中感受能量状态调节代谢的一个蛋白激酶, 在自噬发生的调控中也发挥着重要的作用。低ATP水平状态下(如饥饿或缺氧AMPK能感受AMP的水平变化而激活, 从而磷酸化TSC2(一种肿瘤抑制蛋白, 可以和Rheb GTP 酶结合, 避免后者对mTOR的活化, 加剧TSC1/2对Rheb的抑制, 最终使mTOR的活性被抑制, 诱导细胞发生自噬。在营养能量缺乏时, AMPK也可以通过磷酸化ULK1激活其活性, 从而进一步促进自噬; 当营养物质充分时, mTOR则通过磷酸化

ULK1, 阻止AMPK对ULK1的磷酸化激活, 使ULK1被抑制, 避免自噬的发生。

在胰岛素样生长因子刺激下, I型PI3K/AKT信号分子可以诱导TOR 活化, 从而抑制自噬。

基因反式作用自噬诱导的基因,原因是p53通过依赖AMPK与

TSC1/TSC2的方式抑制mTOR从而刺激自噬。除此之外, GTPase、 Erk1/2等蛋白质都已经被证明与自噬的调节息息相关。 Vps34是哺乳动物中的第 III类 PI3 Kinase。在Vps34复合物中 , Vps34因结合 Vps15而被激活 , 并进一步结合Beclin1形成Vps34-Vps15-Beclin1复合体。自噬发生时, Vps34-Vps15Beclin和多种自噬相关蛋白结合, 传递自噬信号促进自噬发生。如与Atg14结合形成Atg14-Vps34-

Vps15-Beclin1复合物参与自噬泡的形成。而BH3蛋白家族可以破坏Bcl-2对

Beclin 1/PI3K 的抑制作用, 从而激活自噬。

白介素IL信转导及其通路研究概述

白介素IL-6信号转导及其通路研究概述 细胞因子是一类参与免疫系统的细胞之间通信的蛋白质,除此之外,许多细胞因子在免疫系统之外也具有调节功能。1986年白介素IL-6作为B细胞刺激因子被Kishimoto组分子克隆。IL-6在免疫系统外的活性还有肝细胞刺激因子和骨髓细胞分化诱导蛋白。 白介素IL-6含有184个氨基酸,属于糖基化蛋白质。IL-6可以由多种类型细胞合成和分泌,包括单核细胞、T细胞、成纤维细胞和内皮细胞。IL-6结合受体有两种,一种是特异性受体IL-6R(80kDa I型跨膜蛋白),另一种是gp130,是IL-6家族细胞因子的所有成员的常见受体亚单位。gp130可以在所有细胞表达,但IL-6R的表达受到更多的限制,主要发现于肝细胞、嗜中性粒细胞、单核细胞和CD4+ T细胞。 白介素IL-6受体gp130的二聚化会导致两种细胞内信号通路的启动:经典信号通路和反式信号通路(见下文)。白介素IL-6的受体IL-6R可以在细胞膜经过蛋白质水解,形成可溶性的IL-6R(sIL-6R),在人类中,也可以在翻译阶段进行剪接mRNA,进而产生sIL-6R。在经典信号通路中,IL-6与膜上的IL-6R结合,随后与结合在细胞膜上的gp130结合,启动细胞内信号传导。在IL-6反式信号通路中,IL-6与sIL-6R结合,IL-6和sIL-6R的复合物与细胞膜结合的gp130结合,从而引发细胞内信号。 白介素IL-6是最重要的炎症细胞因子之一。IL-6在通过膜结合和可溶性受体的信号传导中是独特的。有趣的是,这两种途径的生物学后果有很大差异,通过膜结合受体的经典IL-6信号通路主要是再生和保护性的,可溶性IL-6R的IL-6反式信号通路是促炎症的。响应于受体激活的IL-6的细胞内信号传导是通过STA T依赖和STAT独立的信号模块,其由复杂的调节网络调节。IL-6的复杂生物学对该细胞因子的治疗靶向具有影响。 白介素IL-6胞内信号通路可以简单的概述为:IL-6与受体复合物结合后,激活JAK1。JAK1磷酸化gp130细胞质部分内的酪氨酸残基,这些磷酸酪氨酸基序是STAT转录因子,SOCS3反馈抑制剂和衔接蛋白和磷酸酶SHP2的募集位点。SHP2连接到MAPK级联,使Gab1磷酸化,磷酸化的Gab1转移到质膜上,协调正在进行的MAPK和PI3K活化。Src家族激酶独立于受体磷酸化并激活Y AP。 白介素IL-6信号转导第一步:激活JAK。 大多数细胞因子受体缺乏胞内激酶活性,生长因子的受体例外。白介素IL-6胞内信号转导首先激活Janus激酶(JAK),开启酶促反应。通过JAK N末端的同源结构域内(JH)

自噬与泛素化蛋白降解途径的分子机制及其功能

HEREDITAS (Beijing) 2012年1月, 34(1): 5―18 ISSN 0253-9772 https://www.wendangku.net/doc/b29377536.html, 综 述 收稿日期: 2011?06?03; 修回日期: 2011?08?19 基金项目:转基因生物新品种培育重大专项(编号:2009ZX08009-148B)资助 作者简介:陈科, 博士研究生, 研究方向:动物发育遗传学。E-mail: chenke@https://www.wendangku.net/doc/b29377536.html, 通讯作者:周荣家, 教授, 博士生导师, 研究方向:动物发育遗传学。E-mail: rjzhou@https://www.wendangku.net/doc/b29377536.html, 网络出版时间: 2011-8-24 11:11:40 URL: https://www.wendangku.net/doc/b29377536.html,/kcms/detail/11.1913.R.20110824.1111.004.html DOI: 10.3724/SP.J.1005.2012.00005 自噬与泛素化蛋白降解途径的分子机制及其功能 陈科, 程汉华, 周荣家 武汉大学生命科学学院, 武汉 430072 摘要: 细胞内所有的蛋白质和大多数的细胞外蛋白都在不断的进行更新, 即它们在不断地被降解, 并被新合成 的蛋白质取代。细胞内蛋白的降解主要通过两个途径, 即自噬和泛素蛋白酶体系统。自噬是一种由溶酶体介导的细胞内过多或异常蛋白质的降解机制。在细胞内主要有3种类型的自噬, 即分子伴侣介导的自噬、微自噬和巨自噬。泛素蛋白酶体系统是由泛素介导的一种高度复杂的蛋白降解机制, 它参与降解细胞内许多蛋白质并且这个过程具有高度特异性。细胞内蛋白质的降解参与调节许多细胞过程, 包括细胞周期、DNA 修复、细胞生长和分化、细胞质量的控制、病原生物的感染反应和细胞凋亡等。许多严重的人类疾病被认为是由于蛋白质降解系统的紊乱而引起的。文章综述了自噬和泛素化途径及其分子机制, 以及蛋白质降解系统紊乱的病理学意义。 关键词: 蛋白质降解; 自噬; 泛素蛋白酶体系统 Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway CHEN Ke, CHENG Han-Hua, ZHOU Rong-Jia Life Science College , Wuhan University , Wuhan 430072, China Abstract: All proteins in eukaryotic cells are continually being degraded and replaced. Autophagy and the ubiq-uitin-proteasome system are two mechanisms for intracellular protein degradation. Autophagy is mediated by lysosome, and is further divided into chaperone-mediated autophagy, microautophagy and macroautophagy. The ubiquitin-proteasome system is highly complex and mediated by ubiquitin, which participates in intracellular protein degradation in a specific manner. It is now known that degradation of intracellular proteins is involved in regulation of a series of cellular processes, including cell-cycle division, DNA repair, cell growth and differentiation, quality control, pathogen infection, and apoptosis. The aberrations in the protein degradation systems are involved in many serious human diseases. The present review sum-marizes the mechanisms of protein degradation and related human diseases. Keywords: protein degradation; autophagy; ubiquitin-proteasome system 细胞内所有的蛋白质和大多数的细胞外蛋白都在不断的进行更新, 即它们在不断地被降解和被新 合成的蛋白质取代。虽然不断降解细胞内的蛋白似乎很浪费, 但是这个过程在功能上却是非常重要

Notch信号通路研究进展

224 中国医药生物技术 2009年6月第4卷第3期Chin Med Biotechnol, June 2009, V ol. 4, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2009.03.012 · 综述·Notch信号通路研究进展 王利祥,华子春 1917 年,Morgan 及其同事在果蝇体内发现一种基因,因其功能部分缺失可导致果蝇翅缘出现缺口,故命名该基因为 Notch。随后的研究发现,Notch 从无脊椎动物到脊椎动物的多个物种中表达,其家族成员的结构具有高度保守性,在细胞分化、发育中起着关键作用。迄今研究已阐明 Notch 信号通路的主要成员及核心转导过程,然而随着研究的深入,人们逐渐认识到该通路实际上处于十分复杂的调控网络之中,而这与其在发育过程中功能的多样性相符合。本文结合最新进展,系统阐述 Notch 信号通路的组成,功能,作用机制及调控,并揭示该通路异常与疾病的联系。 1 Notch 受体 Notch 受体是一个相对分子量约为 30 000 的 I 型膜蛋白,由胞外亚基和跨膜亚基组成,2 亚基之间通过 Ca2+ 依赖的非共价键结合形成异源二聚体。胞外亚基包含一组串联排列的 EGFR 和 3 个家族特异性的 LNR 重复序列。EGFR 在 Notch 受体与配体的结合中起关键作用,在果蝇中,Notch 受体的第 11 位和 12 位 EGFR 介导了其与配体的结合。LNR 位于 EGFR 的下游,富含半胱氨酸,介导了 2 亚基之间 Ca2+ 依赖的相互作用。跨膜亚基包括跨膜区、RAM 序列、锚蛋白重复序列、核定位序列、多聚谷氨酰胺序列以及 PEST 序列。RAM 结构域是 Notch 信号效应分子 CBF1/RBPJk 主要的结合部位。ANK 重复序列结构域是 Deltex、Mastermind 等的结合部位,这些蛋白对Notch 信号通路有修饰作用。PEST 结构域与泛素介导的Notch 胞内段降解有关[1]。 2 Notch 配体 Notch 配体与受体一样为 I 型跨膜蛋白。果蝇 Notch 配体有 2 个同源物 Delta 和 Serrate,线虫的 Notch 配体为 Lag 2,故又称 Notch 配体为 DSL 蛋白。脊椎动物体内也发现了多个 Notch 配体,与 Delta 同源性高的称为Delta 样分子,与 Serate 同源性高的被称作 Jagged。目前,发现人的 Notch 配体有 D ll l、3、4和 Jagged l、2。配体胞外 DSL 结构域在进化中高度保守,是配体与受体结合、激活 Notch 信号所必需的。Notch 配体的胞内域较短,仅70 个左右氨基酸残基,功能尚未阐明。近来研究发现,Delta 1 的胞内域能够诱导细胞的生长抑制[2]。有人推测,配体胞内段可能类似与受体胞内段,具有信号转导功能,但具体机制有待进一步研究。3 Notch 信号传递与效应因子 迄今研究发现主要有 6 种信号通路在多细胞生物的生长中发挥关键作用,分别是刺猬、骨形态发生蛋白、无翅、类固醇激素受体、Notch 和受体酪氨酸激酶。Notch 相对于其他信号通路结构较简单,没有第二信使的参与。现有研究提出了 Notch 信号活化的“三步蛋白水解模型”[3]。首先,Notch 以单链前体模式在内质网合成,经分泌运输途径,在高尔基体内被 Furin 样转化酶切割成相对分子质量为180 000 含胞外区的大片段和 120 000 含跨膜区和胞内区的小片段。两者通过 Ca2+依赖性的非共价键结合为异源二聚体,然后被转运到细胞膜。当 Notch 配体与受体结合,Notch 受体相继发生 2 次蛋白水解。第一次由 ADAM 金属蛋白酶家族的 ADAM 10/Kuz 或 ADAM 17/TACE 切割为 2 个片段。N 端裂解产物(胞外区)被配体表达细胞内吞,而 C 端裂解产物随后由早老素 1/2,Pen-2,Aph1 和Nicastrin 组成的γ-促分泌酶复合体酶切释放 Notch 受体的活化形式 NICD。 经典的 Notch 信号通路又称为 CBF-1/RBP-Jκ依赖途径。CBF-1/RBP-Jκ本身是 1 个转录抑制因子,能够特异性地与 DNA 序列“CGTGGGAA”相结合,并招募 SMRT,SKIP,I/II 型组蛋白去乙酰化酶等蛋白形成共抑制复合物,抑制下游基因的转录。当 Notch 信号激活后,NICD 通过上述酶切反应被释放进入胞核,通过 RAM 结构域及 ANK 重复序列与 CBF-1/RBP-Jκ结合使共抑制复合物解离,并募集 SKIP,MAML 1 组成共激活复合体,激活下游基因的转录。Notch 信号的靶基因多为碱性螺旋-环-螺旋转录抑制因子家族成员,如哺乳动物中的 HES、非洲爪蟾中的XHey-1,以及近来发现的 BLBP [3]。此外,存在非CBF-1/RBP-Jκ依赖的 Notch 信号转导途径。最近有研究报道,果蝇 Notch 结合蛋白 Deltex 是某些组织特异性非 Su (H)依赖性信号所必需的,同时发现 Deltex 也具有拮抗Notch 的功能 [4]。 4 Notch 信号途径功能 Notch 信号途径的功能最初是在果蝇神经系统发育的 基金项目:国家自然科学基金(30425009,30730030);江苏省自然科学基金(BK2007715) 作者单位:210093 南京大学医药生物技术国家重点实验室 通讯作者:华子春,Email:zchua@https://www.wendangku.net/doc/b29377536.html, 收稿日期:2009-02-01

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

p38MAPK信号转导通路与细胞凋亡研究进展.

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

自噬调控过度炎症研究进展

生理学报 Acta Physiologica Sinica , December 25, 2014, 66(6): 739–745DOI: 10.13294/j.aps.2014.0088 https://www.wendangku.net/doc/b29377536.html, 739 自噬调控过度炎症研究进展 肖孟景,李利根* 中国人民解放军总医院第一附属医院烧伤研究所,烧伤整形科,北京 100048 摘 要:自噬是一种高度保守的细胞内降解途径,是细胞在应对各种危险刺激时的一种保护机制,通过降解胞内受损的大分子蛋白或细胞器,以维持细胞内稳态。炎症反应是机体应对损伤或病原体感染时的一种防御反应,通过一系列炎性介质的协同作用来清除危险刺激源并启动组织修复,然而不受控制的炎症反应常常导致继发性损害和炎性疾病。最近的研究表明自噬通路及其相关蛋白在参与调控免疫应答和控制过度炎症反应中发挥重要作用。本文对自噬调控过度炎症的作用及其可能机制做一综述。 关键词:自噬;免疫;炎症;Toll 样受体;炎性体中图分类号:Q7;R392;R64 Research progress on autophagy regulating excessive inflammation XIAO Meng-Jing, LI Li-Gen * Department of Burn and Plastic Surgery, Burn Institute, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China Abstract: Autophagy is a highly conserved cellular self-digestion pathway, by which intracellular damaged proteins or organelles are delivered to lysosomes for degradation, so as to protect from various dangerous stimuli and maintain cellular homeostasis. Inflamma -tion is a defensive response to injury or pathogens, through which various inflammatory mediators coordinate host defense and repair. However, uncontrolled inflammatory responses can lead to secondary damage and pathogenesis of inflammatory disease. Recent stud -ies indicate that autophagy pathway and related proteins may play important roles in regulating immune response and controlling excessive inflammation. This review introduced research progress in the role of autophagy in regulating excessive inflammation and possible mechanisms. Key words: autophagy; immunity; inflammation; Toll like receptor; inflammasome Received 2014-05-23 Accepted 2014-07-14 This review was supported by the National Natural Science Foundation of China (No. 81171808). * Corresponding author. Tel: +86-10-66848798; Fax: +86-10-66848798; E-mail: liligen@https://www.wendangku.net/doc/b29377536.html, 广义的自噬包括大自噬(macroautophagy)、小自噬(microautophagy)、分子伴侣介导的自噬[1] (chap-erone-mediated autophagy)和非典型自噬[2] ( non-canon-ical autophagy),大自噬(以下简称自噬)是本文所介绍的研究对象。自噬是一种在真核生物中普遍存在的、依赖自噬相关蛋白(autophagy-related pro-teins, Atgs)的溶酶体降解途径。和其他的胞内降解途径(如蛋白酶体降解途径)不同,自噬能够捕获 并降解大型产物如毒性蛋白聚合物、损伤或废用的 细胞器和侵入机体的微生物等[3] 。基础自噬通过清 除胞内错构蛋白或受损的细胞器等并重新利用,以维持细胞内稳态。各种危险性应激,如代谢性、感染性、炎性等因素也能激活自噬,清除有害蛋白或 聚集的细胞器,起到保护细胞的作用[4] 。越来越多 的研究表明自噬与免疫密切联系,自噬可作为固有免疫、获得免疫与炎症反应的效应器和调控器[5],

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

ERK5信号通路研究现状

World Journal of Cancer Research 世界肿瘤研究, 2014, 4, 41-46 Published Online October 2014 in Hans. https://www.wendangku.net/doc/b29377536.html,/journal/wjcr https://www.wendangku.net/doc/b29377536.html,/10.12677/wjcr.2014.44008 Review of the ERK5 Signaling Pathway Research Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu# Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang Email: 4567436@https://www.wendangku.net/doc/b29377536.html,, #ouyangww103173@https://www.wendangku.net/doc/b29377536.html,, #lbgymaaaa@https://www.wendangku.net/doc/b29377536.html, Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/b29377536.html,/licenses/by/4.0/ Abstract Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relation-ship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future. Keywords ERK5, Signaling Pathways, MAPK ERK5信号通路研究现状 罗松*,苏胜发,欧阳伟炜#,卢冰# 贵阳医学院肿瘤学教研室,贵阳 Email: 4567436@https://www.wendangku.net/doc/b29377536.html,, #ouyangww103173@https://www.wendangku.net/doc/b29377536.html,, #lbgymaaaa@https://www.wendangku.net/doc/b29377536.html, 收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日 *第一作者。 #通讯作者。

肿瘤常见信通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2) JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK

信号通路研究思路

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因

自噬

自噬 图4 与自噬相关的信号通路 自噬要发生的话最直接的是需要LC3 mRNA的合成,然后由LC3 mRNA翻译合成pro-LC3,在各种Atg的作用下,经过LC3-Ⅰ转化为LC3-Ⅱ,继而启动自噬体的形成,然后与溶酶体结合分解其中的物质。那么在这之前一系列需要调控LC3 mRNA的信号通路对于启动自噬的发生起着重要的调控作用。 当细胞处于饥饿状态的时候,氨基酸和葡萄糖的含量都比较少,通常氨基酸和胰岛素的存在是抑制自噬的发生的,而葡萄糖的作用正好相反,它可以引起自噬的发生。下面分别介绍:氨基酸主要通过两条途径抑制自噬的发生:1抑制ERK1/2信号通路的传递;2对mTOR通路的刺激作用。不同的物种以及不同组织的细胞接受不同的氨基酸的刺激来调节自噬的发生,而且有的组织的细胞还接受几种氨基酸的同时调控,现在研究的最清楚的是Leu,在骨骼肌,肝脏以及心肌细胞中都是很重要的调节因子,现已经发现,在细胞表面存在氨基酸信号转导受体,而且氨基酸还可以通过Na+ 通道进入细胞内。当氨基酸(Leu)刺激细胞表面的受体后会抑制ERK1/2信号通路中的Raf-1的磷酸化活性,抑制该通路的活性,而该通路如图所示最终可以induce LC3 mRNA的转录,促进自噬,因此氨基酸Leu的存在下抑制了自噬,当处于starvation的条件下该条通路就不会被抑制,就可以引起细胞的自噬。氨基酸对mTOR的刺激的具体机理还不是很清楚,根据查到的文献可知道,Leu可以将mTOR的Ser位点磷酸化,来激活mTOR的活性,而mTOR可以抑制抑制LC3 mRNA的转录;当Leu不存在的时候这条信号就不会被激活,mTOR的另一个位点Thr就会被磷酸化,thr和Ser位点通常是形成竞争性抑制的,一旦一个位点被磷酸化另一个位点就无法被磷酸化,因此此时mTOR的激酶活性就被抑制,自噬发生。另外当细胞表面的受体被氨基酸激活时还可能抑制PI3K(classⅢ)的活性,而PI3K(classⅢ)/Beclin-1可以induce LC3 mRNA的转录。因此综上所述,氨基酸(Leu)会抑制自噬的发生,而当氨基酸(Leu)缺失的时候自噬便会发生。 另外还有一些信号通路参与调节自噬,有一些生长因子可以通过细胞swell作用进入细胞,比如一些酒精,胰岛素和某些些氨基酸盐。他们进入细胞之后会激活Srk,进而激活P38MAPK 通路,而P38MAPK 通路是抑制LC3 mRNA的转录的,因此当细胞处于饥饿状态时这条通路的抑制作用将会被失活进而自噬发生。胰岛素对自噬也有抑制作用,胰岛素会激活细胞表面受体然后激活下游信号分子进而激活mTOR,从而抑制自噬的发生。当细胞处于饥饿状态的时候葡萄糖的含量就会下降,此时胰岛素的含量也会下降,从而促进自噬发生;当从饥饿状态恢复时环境的葡萄糖含量上升,伴随着胰岛素的含量的上升,自噬被抑制,这是个反馈调节过程,从这点上看研究自噬的机理对研究糖尿病也有一定的帮助。当细胞长期处于饥饿状态时,另一套负反馈机制就会被启动,自噬停止保护细胞内的器官不受到侵蚀,例如mTOR的两个直接的底物是S6K和4E-BP1,他们可以帮助细胞进行蛋白质合成,当细胞长期处于饥饿状态时就会停止自噬启动这样的机制。另外有报道说S6K有自己的一套独立的信号通路可以促进自噬的发生,主要机理还不是很清楚。

相关文档
相关文档 最新文档