文档库 最新最全的文档下载
当前位置:文档库 › 椭圆-双曲线-抛物线-知识点汇总

椭圆-双曲线-抛物线-知识点汇总

椭圆-双曲线-抛物线-知识点汇总
椭圆-双曲线-抛物线-知识点汇总

抛物线

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程 (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 (1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0 此方程可用于解决两圆的位置关系: 配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4 其圆心坐标:(-D/2,-E/2) 半径为r=√[(D^2+E^2-4F)]/2 此方程满足为圆的方程的条件是: D^2+E^2-4F>0 若不满足,则不可表示为圆的方程 (2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系: ⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。 ⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。 ⑶当(x1-a)^2+(y1-b) ^20,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4 => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F) <二>椭圆的标准方程 椭圆的标准方程分两种情况: 当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线知识点总结

圆锥曲线知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或1 22 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置, 只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n + =(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±, y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点

(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中,2||OB b =, 2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a = 叫椭圆的离心率。∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念

双曲线知识点复习总结

双曲线知识点总结复习 1.双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2.双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±;⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为:,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

高中数学双曲线抛物线知识点总结

高中数学双曲线抛物线知 识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨 迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a => (1)c e e a => 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲 线22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 5 4 ; (2) 焦距为26,且经过点M (0,12); _x _y _x _y

(3) 与双曲线22 1916 x y - =有公共渐进线,且经过点() 3,23A -。 解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==5 4 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x - =。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴222144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和 (0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥ 4 5 c 。求双曲线的离心率e 的取值范围。

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0 且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上, 双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为, . 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成― x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。 (4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。 ②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得, 所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示 双曲线开口的大小程度。③等轴双曲线,所以离心率。 (5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线 围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。 标准方程 图形 性质 焦点,, 焦距 范围,,

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

双曲线知识点归纳总结.

第二章 2.3 双曲线 双曲线 标准方程(焦点在x 轴) )0,0(122 22>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(122 22>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M 22 1 =-()212F F a < 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离心率。 范围 x a ≥,y R ∈ y a ≥,x R ∈ 对称轴 x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中 心 原点(0,0)O 焦点坐标 1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标 (a -,0) (a ,0) (0, a -,) (0,a ) x y P 1 F 2 F x y P x y P 1F 2F x y x y P 1 F 2 F x y x y P 1F 2F x y P

离心率 e a c e (= >1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 2 2 顶点到准线的 距离 顶点1A (2A )到准线1l (2l )的距离为c a a 2 - 顶点1 A (2A )到准线2l (1l )的距离为a c a +2 焦点到准线的 距离 焦点1F (2F )到准线1l (2l )的距离为c a c 2 - 焦点1F (2F )到准线2l (1l )的距离为c c a +2 渐近线 方程 x a b y ±= x b a y ±= 共渐近 线的双曲线系 方程 k b y a x =-2222(0k ≠) k b x a y =-22 2 2(0k ≠) 1. 双曲线的定义 ① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<.

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

双曲线方程圆锥方程与椭圆方程基本知识点

数学概念、方法、题型、易误点技巧总结——圆锥曲线(一) 省市安乡县第五中学龚光勇收集整理 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。比如: ①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A.B. C.D.(答:C); ②方程表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。比如: ①已知方程表示椭圆,则的取值围为____(答:); ②若,且,则的最大值是____,的最小值是___(答:) (2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。比如: ①双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:); ②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______

经典双曲线知识点

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。 重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线. 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点 的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中 靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点 坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,. 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、― y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a 或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

相关文档
相关文档 最新文档