文档库 最新最全的文档下载
当前位置:文档库 › 导数与函数图像问题

导数与函数图像问题

导数与函数图像问题
导数与函数图像问题

导数与函数图像问题

1.函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( )

2.函数)(x f 的定义域为开区间),(b a ,导函数)(x f ' 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A. 1个

B.2个

C.3个

D.4个

3.设()f x '是函数()f x 的导函数,将()y f x =和

()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )

4若函数f (x )=x 2+bx+c 的图象的顶点在第四象限,则函数f′(x )的图象是( )

A .

B .

C .

D .

5.设函数f (x )在R 上可导,其导函数为f′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf′(x )的图象可能是( )

A .

B .

C .

D .

a

b

x

y

)

(x f y ?=O

6.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是()

A.B.C.D.

7.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是()

A.B.C.D.

8.已知函数y=xf′(x)的图象如上中图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是()

A.B.C.D.

9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如上右图所示,则下列结论中一定成立的是()

(A )

(B ) (C )

(D )

A .函数f (x )有极大值f (2)和极小值f (1)

B .函数f (x )有极大值f (-2)和极小值f (1)

C .函数f (x )有极大值f (2)和极小值f (-2)

D .函数f (x )有极大值f (-2)和极小值f (2)

10.函数cos y x x =的导函数()f x '在区间[]ππ-,上的图象大致是( )

11.设a b <,函数2()()y x a x b =--的图象可能是( )

12.函数2

()sin ()f x x

x

x π

=-∈R 的部分图象是( )

(A )

(B )

(C )

(D )

(C)(D)

13.已知函数2

()()

f x ax bx c a b c

=++∈R

,,,若1

x=-为函数()

x

y e f x

=的一个极值点,则下列图象不可能为()

y f x

=的图象是()

14.函数()

y f x

'

=是函数()

y f x

=的导函数,且函数()

y f x

=在点

00

(())

P x f x

,处的切线l为000

()()()()

y g x f x x x f x

'

==-+,()()()

F x f x g x

=-,

象如图所示,且

a x b

<<,那么()

(A)

00

()0

F x x x

'==

,是()

F x的极大值点

(B)

00

()0

F x x x

'==

,是()

F x的极小值点

(C)

00

()0

F x x x

'=

≠,不是()

F x的极值点

(D)

00

()0

F x x x

'=

≠,是()

F x的极值点

15.函数2sin

2

x

y x

=-的图象大致是()

16..函数)

(x

f的图像如图所示,下列数值排序正确的是()

(A))2(

)3(

)3(

)2

(

0/

/f

f

f

f-

<

<

<

(B)(C)(D)

(B ) )2()2()3()3(0/

/f f f f <-<< (C ))2()3()2()3(0/

/

f f f f -<<<

(D ))3()2()2()3(0/

/

f f f f <<-< O 1 2 3 4 x

导数经典专题整理版

导数在研究函数中的应用 知识点一、导数的几何意义 函数()y f x =在0x x =处导数()0f x '是曲线()y f x =在点()()00,P x f x 处切线的 ,即_______________;相应地,曲线()y f x =在点()()00,P x f x 处的切线方程是 例1.(1)曲线x e x y +=sin 在点)1,0(处的切线方程为( ) A.033=+-y x B.022=+-y x C.012=+-y x D.013=+-y x (2)若曲线x x y ln =上点P 处的切线平行于直线012=+-y x ,则点P 的坐标是( ) A.),(e e B.)2ln 2,2( C.)0,1( D.),0(e 【变式】 (1)曲线21x y xe x =++在点)1,0(处的切线方程为( ) A.13+=x y B.12+=x y C.13-=x y D.12-=x y (2)若曲线x ax y ln 2-=在点),1(a 处的切线平行于x 轴,则a 的值为( ) A.1 B.2 C.21 D.2 1- 知识点二、导数与函数的单调性 (1)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x >,那么函数()y f x =在这个区间内为 且该区间为函数)(x f 的单调_______区间; (2)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x <,那么函数()y f x =在这个区间内为 ,且该区间为函数)(x f 的单调_______区间.

例1.(1)函数x e x x f )3()(2-=的单调递增区间为( ) A.)0,(-∞ B.),0(+∞ C.)1,3(- D.),1()3,(+∞--∞和 (2)函数x x y ln 2 12-=的单调递减区间为( ) A.(]1,1- B.(]1,0 C.[)+∞,1 D.),0(+∞ 例2.求下列函数的单调区间,并画出函数)(x f y =的大致图像. (1)3)(x x f = (2)x x x f 3)(3+= (3)1331)(23+--=x x x x f (4)x x x x f 33 1)(23++-= 知识点三、导数与函数的极值 函数)(x f y =在定义域内的某个区间(,)a b 内,若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数)(x f '异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是 (熟练掌握求函数极值的步骤以及一些注意点) 例1.(1)求函数133 1)(23+--=x x x x f 的极值 (2)求函数x x x f ln 2)(2-=的极值

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

导数探讨函数图像的交点问题

由2006年高考看如何用导数探讨函数图象的交点问题 2006年高考数学导数命题的方向基本没变,主要从五个方面(①与切线有关的问题②函数的单调性和单调区间问题③函数的极值和最值问题④不等式证明问题⑤与函数的单调性、极值、最值有关的参数问题)考查了学生对导数的掌握水平。 但是,2006年高考数学导数命题在方向基本没变的基础上,又有所创新。福建理科卷第21题研究两个函数的交点个数问题,福建文科卷第19题研究分式方程的根的分布问题,湖南卷第19题研究函数的交点问题,四川卷第21题研究函数图象的交点个数问题。从以上试卷我们可以发现导数命题创新的两个方面:一是研究对象的多元化,由研究单一函数转向研究两个函数或多个函数,二是研究内容的多元化,由用导数研究函数的性质(单调性、最值、极值)转向运用导数进行函数的性质、函数图象的交点和方程根的分布等的综合研究,实际上就是运用导数考查函数图象的交点个数问题。 试题“以能力立意”的意图表现明显,试题注重了创新、开放、探究性,以所学数学知识为基础,对数学问题进行深入探讨,从数学角度对问题进行探究。考查了学生综合与灵活地应用所学的数学思想方法,进行独立的思考、探索和研究,创造性地解决问题的能力。 如何运用导数的知识研究函数图象的交点问题呢?下面我们先看一看今年的高考题。 例1(福建理科第21题)已知函数f(x)=-x 2 +8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m ,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点? 若存在,求出m 的取值范围;,若不存在,说明理由。 解:(Ⅰ)略 (II )∵函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点, ∴令f(x)= g(x) ∴g(x)-f(x)=0 ∵x>0 ∴函数?(x)=g(x)-f(x) = 2 x -8x+6ln x+m 的图象与x 轴的正半 轴有且只有三个不同的交点。 ∵262862(1)(3) '()28(0),x x x x x x x x x x ?-+--=-+= => 当x ∈(0,1)时,)(1 x ?〉0,)(x ?是增函数;当x ∈(1,3)时,)(1 x ?〈0,)(x ?是减函数;当x ∈(3,+∞)时,)(1 x ?〉0,)(x ?是增函数;当x=1或x=3时,)(1 x ?=0。 ∴?(x )极大值=?(1)=m -7, ?(x )极小值=?(3)=m+6ln 3-15. ∵当x →0+ 时,?(x)→∞-,当x +∞→时,?(x)+∞→ ∴要使?(x)=0有三个不同的正实数根,必须且只须 ?? ?<-=>-=, 0153ln 6)(, 07)(+极小值极大值m x m x ?? ∴7

(完整版)导数与函数图像问题

导数与函数图像问题 1.函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( ) 2.函数)(x f 的定义域为开区间),(b a ,导函数)(x f ' 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A. 1个 B.2个 C.3个 D.4个 3.设()f x '是函数()f x 的导函数,将()y f x =和 ()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 4若函数f (x )=x 2+bx+c 的图象的顶点在第四象限,则函数f′(x )的图象是( ) A . B . C . D . 5.设函数f (x )在R 上可导,其导函数为f′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf′(x )的图象可能是( ) A . B . C . D . a b x y ) (x f y ?=O

6.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是() A.B.C.D. 7.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是() A.B.C.D. 8.已知函数y=xf′(x)的图象如上中图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是() A.B.C.D. 9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如上右图所示,则下列结论中一定成立的是()

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

函数与导数经典例题--高考压轴题(含答案)

函数与导数 1.已知函数 f(x) 4x 3 3tx 2 6tx t 1,x R ,其中 t R . (I)当t 1时,求曲线y f (x)在点(0, f (0))处的切线方程; (n)当t 0时,求f (x)的单调区间; (川)证明:对任意的t (0, ), f(x)在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零 点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分 14分。 (I)解:当 t 1 时,f(x) 4x 3 3x 2 6x, f (0) 0, f (x) 12x 2 6x 6 f (0) 6.所以曲线y f (x)在点(0, f(0))处的切线方程为y 6x. (n)解:f (x) 12x 2 6tx 6t 2,令 f (x) 0,解得 x t 或 x -. 2 因为t 0,以下分两种情况讨论: (1)若t 0,则- t,当x 变化时,f (x), f(x)的变化情况如下表: 所以,f(x)的单调递增区间是, | ;f(x)的单调递减区间是 屮 ⑵若 t 则t ,当 x 变化时, f(x)f(x) 的变化情况如下表: 所以,f(x)的单调递增区间是 ,t ,丄, ;f(x)的单调递减区间是 t,- 2 2

(川)证明:由(n)可知,当 t 0时,f(x)在0,1内的单调递减,在 -, 内单调 2 2 递增,以下分两种情况讨论: (1)当-1即t 2时,f (x)在(0,1)内单调递减, 2 f (0) t 1 0, f (1) 6t 2 4t 3 6 4 4 2 3 0. 所以对任意t [2, ), f(x)在区间(0,1 )内均存在零点。 t (0,1], f 1 7t 3 t 1 7t 3 0. 2 4 4 所以f(x)在-,1 2 内存在零点。 t 若 t (1,2), f - 7t 3 t 1 厶3 1 0 2 4 4 f(0) t 1 所以f(x)在0 2 所以,对任意t (0,2), f(x)在区间(0,1)内均存在零点。 综上,对任意t (0, ), f(x)在区间(0,1)内均存在零点。 2.已知函数 f (x) 2 x 1, h(x) x . 3 2 (I)设函数 F (x ) = 18f (x ) — x 2[h (x )] 2,求F (x )的单调区间与极值; 3 3 (n)设 a R ,解关于 x 的方程 lg[ f(x 1) ] 2lg h(a x) 2lg h(4 x); 2 4 * 1 (川)设 n N ,证明:f(n)h(n) [h(1) h(2) L h(n)] 6 本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数 与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(I) F(x) 18f(x) x 2[h(x)]2 x 3 12x 9(x 0), 2 F (x) 3x 12 . (2)当 0 - 1,即0 t 2 时, 2 f (x)在0,-内单调递减,在 2 1,1内单调递增,若 2 f (1) 6t 2 4t 3 6t 4t 3 2t 3 0.

导数与函数图像

导数与函数图像问题
1.函数 y ? f (x) 的图像如右图,那么导函数 y ? f , (x) 的图像可能是( )
2.函数 f (x) 的定义域为开区间 (a, b) ,导函数 f ?(x) 在 (a, b) 内的图象如图所示,则函数 f (x) 在开区间 (a, b)
内有极小值点( )
A. 1个 B. 2 个 C. 3 个 D. 4 个
a
3 . 设 f ?(x) 是 函 数 f (x) 的 导 函 数 , 将 y ? f (x) 和
y
y ? f ?(x)
b
O
x
y ? f ?(x) 的图象画在同一个直角坐标系中,不可能正确的是( )
4若 函 数 f( x) =x2+bx+c 的 图 象 的 顶 点 在 第 四 象 限 , 则 函 数 f′ ( x) 的 图 象 是 (

A.
B.
C.
D.
5.设 函 数 f( x) 在 R 上 可 导 , 其 导 函 数 为 f′ ( x), 且 函 数 f( x) 在 x=-2处 取 得 极 小 值,则函数 y=xf′(x)的图象可能是( )
A.
B.
C.
D.
1

6. 设 函 数 f( x) =ax2+bx+c( a, b, c∈ R), 若 x=-1为 函 数 y=f( x) ex 的 一 个 极 值 点 , 则下列图象不可能为 y=f(x)的图象是( )
A.
B.
C.
D.
7.若函数 y=f(x)的导函数在区间[a,b]上是增函数,则函数 y=f(x)在区间[a,b] 上的图象可能是( )
A.
B.
C.
D.
8.已 知 函 数 y=xf′( x)的 图 象 如 上 中 图 所 示( 其 中 f′( x)是 函 数 f( x)的 导 函 数 ),
下面四个图象中 y=f(x)的图象大致是( )
A.
B.
C.
D.
9.设函数 f(x)在 R 上可导,其导函数为 f′(x),且函数 y=(1-x)f′(x)的图象如上
右图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) 值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) 值 f(2)
B.函数 f(x)有极大值 f(-2)和极小 D.函数 f(x)有极大值 f(-2)和极小
2

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

导数的切线方程和图像知识点与习题

导 数 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:

利用导数研究函数的图像及零点问题(基础)6

利用导数研究函数的图像及零点问题 【复习指导】 本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用. 基础梳理 1.确定函数的图像 ①.特征点:零点,极值点,顶点,与y轴的交点; ②.特征线:渐近线,对称轴. 2.函数的零点 ⑵.求函数的零点的知识提示: ①.判别式; ②.介值定理; ③.单调性. 两个注意 ⑴.描绘函数的图像首先确定函数的定义域. ⑵.注意利用函数的图像确定函数的零点. 三个防范 ⑴.. ⑵.. ⑶. 常见函数的图像

⑴.函数(0,0)x y ae bx c a b =++><与函数ln (0,0)y ax b c x a c =++><的图像类似于二次函数2(0)y ax bx c a =++>的图像. ⑵.函数(0,0)x y ae bx c a b =++<>与函数ln (0,0)y ax b c x a c =++<>的图像类似于二次函数2(0)y ax bx c a =++<的图像. ⑶.函数2(0,0)x y ae bx cx d a b =+++><与函数2ln (0,0)y ax bx c d x a d =+++><的图像类似于二次函数32(0)y ax bx cx d a =+++>的图像. ⑷.函数2(0,0)x y ae bx cx d a b =+++<>与函数2ln (0,0)y ax bc c d x a d =+++<>的图像类似于二次函数32(0)y ax bx cx d a =+++<的图像. 双基自测 ⑴.画函数1ln y x x =--的图像. ⑵.画函数2x y e x =-的图像. ⑶.画函数x e y x =的图像. ⑷.画函数ln x y x = 的图像. ⑸.关于x 的方程ln 1x e x =的实根个数是 .1 初等数学的方法能够解决的函数问题:定义域、奇偶性、周期性、对称轴、渐近线 初等数学的方法未能彻底解决的函数问题:值域、单调性、零点、极值点 考点一 函数的图像问题 题型⑴.画函数的图像 【例1】画函数1x y e x =--的图像. 【练习1】画函数2x y x e =-的图像.

导函数图像与原函数图像关系

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函数的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f (x )的图象可能 为( ) 3. 函数的图像如下右图所示,则的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y

6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数的导函数的图象如右图,则的图象可能是( ) 7. 函数的定义域为开区间3(,3)2- ,导函数在3 (,3)2 -内的图象如图所示,则函数的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数的导函数... 在区间上是增函数,则函数在区间上的图象可能是 ( ) A . B . C . D . 9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) y y y )(x f y '=

专题导数图像(有答案)

. 1.函数的图象如图1所示,则的图象可能是( D) 2.函数的部分图象大致为( D ). 3.函数f(x)的定义域为开区间(a,b),导函数f ′(x)在(a,b)内的图象如下图所示,则函数f(x)在开区间(a,b)内有极大值点( B ) A.1个B2个 .C3个 .D.4个 4.当时,函数的图象大致是(B ) \ 5..已知在R上可导的函数的图象如图所示,则不等式的解集为( B ) A.B. C.D.6.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是( C ) A.f(b)>f(c)>f(d) B.f(b)>f(a)>f(e) C.f(c)>f(b)>f(a) D.f(c)>f(e)>f(d) (6)(7) 7.设三次函数的导函数为,函数的图象的一部分如下图所示,则( D ) A.极大值为,极小值为B.极大值为,极小值为C.极大值为,极小值为D.极大值为,极小值为 8.设函数在定义域内可导,的图象如下右图所示,则导函数可能为( D ) 9.当a>0时,函数f(x)=(x2-2ax)e x的图象大致是( B )

. 10.设函数f(x) 在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( D ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 11.[2013·浙江高考]已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( B ) 12.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)等于( D ) A.B.-C.D.-或 13.已知函数的导函数的图象如图所示,则函数的图象可能是( D ) A B C D 14.已知其导函数的图象如图,则函数的极小值是(D ) A B.C.D.c 15.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如 图所示,则函数f(x)在开区间(a,b)内有极小值点( A ) A.1个B2个 .C3个 .D.4个 16.设函数的图像如左图,则导函数的图像可能是下图中的(D) 17.设函数在定义域内可导,的图像如右图,则导函数的图像可能是( C )

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

函数与导函数图像

专题三 函数与导函数图像 1.函数()y f x =的导函数()'y f x =的图象如图所示,则函数()y f x =的图象可能是( ) A. B. C. D. 2.函数()y f x =的图象如图所示,则其导函数()'y f x =的图象可能是( ) A. B. C. D. 3.在R 上可导的函数()f x 的图象如图示, ()f x '为函数()f x 的导数,则关于x 的不等式()0x f x ?'<的解集为( ) A. ()(),10,1-∞-? B. ()()1,01,-?+∞ C. ()()2,11,2--? D. ()(),22,-∞-?+∞

4.已知函数 的导函数的图象如图所示,则 的图象可能是( ) A. B. C. D. 5.如图是函数y =f (x )的导函数()'f x 的图像,则下面判断正确的是( ) A. 在区间(-2,1)上f (x )是增函数 B. 在(1,3)上f (x )是减函数 C. 在(4,5)上f (x )是增函数 D. 当x =4时,f (x )取极大值 6.函数()cos sin f x x x x =?-的导函数的部分图象为( ) A B C D 7.如图是函数()y f x =的导函数()'y f x =的图象,给出下列命题: ①-2是函数()y f x =的极值点; ②1是函数()y f x =的极值点; ③()y f x =的图象在0x =处切线的斜率小于零; ④函数()y f x =在区间()2,2-上单调递增. 则正确命题的序号是( ) A. ①③ B. ②④ C. ②③ D. ①④

利用导数研究函数的图像(理科)

利用导数研究函数的图像 设a <b,函数2()()y x a x b =--的图像可能是 若函数()y f x =的导函数... 在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是 A . B . C . D . 利用导数解决函数的单调性问题 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ??? ,内是减函数,求a 的取值范围. a b a b a o x o x o x y o x y y

【变式1】若函数()()112 13123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围. 【变式2】已知函数()()022 1ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围; 【变式3】已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .若函数()f x 在 区间(1,1)-上不单调... ,求a 的取值范围.

利用导数的几何意义研究曲线的切线问题 若存在过点(1,0)的直线与曲线3y x =和21594 y ax x =+ -都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64 D .74 -或7 【变式】设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π?????? ,,则点P 横坐标的取值范围为( ) A .112??--??? ?, B .[]10-, C .[]01, D .112?????? , 利用导数求函数的极值与最值 已知函数22()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈ (1) 当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; (2) 当23 a ≠ 时,求函数()f x 的单调区间与极值。 已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,.若函数()f x 仅在0 x =

高考专题函数图像 方程 导数全

高考专题训练(二) 函数的图象与性质 A 级——基础巩固组 一、选择题 1.已知函数f (x )=????? a · 2x ,x ≥02-x ,x <0 (a ∈R ),若f [f (-1)]=1,则a =( ) A.14 B.1 2 C .1 D .2 2.(2014·辽宁卷)已知a =2-13,b =log 213,c =log 121 3,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a 3.(2014·湖南卷)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .3 4.已知函数f (x )=? ???? x 2 +2x ,x ≥0, x 2-2x ,x <0.若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( ) A .[-1,0) B .[0,1] C .[-1,1] D .[-2,2] 5.已知函数y =f (x )的大致图象如图所示,则函数y =f (x )的解析式应为( ) A .f (x )=e x ln x B .f (x )=e -x ln(|x |) C .f (x )=e x ln(|x |) D .f (x )=e |x |ln(|x |) 6.已知函数f (x )对定义域R 内的任意x 都有f (x )=f (4-x ),且当x ≠2时其导函数f ′(x )满足xf ′(x )>2f ′(x ),若2

导数与函数的零点讲义

【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。 变式:已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根,则 【答案】 -8 【解析】因为定义在R 上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上 是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间上有四个不同的根,不妨设,由对称性知,.所以 . 【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况

【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两 个相异的实根,求实数a 的取值范围(注:1n2≈: 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即: 如果函数()f x 在区间[]a b ,上是一条连续不断曲线,并且()()0f a f b ?<,则函数()f x 在区间()a b ,上至少有一个零点。即存在一点()0x a b ∈,,使得0()0f x =,这个0x 也就是方程()0f x =的根. (2)要求证一个函数“有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“函数零点的存在性定理”求证函数零点的唯一性。其依据为: 如果函数()f x 在区间[]a b ,上是单调函数,并且()()0f a f b ?<,则函数()f x 在区间 ()a b ,上至多有一个零点。 【例3】设函数3 2 9()62 f x x x x a =- +-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围.

函数与导数练习题(有标准答案)

函数与导数练习题(有答案)

————————————————————————————————作者:————————————————————————————————日期:

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .22 log 1y x =- C .2 1log y x = D .2 12 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

相关文档
相关文档 最新文档