文档库 最新最全的文档下载
当前位置:文档库 › 第九章网络优化模型

第九章网络优化模型

第九章网络优化模型
第九章网络优化模型

教学要求:

b拿握图爲基础,拿握最蔻路问題,最大流问題和最小费用流问題等网络优化栈型及其基本算出O

b会应用模矍和方出解决一些管理中的基本问題

口目录口图与阿络

口树

□最短珞问题

口最丸浇问题

□最小赛用济问题

一、图的概念及分类

图是由作为研克对象的有限个集合和表达这些顶A之间关糸的m条线的集合组成的丿

记顶点集合^V={v lz v2,……v n},线集合%L={—???lm} 图则记为G = (V, L),线又分为孤和边,顶点也称为结点孤是由一对有序的顶点组成,表示两个顶点之间可能运动的方向取旖孤的方向就变成了边,边是只要任两点之间有连线,两个方向均可使用,孤可作为城市道路的单行道,边则是双行道

顶点、孤.有向图■无向图■ <>道路.环、连通图、连通子 图、次的基本概I 念

6—do

3

O

1

5

3

2 次:以3点为 顶点的边的条 数隸为顶点的 次

二?网络

点或边带有禁种数量指捺的图叫网划图、简称网修。

?与点或边有关的禁些数量指栋,我们经常称之为权,权可以代蔻如距离、费用.彖量等。左图可以看作:

A从发色厂(节点1丿向禁城市(节点6丿输送赳力,必须通过中转誌(节点2, 3, 4, 5丿转送,边上数字代表两节点问的距禽。色力公司希望迄择合适的中转哉,使从色厂到城市的传输路线最短。

—个输油管道网。节点1表示管道的起点,节点6表示管道的终点,节点2到5表示中转站,?务边的数字表示该段管道能通过的最大输送量。应怠样安排输油线路,使从节点1到节点6的总输送量最丸?

> 一張城市分布图。现蛊要蛊各城市之间架设色话线,应如何架设,使各城市

之间既能通话,又使总的架设路线最短?

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

流线优化模型与算法研究及应用

配套的处理方式;果蔬采后商品化处理量几乎达到了100%,形成了完整的果蔬冷链体系。而我国的产地基础设施不完善,未能解决分选、分级、预冷、冷藏运输和保鲜等采后果蔬的处理问题。我国果蔬冷链存在许多问题:产地预冷环节薄弱;冷藏运输工具落后;冷库发展水平低;缺乏有影响力的第三方冷链物流。我国果蔬冷链发展水平要赶上发达国家还有较长的路要走。 要完善我国的果蔬冷链业,除了大力研发性价比合理、符合国情的相关冷链设备、设施以外;还需要全面的对整个果蔬冷链过程中存在的影响果蔬产品质量的风险因素进行分析和评价,从而一一破解;更需要系统地梳理整个果蔬冷链链条,是指实现协同化,构建果蔬冷链质量质量保障体系。这样才能真正确保果蔬产品的质量安全,确保千万消费者食用上安全放心的果蔬产品。 流线优化模型与算法研究及应用 张锦*(交通与物流学院) 1 研究背景 目前我国物流产业正处于高速发展期,理论体系与应用研究正在不断完善。物流活动的目的就是使物流服务来满足物流需求,即通过仓储、加工、运输、配送、包装、装卸搬运等活动来满足社会经济活动中供应商、制造商、零售商、消费者等需求方的对物的移动、储存与服务的需求。在宏观层面的区域及城市经济和微观层面的制造、贸易、消费等典型社会经济活动中的物流活动可抽象为具有特定需求的空间结构,称作物流需求网络。 在物流系统中,由若干特定的点、线和特定的权构成的,反映物流服务与需求关系的供需网络称之为流线网络,它具有以下典型特征。 1.反映了仓储、加工、运输、配送、包装、装卸搬运等物流服务与需求方在物品数量、到达时间、物流费用等方面的物流需求间的供需关系。 2.具有嵌套、多层、多级、多维、多准则、拥塞等典型的超网络结构特征,并且具有连接供需两个物流网络的超网络结构。 3.当实际需求为特定值时,物流服务追求的目标为用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点。 物流供应网络与物流需求网络之间的关系可由超网络结构进行刻画,用匹配度刻画物流服务与物流需求之间的适应程度。 2 国内外研究现状 目前,国内外学者对流线的组织与优化问题研究较少,与此问题相关的内容包括物流网络、物流网络分配、动线优化、超网络理论与应用、变分不等式算法及其在供应链网络中的应用等内容。 2.1 物流网络研究现状 国外的学者大都倾向从微观的企业角度去研究物流网络的资源配置和协调问题,如物流基础设施、市场竞争机制以及配送运输等问题。这类研究大多利用数学规划法、系统仿真法、启发式 *作者简介:张锦,男,教授。

基于数学模型的网络优化方法研究

基于数学模型的网络优化方法研究 赵鹏 通信一团技术室 摘 要 为了提高网络链路的利用率,解决网络传输中的最大流问题,该文利用建立数学模 型的方法来求解网络的传输路径,研究了基于路径的网络优化方法。该方法能够极大地提高网络的链路利用率,从而降低网络的拥塞,使得网络的性能得到较大改善。 关键词 网络优化 最大流 数学模型 1 引言 随着网络技术的进步和人们对多媒体综合业务需求,传统的数据网络逐渐转向多媒体网络,在这过程中,除了相关服务以外,我们还面临许多极具战性的网络设计和优化问题。网络优化的目标是提高或保持网络质量,而网络质量是各种因素相互作用的结果,随着网络优化工作的深入开展和优化技术的提高,优化的范围也在不断扩大。 在计算机网络优化设计中,各条链路的容量分配和各节点间的路由选择是两个重要问题。在给定网络拓扑结构和各节点间传输流量的条件下,如何确定各条链路的容量大小和选择各节点间的最佳路由,使整个网络成本费用最低并能满足规定的性能指标呢? 许多网络优化的文献,研究针对CDMA 网络、GPRS 网络、GSM 网络、PHS 网络等具体网络在投入运行后,对网络进行参数采集、数据分析,找出影响网络质量的原因,通过技术手段或参数调整使网络达到最佳运行状态,涉及到交换网络技术、无线参数、小区参数配置、信令和设备技术等方面。 本文针对目前许多网络传输链路和网络设备没有得到充分利用,从而影响网络性能的问题,利用网络优化方法从理论上进行分析,研究了用于提高网络链路利用率的基于路径的网络优化方法,该方法能够充分地利用网络链路进行流量传输,从而改善网络的整体性能。 2 网络优化理论 很多情况下可以将网络优化问题转化成数学问题进行研究和分析。从根本上讲,优化问题包含三个基本要素: 决策变量集合或向量:n R x ∈(本文,x 代表在一条或多条路径上的流量) 目标函数R R x f n →:)( 一组约束条件g(x)和h(x),用来定义x 的范围。 解决优化问题实际上就是找出一个点x*,使得f(x)最大化或最小化。 典型的网络优化问题包含找出一组路由和该路由上的流量值以便达到最大或最小化目标函数的目的。目标函数可以代表最大链路利用率、平均延迟或其他指标。 基于路径的问题首先要计算出网络流可能流经的路径,要最大限度的利用网络链路,同时路径上的流量不能超过链路容量。 对于基于路径的网络优化问题可以简单表示成: max f(x) s.t. ∑∈=P p p b x

08第八章___神经网络的参数优化设计方法

1 第8章 神经网络的参数优化设计 在神经网络的泛化方法中,研究最多的是前馈神经网络的结构优化设计方法(剪枝算法、构造算法及进化算法等,我们将在以后各章讨论)。除了结构设计,其余前馈神经网络的泛化方法还有主动学习、最优停止法、在数据中插入噪声、神经网络集成及提示学习方法等,由于这些方法中神经网络的结构是固定的,因此神经网络性能是通过参数优化改善的,我们称这些方法为神经网络的参数优化设计方法。本章介绍最主要的参数优化设计方法,并给出了每种方法的算法实现和仿真例子。 8.1 主动学习 8.1.1 原理 按照学习机器对训练样本的处理方式,可将学习方式分为两类:被动学习方式和主动学习方式。被动学习是常用的学习方式,常被称为“从样本中学习” (Learning from samples ),该方式被动地接受训练样本,并通过学习从这些样本中提取尽可能多的信息。与被动学习相反,主动学习属于更高层次的、具有潜意识的学习。主动学习对训练样本的选择是主动的,通常通过对输入区域加以限制,有目的地在冗余信息较少的输入区域进行采样,并选择最有利于提高学习机器性能的样本来训练分类器,从而提高了整个训练样本集的质量。由上一章的讨论,训练样本质量对神经网络的泛化能力有极大影响,甚至超过网络结构对泛化能力的影响。因此采用主动学习方法,是改进神经网络泛化能力的一个重要方法。 主动学习机制大部分用于分类或概念学习[Baum1991,HwCh1990,SeOp1992]。在单概念学习中,Mitchell[Mitch1982]关于版本空间(Version Space)的论述有着较大的影响。下面,我们先简要介绍一下这一理论。 如果X 为一线性空间,概念c 定义为X 中点的集合。对目标概念t ,训练样本可写为()()x x t ,,其中X ∈x 为样本输入,()x t 为对x 的分类。如果t ∈x ,则()1=x t ,称()()x x t ,为t 的正样本;如果t ?x ,则()0=x t ,此时称()()x x t ,为t 的负样本。显然,对线性空间内的任何两个可分概念1c 和2c ,如果()()x x 1,c 是1c 的正样本(负样本),则()()x x 11,c ?必然是2c 的负样本(正样本),即任意两个可分概念的正负样本之间可以互相转换。如果某概念c 对x 的分类与目标概念对其的分类()x t 相等,即()()x x t c =,

基于遗传算法的BP神经网络优化算法

案例3:基于遗传算法的BP神经网络优化算法 ******************************************************************************* **** 论坛申明: 1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB 智能算法30个案例分析》 2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。 3 作者长期驻扎在板块,对读者和会员问题有问必答。 4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。 MATLAB书籍预定方法和优惠服务:https://www.wendangku.net/doc/b819075468.html,/thread-9258-1-1.html 点击这里,预览该案例程序:https://www.wendangku.net/doc/b819075468.html,/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:https://www.wendangku.net/doc/b819075468.html,/thread-11921-1-1.html * ******************************************************************************* ** 1、案例背景 BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如: ①、学习收敛速度太慢; ②、不能保证收敛到全局最小点; ③、网络结构不易确定。 另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。 本节以某型号拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

遗传算法优化BP神经网络-非线性函数拟合

%读取数据 data=xlsread('data.xls'); %训练预测数据 data_train=data(1:113,:); data_test=data(118:123,:); input_train=data_train(:,1:9)'; output_train=data_train(:,10)'; input_test=data_test(:,1:9)'; output_test=data_test(:,10)'; %数据归一化 [inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_train,output_train); %对p和t进行字标准化预处理 net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm'); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN %网络训练 net=train(net,inputn,outputn); %数据归一化 inputn_test = tramnmx(input_test,mininput,maxinput); an=sim(net,inputn); test_simu=postmnmx(an,minoutput,maxoutput); error=test_simu-output_train; plot(error) k=error./output_train %%code function ret=Code(lenchrom,bound) %本函数将变量编码成染色体,用于随机初始化一个种群 % lenchrom input : 染色体长度 % bound input : 变量的取值范围

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

利用沙湖水动力模型对管网优化进行应用

利用沙湖水动力模型对管网优化进行应用探索摘要:此文叙述了利用武汉沙湖地区管网普查gis数据建立水 动力建模的方法,并利用模型对区域管网优化进行应用探索。首先,简述了沙湖水动力模型的建立过程,然后在假设管网最大运行能力下的前提下,找出管网系统的过载管段,并提出改造方案,对改造方案进行模拟、分析。 abstract: the article is exploration of creation hydrodynamic models on the basis of data from wuhanshahu pipeline gis census and perfection .firstly the whole process, then under the conditions of max capacity, locating the overload section and simulation and analysis of the alteration. 关键词:武汉沙湖,水动力模型,gis,管道分析 key words: wuhanshahu ,hydrodynamic modeles,gis,pipeline analysis 中图分类号:tv131.2 文献标识码:a文章编号:2095-2104(2011)12-0000--00 1.引言 近几十年来,发达国家在污水及雨洪控制方面的水动力分析研 究取得了长足的发展,产生了许多新的理论和技术,也改变着人们对排水领域的设计理念。我国管道水动力研究起步较晚,但近年来已经取得了一些成果。率先取得成功的是北京及上海地区的水动力

神经网络和遗传算法的结合

遗传算法与神经网络的结合 李敏强 徐博艺 寇纪淞 摘要 阐明了遗传算法和神经网络结合的必要性和可行性,提出用多层前馈神经网络作为遗传搜索的问题表示方式的思想。用遗传算法和神经网络结合的方法求解了短期地震预报问题,设计了用遗传算法训练神经网络权重的新方法,实验结果显示了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。 关键词 遗传算法 进化计算 神经网络 On the Combination of Genetic Algorithms and Neural Networks Li Minqiang Xu Boyi Kou Jisong (Institute of Systems Engineering, Tianjin University, Tianjin 300072) Abstract In this paper, we demonstrate the necessity and possibility of combining neural network (NN) with GAs. The notion of using multilayered feed forward NN as the representation method of genetic and the searching technique is introduced. We combine GA and NN for solving short term earthquake forecasting problem, design a novel method of using GAs to train connection weights of NN.The empirical test indicates the capability of the new method in fast learning of NN and escaping local optima. Keywords genetic algorithms; evolutionary computation; neural networks 1引言 智能可以分为三个层次:高层次的是生物智能(BI),其次是人工智能(AI), 处于低层次的是计算智能(CI)。 计算智能是国际上新近提出的学科概念,在计算智能中,计算的概念是传统计算概念的拓展,计算对象不仅局限于数和字符,运算符号也不再局限于加减乘除等运算,在这个范畴内的加减乘除也需赋于新的含义。但一般来说,AI偏重于逻辑推理,而CI则偏重于数值计算。 目前,计算智能正处于迅猛发展的阶段,其主要技术包括模糊技术、神经网络、进化计算等[5]。这几项技术各自均有了数十年的历史,但当时这些方法并未受到足够的重视,一是当时这些方法还不很成熟,二是受当时计算机软硬件的限制,而这些方法一般需要较大的计算量,难以取得实际应用。随着计算机技术的发展和普及,它们在最近十年得到了突飞猛进的发展,引起了诸多领域专家学者的关注,成为一个跨学科的研究热点。近年来,这些方法呈互相融合的趋势[3],它们之间的相互补充可增强彼此的能力,从而获得更有力的表示和解决实际问题的能力。如对模糊神经网络、模糊遗传算法、模糊分类器系统、用遗传算法优化模糊系统的隶属度函数及神经网络的进化设计方法等的研究都

神经网络与遗传算法【精品毕业设计】(完整版)

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

图与网络优化模型

第十章 图与网络优化模型 在图论中通常用V 表示点,E 表示边(无向),A 表示弧(有向),G 表示图,点和边构成的图称为无向图,G=(V ,E ),点和弧构成的图称为有向图,G=(V ,A)。 对图G 的边(或弧)标上权数,称为赋权图。 求1到7的最短路。 本图是个有向图,弧上的数字不妨理解为距离。目前用于求解最短路的算法有多种,如:动态规划法,Dijkstra 算法,0-1规划方法等。 下面只介绍0-1规划法 设1为起点,7为终点。引入1,0=ij x 表示:若弧(i,j)在最短路上,1=ij x ,否则,0=ij x Z 为目标函数上各弧的路程之和。 起点1必定有一条弧出发,所以 12 1=∑=n j j x 终点n 必定有一条弧到达,所以11 1 =∑-=n i in x 其它点有两种情况: (1) 该点不在最短路上,即无进线弧,也无出线弧。满足: 0,1=∑≠=n k i i ik x , 且0,1=∑≠=n k i i ki x (2) 该点在最短路上,即有进线弧,也有出线弧。满足: 1,1=∑≠=n k i i ik x ,且 1,1=∑≠=n k i i ki x 改写上述两个等式为: 0,1 ,1==∑∑=≠=ii n j kj n k i i ik x x x

???? ??? ????????===<<==== ∑∑∑∑∑=====1,0,...,2,1,01,11..min 11 1111 ,ij ii n i ji n i ij n i in n i i n j i ij ij x n i x n j x x x x t s x w Z model : sets : city/1..7/;!定义7个城市; links(city,city):dist,x;!定义各城市之间的距离表(若城市i 到城市j 无路,用一个大数表示),决策变量; endsets data : dist=0 2 10 1000 1000 1000 1000 1000 0 7 3 1000 1000 1000 1000 1000 0 1000 4 1000 1000 1000 1000 1000 0 1000 1000 8 1000 1000 5 1000 0 3 7 1000 1000 1000 1000 1000 0 12 1000 1000 1000 4 1000 3 0 ; enddata n=@size (city); min =@sum (links:dist*x); @sum (city(i):x(1,i))=1; @sum (city(i):x(i,n))=1; @for (city(i)|i#gt#1 #and# i#lt#n : @sum (city(j):x(i,j))=@sum (city(j):x(j,i))); @for (city(i):x(i,i)=0); @for (links:@bin (x)); end 10.2 旅行售货员TSP 模型

实验八:基于神经网络的优化计算实验

实验八:基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件 VC++6.0。 四、实验内容

1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。 五、实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 1914861351534712210111 →→→→→→→→→→→→→→→ (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。

用最优化方法解决BP神经网络训练问题

龙源期刊网 https://www.wendangku.net/doc/b819075468.html, 用最优化方法解决BP神经网络训练问题 作者:李翔苏成 来源:《电脑知识与技术·学术交流》2008年第12期 摘要:BP神经网络可以有效地对非线性系统进行逼近,但是传统的最速下降搜索方法存在收敛速度慢的问题。本文提出把BP神经网络转化为最优化问题,用一种共轭梯度算法代替最速下降法进行搜索迭代,极大地提高了收敛速度。 关键词:神经网络;最优化;一种共轭梯度算法 中图分类号:TP183文献标识码:A 文章编号:1009-3044(2008)12-20000-00 Training BP Neural Network using optimization methods LI Xiang ,SU Cheng (College of computer science,China University of Mining and Technology, Xuzhou 221000,China) Abstract:BP neural network can efficiently approximate any nonlinear system, but there is a problem of inefficient learning speed with the conventional steepest descent algorithm. In this paper, we try to convert neural network to an optimization model, and apply conjugate gradient algorithm to it to bring a faster learning speed. Keywords:Neural network ;Optimization ; Conjugate gradient algorithm 1 BP神经网络模型 BP(前馈式)神经网络结构简单,可操作性强,能模拟任意的非线性输入输出系统,是目前应用广泛的神经网络模型。BP网络由输入层i、隐含层j、输出层k及各层之间的节点连接权组成,神经元拓扑如图1: 网络的学习过程由信息正向传播和误差反向传播构成:

案例4:遗传算法优化神经网络-更好拟合函数

遗传算法优化神经网络-更好拟合函数1.案例背景 BP神经网络是一种反向传递并且能够修正误差的多层映射函数,它通过对未知系统的输入输出参数进行学习之后,便可以联想记忆表达该系统。但是由于BP网络是在梯度法基础上推导出来的,要求目标函数连续可导,在进化学习的过程中熟练速度慢,容易陷入局部最优,找不到全局最优值。并且由于BP网络的权值和阀值在选择上是随机值,每次的初始值都不一样,造成每次训练学习预测的结果都有所差别。遗传算法是一种全局搜索算法,把BP神经网络和遗传算法有机融合,充分发挥遗传算法的全局搜索能力和BP神经网络的局部搜索能力,利用遗传算法来弥补权值和阀值选择上的随机性缺陷,得到更好的预测结果。本案例用遗传算法来优化神经网络用于标准函数预测,通过仿真实验表明该算法的有效性。 2.模型建立 2.1预测函数 2.2 模型建立 遗传算法优化BP网络的基本原理就是用遗传算法来优化BP网络的初始权值和阀值,使优化后的BP网络能够更好的预测系统输出。遗传算法优化BP网络主要包括种群初始化,适应度函数,交叉算子,选择算子和变异算子等。 2.3 算法模型 3.编程实现 3.1代码分析 用matlabr2009编程实现神经网络遗传算法寻找系统极值,采用cell工具把遗传算法主函数分为以下几个部分: Contents

?清空环境变量 ?网络结构确定 ?遗传算法参数初始化 ?迭代求解最佳初始阀值和权值 ?遗传算法结果分析 ?把最优初始阀值权值赋予网络预测 ?BP网络训练 ?BP网络预测 主要的代码段分析如下: 3.2结果分析 采用遗传算法优化神经网络,并且用优化好的神经网络进行系统极值预测,根据测试函数是2输入1输出,所以构建的BP网络结构是2-5-1,一共去2000组函数的输入输出,用其中的1900组做训练,100组做预测。遗传算法的基本参数为个体采用浮点数编码法,个体长度为21,交叉概率为0.4,变异概率为0.2,种群规模是20,总进化次数是50次,最后得到的遗传算法优化过程中最优个体适应度值变化如下所示:

浅谈炼油企业循环水用水网络优化技术与应用

- 35 - 工 业 技 术 循环冷却水系统的运行质量直接影响着炼油企业的生产设备装置的质量和设备整体安全稳定运行。国家的石油化工行业不断发展进步的同时,也给国家供水系统带来一定的压力,炼油企业应该全面开展节水措施,并且对循环水系统进行全面优化,降低炼油过程中所需要的能耗以及减少循环水的用量,实现节能减耗,带动企业经济效益的根本目的。 1 炼油企业循环水用水现状 现阶段炼油企业使用的循环水系统大多数为敞开式结构系统,循环水系统所需要的补充水量较多,其中炼油企业在管理方面的缺失和不重视、循环水系统的泄露都是造成炼油企业的水能消耗过多的原因。但是,国家的水资源较为稀缺,对节能减耗、节水环保、产业可持续发展的要求逐渐提高,炼油产业作为国家石油化工的基础产业,必须加强对循环水系统的研究和管理,将降低循环水系统水量作为重点工作进行研究,全面降低炼油企业循环水系统所需要的补充水量。而优化循环水用水网络结构是解决用水量的核心问题,炼油企业的循环水系统是由冷却塔、泵以及其他装置工艺零件组成,其中循环水的用水网络结构直接影响着整个装置循环水以及补充水的用量,通过制定相应的节水措施以及全面完善涌水网络优化模型,从根本上减小循环水的用量,提出最佳循环水用水网络结构。 2 炼油企业循环水系统节水措施 通过炼油企业循环水系统的发展现状,首先要全面降低循环水系统的泄漏率,因为系统中管网泄露是造成循环水系统需要大量补给水量的根本原因之一。某炼油企业安排了相关技术人员对系统图中的管网定期进行检查、修补,做到发现问题及时修补,及时预防,对系统的泄漏率进行控制。此外,系统中的风冷塔造成的风吹损失也提高了循环水系统的用水量,某炼油企业对循环水所使用的风冷塔进行全面的改造,将塔身和其中的材料结构进行改变,继而提高风冷塔的淋水密度,并且加设收水器对出口中携带出来的水滴进行回收处理。通过完善风冷塔的系统消耗,全面降低风吹损失系统。炼油企业想要全面开展节水工作,除了要做到上述两个方面外,还要针对旁滤系统进行控制。 以某炼油企业为例,该企业更换了传统的旁滤系统,全面引进了新型的流沙过滤系统,进一步降低反水洗耗, 让旁滤系统能够更好地适应循环水系统,保证水质水量的前提下,提高循环水系统的工作效率。针对污水回用的处理也不能够忽视,将污水进行净化处理用再次利用,能够从根本上达到循环水系统节水的目的,经过试验后,将污水处理后,会用作为系统补充水,最大程度地降低了循环水系统的用水量,可以真正实际应用到循环水系统的节水工作中。但是这些节水措施,都是对循环水系统存在的问题进行控制,想要从根本上达到炼油企业节能减耗的目的,就要全面优化炼油企业循环水用水网络,在此基础上再通过强化管理,提升技术能力等多种手段进行综合治理,降低循环水系统的补充水量,实现炼油企业循环水系统的稳定节能的运行。 3 炼油企业循环水网络优化模型 3.1 循环水网络优化结构设置 炼油企业中水循环系统所需要的水冷器中的冷却水来自于冷却塔,也可以是其他水冷器升温后提供的冷却水,而水冷器升温后的冷却水可以直接排放到冷却塔中,也可以排放到其他的水冷器中,因此而形成了循环系统,根据循环水系统的水循环原理,在进行循环水网络优化之前,需要对循环水用水网络进行设计。只有在充分设计了循环水用水网络的基础上,对模型进行进一步的优化设计。炼油企业的技术人员在建立循环水用水网络的超结构时,要对用水网络中涉及的结构进行了解,通过相应的算法,对网络结构进行优化,将数学方法全面引入到模式优化的过程中,通过描述将结构中的设备作为函数,设置相应的目标函数和对整个结构的约束条件进行设计。约束条件中需要全面包括结构中的物质和能量,通过对物质和能量进行限制,继而建立相应的连接,为模型计算出最为准确的供水路线和供水量。超结构设计和普通的优化设计不同,通过直接添加约束条件和改变目标函数,利用数学方式最为直接获得超结构用水网络,继而在循环用水网络系统中直接建立起从水源到水井之间的链接。 3.2 循环水网络优化模式设计 根据循环水用水网络超结构建立的原理,将最大程度地减少循环水用量最为根本目标,进行模型优化。除此之外,设计过程中全面考虑水流量、系统热量以及水冷器温度、温差等影响循环水用水系统的因素,并且结合炼油企 浅谈炼油企业循环水用水网络优化技术与应用 鞠晨希 (中国石油庆阳石化公司,甘肃 庆阳 745000) 摘 要:随着石化行业不断地发展进步,加强对循环水系统的研究,提升节水能力是目前最重要的工作内容。本文对现阶段炼油企业循环水用水状况进行简单分析,根据存在的循环水用水问题提出节水措施,在此基础上进一步对循环水用水网络进行优化,进而实际应用到炼油企业中。全面降低炼油企业的用水量,节约水资源,降低炼油企业的成本支出,带动整个炼油企业进一步发展。关键词:循环水系统;污水回用;节水措施中图分类号:TQ085 文献标志码:A

相关文档
相关文档 最新文档