文档库 最新最全的文档下载
当前位置:文档库 › 紫薇属植物的化学成分和药理作用研究进展

紫薇属植物的化学成分和药理作用研究进展

紫薇属植物的化学成分和药理作用研究进展

王燕1,4,詹勤2,席忠新1,4,吴锦忠3,孙连娜1*

(1.第二军医大学药学院,上海200433;2.第二军医大学附属长征医院药学部,上海200003;3.福建中医学院中西医结合研究院,福建福州350108;4.福建中医学院药学系,福建福州3501081)

[摘要]紫薇属中的多种植物在民间具有多种药用价值,主要具有降血糖、止咳、收敛等作用。作者对该属植物所含的鞣质类、鞣花酸类、萜类、生物碱类、黄酮类、木脂素类、香豆素及蒽醌等化学成分及其药理作用方面的研究进展进行综述,为进一步开发利用该属资源提供参考。

[关键词] 紫薇属;化学成分;鞣质;鞣花酸;药理作用;降血糖Advances in research of chemical constituents and pharmacological activites

of genus Lagerstroemia

W ANG Y an,ZHAN Qin,XI Zhon-xin,WU Jin-zhon,SUN Lian-na (1.School of Pharmacy,Second Military Medical University,Shanghai 200433,China;2.Department of Pharmacy,the affiliated Changzheng Hospital,Second Military Medical University,Shanghai 200003,China;3.Academy of integrative medicine,Fujian college of TCM,Fujian Fuzhou 350108,China;4.Fujian college

of TCM,Fujian Fuzhou 350108,China)

[Abstract] The chemical constituents and pharmacological activities on the genus of Lagerstroemia were systemically reviewed.A number of species in Lagerstroemia have been used as folk medicine for the treatment of diabetic,tussive and astringe.The constituents mainly included tannins,ellagic acids,terpenoids,alkaloids,flavonoids,lignans,coumarins and anthraquinones.Further phytochemical and pharmacological studies on the species in Lagerstroemia are needed for better medicinal utilization.

[基金项目]国家自然基金20692063

[作者简介]王燕(1986-),女,福建福州人,在读硕士研究生,主要从事生药学研究工作。E-mail:cheiryw@https://www.wendangku.net/doc/b89663944.html, Tel:156********

[通讯作者] * 孙连娜,Tel:(021)81871308,E-mail:sssnmr@https://www.wendangku.net/doc/b89663944.html,

[Key words] Lagerstroemia;chemical constituents;tannins;ellagic acid;pharmacological activities;hypoglycemic

紫薇属Lagerstroemia为桃金娘目千屈菜科Lythraceae植物,起源于中国的南部和西部,目前全世界约55种,分布于热带和亚热带地区,我国现有23种,其中5种为我国特有植物,多分布于南部,西南部地区[1,2]。研究报道主要集中于紫薇L.indica,南紫薇L.subcostata,大花紫薇L.speciosa,屋久岛紫薇L.fauriei,桂林紫薇L.guilinensis,绒毛紫薇L.tomentosa,小叶紫薇L.parviflora。该属多种植物在民间用作传统药物,具有多种生物活性。如生长在菲律宾的L.speciosa,其叶子广泛用于治疗糖尿病和肾病[3]。L.parviflora在印度民间常作为止咳药和收敛药使用[4]。L.indica的花可治产后血崩不止、不通、不定、崩中带下,淋沥,洗疥癞廯疮[5]。该属植物在我国资源丰富,但仅作为观赏植物栽培,国内对其研究报道较少,作者综述了紫薇属植物化学成分和药理作用的研究情况,以便更好地对其进行药物方面的开发利用。

1 化学成分

紫薇属植物化学成分的报道始见于1942年[6],至今已对该属的10余种植物进行研究,发现该属植物化学成分类型多样,主要包括鞣质类、鞣花酸类、萜类、生物碱类、黄酮类、木脂素类、香豆素及蒽醌等。

1.1鞣质

鞣质是紫薇属中一类具有促进胰岛素靶组织细胞对葡萄糖摄取作用的化学成分类型。对其的研究主要集中在大花紫薇叶和果实部分,以可水解鞣质形式存在,包括逆没食子鞣质,C-苷逆没食子鞣质及其聚合体和没食子鞣质三种类型。迄今为止报道的紫薇属植物鞣质类化学成分见表1,化学结构见图1。

1.1.1 逆没食子鞣质1976年Takahashi M等[7]从大花紫薇叶中分离得到第一个逆没食子鞣质,3,4-di-O-methyl-4'-O-β-D-glucosylellagic acid (lagertannin) (1)。现从紫薇属植物中已分离得到5个此类化合物[8,9],flosin A (2),英国栎鞣花素(pedunculagin) (3),4,6-(S)-六羟基联苯二甲酰基-D-葡萄糖[4,6-(S)-hexahydroxydiphenoyl-D-glucose] (4),2,3-(S)-六羟基联苯二甲酰基-D-葡萄糖[2,3-(S)-hexahydroxydiphenoyl-D-glucose] (5),gemin D (6)。其中flosin A结构中具有橡腕酰基(valoneoyl,Val)。

1.1.2 C-苷逆没食子鞣质及其聚合体从大花紫薇中共分离得到C-苷逆没食子鞣质类化合物21个,包括C-苷逆没食子鞣质17个和二聚体4个,是目前从紫薇属植物中分离得到的数量最多的一类化合物。这些化合物大部分是由Xu Y M等[8,10]从大花紫薇叶和果实中分离得到。此类鞣质糖开环后端基C-C相连,castalagin

(7) 与vescalagin (8),casuarinin (12)与stachyurin (13) ,lagerstroemin (15) 与flosin

B (16) 在C-1互为差向异构体。二聚体reginins A (19),B (20),

C (21),

D (22) 结构中都具有Val基,其中reginins C (21) 是第一个发现在糖开环后的端基碳上由来苏糖取代的逆没食子鞣质二聚体,其结构可以看成是pterocarinin A(9)与pedunculagin (3) 通过C-O键相连而成。此外,Tanaka T[9]从大花紫薇分离得到5种具有葡萄糖酸核的逆没食子鞣质:2,3;4,6-bis-O-(S)-hexahydroxydiphenoyl-D-gluconic acid (lagerstannins A) (23),2,3,5-O-(S,R)-flavogallonyl-4,6-O-(S)-hexahydroxydiphenoyl-D-gluconic acid (lagerstannins B) (24),5-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-D-gluconic acid (lagerstannins C) (25),hippophaenin A (26),4,6-O-(S)-hexahydroxydiphenoylgluconic acid (27),这种鞣质在植物中较为罕见。

1.1.3 没食子鞣质Li Y[11]从大花紫薇中分离得到具有促葡萄糖转运的活性成分α-penta-O-galloyl-D-glucopyranose (α-PGG) (28)。

表1 紫薇属植物中鞣质类化合物

No. 化合物植物来源研究

部位

参考

文献

1 3,4-di-O-methyl-4'-O-β-D-glucosyle

llagic acid Lagerstroemia

speciosa

叶[7]

2 flosin A 叶[8]

3 pedunculagin 叶[8]

4 4,6-(S)-hexahydroxydiphenoyl-D-gl

ucose

叶[8]

5 2,3-(S)-hexahydroxydiphenoyl-D-gl

ucose

叶[8] 6 gemin D 果实[9]

7 castalagin 叶,果实[8,9]

8 vescalagin 叶,果实[8,9]

9 pterocarinin A 叶[10]

10 5-desgalloylpterocarinin A 叶[10]

11 casuariin 叶[8]

12 casuarinin 叶[8]

13 stachyurin 叶[8]

14 5-desgalloyl stachyurin 叶[8]

15 lagerstroemin叶,果实[8,9]

16 flosin B 叶[10]

17 punicacortein A 叶[8]

18 grandinin 果实[9]

19 Reginins A 叶[8]

20 Reginins B 叶[8]

21 Reginins C [10]

22 Reginins D [10]

23 2,3;4,6-bis-O-(S)-hexahydroxydiphe

果实[9] noyl-D-gluconic acid

果实[9] 24 2,3,5-O-(S,R)-flavogallonyl-4,6-O-(

S)-hexahydroxydiphenoyl-D-gluconi

c acid

叶[9] 25 5-O-galloyl-4,6-O-(S)-hexahydroxy

diphenoyl-D-gluconic acid

26 hippophaenin A 叶,果实[9]

叶[9] 27 4,6-O-(S)-hexahydroxydiphenoylglu

conic acid

28 α-penta-O-galloyl-D-glucopyranose 叶[11]

O C

HO

C

O

OCH 3

OCH 3

O

O

1

HO

HO 2H

OH

2

3

4

5

6R=G=

O

OH OH

7R 1=OH,R 2=H 8R 1=H,R 2=OH

O

O C HO C

O OH O

O

15R 1=OH,R 2=H 16R 1=H,R 2=OH

17

11R 1=OH,R 2=R 3=H 12R 1=OH,R 2=H,R 3=G 13R 1=H,R 2=OH,R 3=G 14

R 1=R 3=H,R 2=OH

9R 1=H,R 2=

10R 1=H,R 2=

,R 3=G

,R 3=H

R 2=

21R 1=H,

19R 1=OH,R 2=H 20R 1=H,R 2=OH

2228

23R=H

26R=G24

H

1

2

25R

1

=H,R

2

=G

27R

1

=H,R

2

=H

图1 鞣质类化合物结构图

1.2 鞣花酸类

鞣花酸(ellagic acid) (29)是最早从紫薇属植物中分离得到的化合物[6],它广泛分布于L.speciosa、L.subcostata、L.indica、L.fauriei的叶和茎部[12,13]。Hussain S F[14]从L.indica根分离得到3,3’,4-tri-O-methylellagic acid (30),Takahashi M[15]从L.subcostata和L.speciosa叶分得3-O-methylellagic acid (31),并合成lagertanin的苷元3,4-di-O-methyl ellagic acid (32)。Sato T[13]从种植的L.indica地上部分分得3,3', 4'-tri-O-methyl ellagic acid (33)。Hosoyama H等[16]通过活性筛选从L.speciosa叶分得具有抑制α-淀粉酶活性的化合物,valoneaic acid dilactone (34)。最近Bai N[17]又从L.speciosa叶分离得到1个二甲基取代的鞣花酸衍生物3,3’-di-O-methylellagic acid (35),1个鞣花酸脱羧产物3,4,8,9,10-pentahydroxydibenzo[b,d]pyran-6-one (36),1个鞣花酸硫酸盐3-O-methyl-ellagic acid 4’-sulfate (37)。结构见图2。

O

O

O O

OR 3

OR 4

R 2O

R 1O

11'235

3'5'

O

O

O

O

OH OH

O HO

OH

HO

HO COOH 34

29R 1=R 2=R 3=R 4=H

30R 1=R 2=R 3=CH 3,R 4=H 31R 1=CH 3,R 2=R 3=R 4=H 32R 1=R 2=CH 3,R 3=R 4=H 33R 1=R 3=R 4=CH 3,R 2=H 35R 1=R 3=CH 3,R 2=R 4=H

37

R 1=CH 3,R 2=R 3=H,R 4=OHSO 3

O

OH

O

OH

OH

HO

HO 36

8

10

10a

10b

6

6a

4a 3

4

图2 鞣花酸类化合物结构图

1.3 萜类

目前,从紫薇属植物中共分离得到萜类化合物25个,包括3个四环三萜,19五环三萜,2个倍半萜和1个二萜。所得的四环三萜均为环菠萝蜜烷型三萜。五环三萜按结构骨架分类分属于齐墩果烷型,乌苏烷型,羽扇豆烷型,木栓烷型,何帕烷型5种骨架,其中齐墩果烷型和乌苏烷型五环三萜为主要成分,见表2,结构见图3。

表2 紫薇属植物中萜类化合物

No.

化合物

植物来源 研究 部位 参考 文献 38 lagerenyl acetate

Lagerstroemia lancasteri

叶,枝

[18]

39 lagerenol [18] 40 jacoumaric acid [18] 41 corosolic acid [18] 42 friedelin [18] 43 lagerstronolide

[19] 44 lageflorin

L .parviflora 全株 [20] 45 3β,23-dihydroxy-1-oxo-olean-12-en-28-oic acid

L .speciosa

[21]

46 3β-hydroxy-1-oxo-olean-12-en-28-oic

[21]

acid

47 ursolic acid [21]

48 24-methylene cycloartanol acetate [22]

49 oleanolic acid [23]

50 asiatic acid [23]

51 maslinic acid [23]

52 23-hydroxyursolic acid [23]

53 lupeol L.guilinensis 茎[24]

54 betulin 茎[24]

55 glut-5-en-3β-ol 茎[24]

56 dihydro-β-cyclopyrethrosin L.calyculata 茎[25]

57 betulinic acid 茎[25]

58 alphitolic acid L.floribunda 枝[25]

59 3β,29-dihydroxy-olean-12-en-28-oic

acid

枝[25]

60 2β,3α-urs-12-en-28-oic acid 枝[25]

61 (6S,7E,9R)-blumenol A L.tomentosa 枝[25]

62 arjunolic acid 枝[25]

O

HO

40

R

2

=CH

3

2

=CH3

50R1=OH R2=CH2OH

52R1=H R

2

=CH

2

OH

R

O

42

O

OAc

O

43

2

OH

3

R

=CH3R3=CH3

R2=CH3R3=CH3

12

=CH3R3=CH2OH

62R1=OH R2=CH2OH R3=CH3

R

2

=CH3

2

=CH2OH

57R1=H R2=COOH

58R1=OH R2=COOH

56

61

图3 萜类化合物结构图

1.4 生物碱

目前从紫薇属中分得的生物碱都属于苯基喹诺里西啶骨架。lagerstroemine (63)、lagerine (64)、decinine (65)是最早从该属植物中得到的生物碱,它们是由Ferris J P等[26]从L.indica中分得的。其中lagerine (64)是从该属植物中分离得到的第一个这种骨架的化合物。与其他千屈菜科生物碱不同的是,它的骨架中具有联苯酯键。之后,Hanaoka M[27,28]合成了methyllagerine (66)和lagerine (64)。Fuji K[29]从L.subcostata和L.fauriei中分离得到7种苯基喹诺里西啶衍生物,分别为

2-hydroxy-trans-4-3’,4’-dimethoxyphenyl-cis-quinolizidine (lasubineⅠ) (67),

2-hydroxy-trans-4-3’,4’-dimethoxyphenyl-trans-quinolizidine (lasubineⅡ) (68),subcosineⅠ(69),subcosineⅡ(70),lythrine (71),cryogenine (72),lythridine (73)。其中lasubineⅠ(67)和lasubineⅡ(68),subcosineⅠ(69)和subcosineⅡ(70),lythrine(71)和cryogenine (72)在C-5互为非对映异构体,subcosine是lasubine和

3,4-dimethoxycinnamic acid通过酯键相连。之后,美国学者[30]合成了lasubineⅡ。sarusubine A (74)是日本学者Watanabe K[31]从L.subcostata叶中分离得到第1个也

是该科植物中分离得到的唯一一个这种骨架的化合物。它是带有环丁烷环的生物碱二聚体,不是内消旋体化合物,具有光学活性。最近从L.indica中又分得2个二苯基喹诺里西啶类生物碱[32],5-epi-dihydrolyfoline (75)和它的C-5非对映异构体dihydrolyfoline (76)。结构见图4。

63

O O

O

64R=H 66R=CH 3

65

3

67R=68R=

H

3

O

O

OCH 3

OCH 3

69R=70R=

H H

7172R=

H

73

75R=76R=

H

H 3H 33

33

3

74

图4 生物碱类化合物结构图

H 3CO

OH

CH 3

O

77

O O

O

O

O

3

78

H 333

79

2OH H 33

2OH

80

图5 其他类化合物结构图

1.5 黄酮类

詹勤[33]从L. speciosa 叶中分得槲皮素(quercetin),山柰酚(kaempferol),金丝桃苷(hyperin)。另有学者[34]从L. Indica 花中分得3个花色苷,

delphinidin-3-arabinoside ,petunidin-3-arabinoside ,malvidin-3-arabinoside 。 1.6 芳香酸其酯类 从L. Indica 花中分得没食子酸(gallic acid) [34]。从L. speciosa 叶中分得没食子酸乙酯(ethyl gallate),咖啡酸(caffeic acid),咖啡酸乙酯(caffeic acid ethylester) [33]。

1.7 脂肪酸 从L. speciosa 种子中分离得到9-keotoctadec-cis-11-enoic acid ,亚油酸

(linoleic acid),油酸(oleic acid),软脂酸(palmitic acid),硬脂酸(stearic acid)[13,36,37]。

1.8 其他类Muangsin N[35]从L. speciosa新的内生真菌中分离得到1个新的蒽醌

1,4-dihydroxy-2-methoxy-7-methylanthracene-9,10-dione(77)。从L. calyculata茎中分离得到1个香豆素clauslactone-K(78),L. floribunda枝中分离得到2个木脂素lingueresinol(79),ent-isolariciresinol(80)[25]。结构见图5。

除上述成分外,紫薇属中还含有β-谷甾醇(β-sitosterol),豆甾醇(stigmasterol),油菜甾醇(campesterol),胆甾醇(cholesterol)[7,15],以及人体必需的微量元素[38]。

2 药理作用

2.1 糖尿病相关活性

生长在菲律宾的大花紫薇又称banaba,作为一种传统民间药物用以治疗糖尿病和肾病[3]。其降血糖活性成分有逆没食子鞣质类化合物,PGG,valoneaic acid dilactone、corosolic acid(CA)。1940年Garcia发表了第一篇报道大花紫薇具有胰岛素样降血糖作用的文章[39]。之后,大量研究证明在自发性2型糖尿病动物模型和体外模型中,大花紫薇提取物能够显著降低血糖水平[40,41],肝脏及脂肪组织中甘油三酯含量[42],抑制前脂肪细胞分化[3]。

2.1.1 增加胰岛素的敏感性

Murakami C[43]采用艾氏腹水癌细胞活性筛选,首次提出CA是大花紫薇降血糖作用的活性成分。CA降糖机制可能是通过激活小鼠肌肉细胞中的蛋白酪氨酸激酶,促进葡萄糖转运蛋白4(GLUT4)从细胞内存储囊泡迁移至质膜促进葡萄糖的摄取和代谢[44]。也有报道CA可能是通过抑制蛋白酪氨酸磷酸酶来提高IR的β

亚单位磷酸化,增加GLUT4的移位,从而促进L6骨骼肌细胞和CHO/hIR细胞对葡萄糖的摄取[45]。Hayashi T[46]采用大鼠脂肪细胞模型,发现lagerstroemin(15),flosin B(16),reginins A(19)具有促进大鼠脂肪细胞对2-脱氧葡萄糖摄取的活性,其中lagerstroemin活性最高。之后,研究发现鞣质可能是通过增加GLUT4表达和移位,促进葡萄糖摄取[47]。其中lagerstroemin促葡萄糖摄取活性可能是通过激活脂肪细胞的IR活性,诱导IR的β亚单位的酪氨酸残基磷酸化途径实现[48]。Li Y[11]采用3T3-L1脂肪细胞模型首次对大花紫薇中降血糖活性成分进行比较,发现PGG(28)促进脂肪细胞对葡萄糖摄取的活性比lagerstroemin高,而CA无活性。Ren Y[49]在对没食子鞣质的构效关系研究中发现其促葡萄糖摄取活性与没食子酰基

的立体构型有密切关系。最近Bai N[17]报道除PGG外,lagerstroemin和casuarinin(12)也同时具有促葡萄糖摄取和抗脂肪形成的作用。此外,并首次发现甲基鞣花酸类化合物具有抑制葡萄糖转运的活性。还有学者[50]提出大花紫薇可能是通过调节PPAR介导的脂类代谢,增加肝脏过氧化物酶体增生物激活受体α(PPAR-α)mRNA 和脂肪组织PPAR-γ mRNA的表达来增加胰岛素的敏感性。

2.1.2 抑制α-淀粉酶和α-糖苷酶活性

valoneaic acid dilactone (34)是最早从大花紫薇叶中发现具有抑制α-淀粉酶活性的化合物[16]。最近有学者[23]发现CA具有中等强度的α-糖苷酶抑制活性(IC50 = 3.53 μg·mL-1)。

2.1.3 减少糖原异生,促进糖酵解

Y amada K[51]发现CA能够降低大鼠肝脏细胞内cAMP水平,同时抑制cAMP 依赖的蛋白激酶的活性,升高葡萄糖激酶的活性,从而减少肝糖原异生,促进糖酵解。

目前已有大量的文献报道关于大花紫薇降血糖作用的可能机制,但学者们对于CA如何起到降血糖作用的看法不同。CA在肌肉细胞[44,45]和艾氏腹水癌细胞[43]中具有促葡萄糖摄取作用,而在SHR/NDmcr-cp大鼠[52]和3T3-L1脂肪细胞[11,17]中无此活性。笔者认为,CA可能是通过多靶点作用机理达到降血糖目的,作用靶点可能不包括脂肪组织细胞。加之由于不同实验中采用的动物模型针对性不同和不同产地的大花紫薇都有可能造成实验结果的差异。

2.2 抗炎、抗氧化作用

大花紫薇热水提取物具有清除DPPH(1,1-diphenyl-2-dipicrylhydrazyl)自由基能力,显示有很强的抗氧化活性[53]。大花紫薇提取物在低浓度下具有抑制K562细胞、B淋巴细胞、T淋巴瘤细胞株Jurkat细胞增殖的活性[54]。机制可能是通过抑制核因子-κB (NF-κB)与DNA上的κB序列结合,抑制NF-κB的异常活化。目前已有大量文献报道关于酚类化合物的抗氧化活性[55,56,57],因此,笔者推测其抗氧化和抑制细胞增殖活性的成分是酚类化合物。之后,Yamaguchi Y[48]发现在遗传型代谢综合症SHR/NDmcr-cp大鼠中,CA同时具有抗氧化,抗炎和降压活性,并推测其降压机制可能与其抗氧化与抗炎活性有关。在角叉菜胶诱发的急性炎,福尔马林诱发的慢性炎小鼠足肿胀模型中,大花紫薇乙酸乙酯提取物通过清除超氧负

离子,抑制中性粒细胞聚集,显示出较强的抗炎活性[58]。

2.3 抗菌作用

L.speciosa种子提取物[59]和树皮氯仿提取物[60]都具有较强的抗菌活性。壬二酸、12-乙酰氧基-9-十八碳烯酸、16-甲基-十七烷酸是大花紫薇种子的石油醚部位中的抗菌活性成分。L. parviflora花的甲醇提取物对革兰阴性菌有明显的浓度依赖性抑制活性[61],lageflorin(44)是其抗菌活性成分。此外,从L.subcostata分得的Sarusubine A (74)对新生隐球菌和须癣毛癣菌也有一定的抑制作用,最低抑制浓度为33.3μg·mL-1[31]。

2.4 止咳作用

L.parviflora在印度民间常作为止咳药和收敛药使用,印度学者研究发现在二氧化硫诱发的小鼠咳嗽模型中,L.parviflora叶和花的甲醇提取物显示出很强的剂量依赖性止咳作用[4,62]。

2.5 其他作用

研究者[63]发现ellagic acid和valoneaic acid dilactone具有抑制黄嘌呤氧化酶(XOD)的作用,其中valoneaic acid dilactone抑制XOD的活性强于别嘌呤醇。此外,

L.indica还具有抗纤维蛋白酶活性[64]。

3 讨论

从目前现有的研究报道来看,紫薇属的植物化学成分类型多样。近年来,药理作用方面主要集中于大花紫薇,对其他植物的报道很不充分。紫薇属植物在我国资源较丰富并且存在特有种,但还没有作为药材开发利用,对其研究与开发尚不深入,很多疑问仍待研究阐明。如菲律宾产地的大花紫薇与其他产地的异同;大花紫薇与其他同属植物在化学成分和药理作用方面的异同;从大花紫薇中分离得到的降血糖有效成分在其他同属植物中的分布情况;大花紫薇作为东南亚国家的传统民间用药,对其降血糖及同时不引起常见副作用的机理仍需进一步阐明。因此,今后在重视保护我国有限资源的同时,还应利用资源的优势对紫薇属植物的化学成分及药理作用进行更深入的研究。

[参考文献]

[1]中国科学院中国植物志编辑委员会.中国植物志.第52卷.[M].北京:科技出版社,1983:

97.

[2]顾翠花.中国紫薇属种质资源及紫薇、南紫薇核心种质构建[D].北京:北京林业大学,2008.

[3]Liu F,Kim JK,Li Y,et al.An extract of Lagerstroemia speciosa L. has insulin-like glucose

uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells[J].J Nutr,2001,131(9):2242.

[4]Mazumder A,Saha BP,Basu SP,et al.Evaluation of antitussive activity of Lagerstroemia

parviflora leaf extract[J].Phytother Res,2004,18(9):780.

[5]兰茂,于乃义,丁兰馥,等.滇南本草.[M].昆明:云南科技出版社,2000:78.

[6]Ishii M.The tannin of the leaves of Lagorstroemia subcostata[J].Bull Agric Chem Soc Jap,

1942,18:43.

[7]Takahashi M,Osawa K,Ueda J,et al.The components of the plants of Lagerstroemia genus.

III.The structure of the new tannin "lagertannin" from the leaves of Lagerstroemia speciosa (L.) Pers[J].Yakugaku Zasshi,1976,96(8):984.

[8]Xu YM,Sakai T,Tanaka T,et al.Tannins and related compounds.CVI.Preparation of

aminoalditol derivatives of hydrolyzable tannins having α-and β-glucopyranose cores,and its application to the structure elucidation of new tannins, reginins A and B and flosin A, isolated from Lagerstroemia flos-reginae Retz[J].Chem Pharm Bull,1991,39(3):639.

[9]Tanaka T,Tong HH,Xu YM,et al.Tannins and related compounds. CXVII. Isolation and

characterization of three new ellagitannins, lagerstannins A, B, and C, having a gluconic acid core, from Lagerstroemia speciosa (L.) Pers[J].Chem Pharm Bull,1992,40(11):2975.[10]Xu YM,Tanaka T,Nonaka G,et al.Tannins and related compounds. CVII. Structure

elucidation in three new monomeric and dimeric ellagitannins, flosin B and reginins C and D, isolated from Lagerstroemia flos-reginae Retz[J].Chem Pharm Bull,1991,39(3):647.[11]Li Y,Kim J,Li J,et al.Natural anti-diabetic compound

1,2,3,4,6-penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates

insulin-mediated glucose transport signaling pathway[J].Biochem Biophys Res Commun,2005,336(2):430.

[12]Osawa K,Ueda J,Takahashi M,et al.Components of the plants of Lagerstroemia genus. II.

Components of the leaves of Lagerstroemia speciosa, L. subcostata, L. indica, and L.

fauriei[J].Yakugaku Zasshi,1974,94(2):271.

[13]Sato T.Studies on the component of the cultivated Lagerstroemia indica L. with white

flower[J].Annu Rep Tohoku Coll Pharm,1992,39:327.

[14]Hussain SF,Miana GA,Saifur R.3,3',4-Tri-O-methylellagic acid from Lagerstroemia

indica[J].Phytochemistry,1972,11(9):2890.

[15]Takahashi M,Ueda J,Sasaki J.The components of the plants of Lagerstroemia genus. IV. On

the presence of the ellagic acid derivatives from the leaves of Lagerstroemia subcostata

Koehne, and L. speciosa (L.) Pers. and the synthesis of 3,4-di-O-methylellagic

acid[J].Yakugaku Zasshi,1977,97(8):880.

[16]Hosoyama H,Sugimoto A,Suzuki Y,et al.Isolation and quantitative analysis of the

α-Amylase inhibitor in lagerstroemia.speciosa(L) pers.(Banaba)[J].Yakugaku Zasshi,2003,123(7):599.

[17]Bai N,He K,Roller M,et al.Active compounds from Lagerstroemia speciosa, insulin-like

glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells[J].J Agric Food Chem,2008,56(24):11668.

[18]Talapatra B,Chaudhuri PK,Mallik AK,et al.Lagerenyl acetate and lagerenol, two tetracyclic

triterpenoids with the cycloartane skeleton from Lagerstroemia

lancasteri[J].Phytochemistry,1983,22(11):2559.

[19]Chaudhuri PK.A labdane diterpenoid and sterol from Lagerstroemia

lancasteri[J].Phytochemistry,1987,26(12):3361.

[20]Barik BR,Kundu AB.Lageflorin, a pentacyclic triterpene from Lagerstroemia

parviflora[J].Phytochemistry,1988,27(11):3679.

[21]Okada Y,Omae A,Okuyama T.A new triterpenoid isolated from Lagerstroemia speciosa (L.)

Pers[J].Chem Pharm Bull,2003,51(4):452.

[22]Ragasa CY,Ngo HT,Rideout JA.Terpenoids and sterols from Lagerstroemia speciosa[J].J

Asian Nat Prod Res,2005,7(1):7.

[23]Hou W,Li Y,Zhang Q,et al.Triterpene acids isolated from Lagerstroemia speciosa leaves

as α-glucosidase inhibitors[J].Phytother Res,2008,23(5):614.

[24]漆淑华,吴大刚,马云保,等.桂林紫薇的化学成分研究[J].中草药,2002,33(10):978.

[25]Dou H,Zhang RP,Lou X,et al.Constituents of three species of Lagerstroemia[J].Biochem

Syst Ecol,2005,33(6):639.

[26]Ferris JP,Briner RC,Boyce CB.Lythraceae alkaloids. IX. Isolation and structure elucidation

of the alkaloids of Lagerstroemia indica[J].J Am Chem Soc,1971,93(12):2958.

[27]Hanaoka M,Sassa H,Ogawa N,et al.Structure and synthesis of

methyllagerine[J].Tetrahedron Lett,1974,29:2533.

[28]Hanaoka M,Kamei M,Arata Y.Total synthesis of (+-)-lagerine[J].Chem Pharm Bull,1975,

23(9):2191.

[29]Fuji K,Y amada T,Fujita E,et al.Lythraceous alkaloids. X. Alkaloids of Lagerstroemia

subcostata and L. fauriei: a contribution to the chemotaxonomy[J].Chem Pharm Bull,1978,26(8):2515.

[30]Davis FA,Chao B.Alkaloid synthesis using chiral δ-amino β-ketoesters: a stereoselective

synthesis of (?)-lasubine II[J].Org Lett,2000,2(17):2623.

[31]Watanabe K,Kubota T,Shinzato T,et al.Sarusubine A, a new dimeric Lythraceae alkaloid

from Lagerstroemia subcostata[J].Tetrahedron Lett,2007,48(42):7502.

[32]Kim H J,Lee IS,Youn UJ,et al.Biphenylquinolizidine Alkaloids from Lagerstroemia

indica[J].J Nat Prod,2009,72(4):749.

[33]詹勤.大花紫薇叶降血糖活性成分研究[D].上海:第二军医大学,2008.

[34]Saleh NAM.Anthocyanins of Lagerstroemia indica flowers[J].Phytochemistry,1973,12(9):

2304.

[35]Muangsin N,Wisetsakdakorn W,Chaichit N,et al.Austrocortinin: Crystal structure of a

natural anthraquinone pigment from fungi[J].Dyes Pigm,2008,77(3):653.

[36]Jehan CM,Daulatabad D,Mirajkar AM.A keto fatty acid from Lagerstroemia speciosa seed

oil[J].Phytochemistry,1990,29(7):2323.

[37]纵伟,夏文水.大叶紫薇种籽油的理化特性及脂肪酸组成的GC/MS分析[J].中国油

脂,2004,29(10):65.

[38]陈绍红,赵云涛,李倩茹.大花紫薇无机元素分析[J].微量元素与健康研究,2005,22(3):29.

[39]Garcia F.On the hypoglycemic effect of decoction of Lagerstroemia speciosa leaves (banaba)

administered orally[J].J Phil Med Assoc,1940,20:395.

[40]Kakuda T,Sakane I,Takihara T,et al.Hypoglycemic effect of extracts from Lagerstroemia

speciosa L. leaves in genetically diabetic KK-A y mice[J].Biosci Biotechnol Biochem,1996,60(2):204.

[41]Hamamoto S,Kogami H,Kohata K,et al.Glucosol effect on blood glucose in rats[J].Y akuri

to Chiryo,1999,27(6):1075.

[42]Suzuki Y,Unno T,Ushitani M,et al.Antiobesity activity of extracts from Lagerstroemia

speciosa L.leaves on female KK-A y mice[J].J Nutr Sci V itaminol,1999,45(6):791.[43]Murakami C,Myoga K,Kasai R,et al.Screening of plant constituents for effect on glucose

transport activity in Ehrlich Ascites tumor cells[J].Chem Pharm Bull,1993,41(12):2129.[44]Miura T,Itoh Y,Kaneko T,et al.Corosolic acid induces GLUT4 translocation in genetically

type 2 diabetic mice[J].Biol Pharm Bull,2004,27(7):1103.

[45]Shi L,Zhang W,Zhou YY,et al.Corosolic acid stimulates glucose uptake via enhancing

insulin receptor phosphorylation[J].Eur J Pharmacol,2008,584(1):21.

[46]Hayashi T,Maruyama H,Kasai R,et al.Ellagitannins from Lagerstroemia speciosa as

activators of glucose transport in fat cells[J].Planta Med,2002,68(2):173.

[47]Liu X,Kim J,Li Y,et al.Tannic acid stimulates glucose transport and inhibits adipocyte

differentiation in 3T3-L1 cells[J].J Nutr,2005,135(2):165.

[48]Hattori K,Sukenobu N,Sasaki T,et al.Activation of insulin receptors by lagerstroemin[J].J

Pharmacol Sci,2003,93(1):69.

[49]Ren Y,Himmeldirk K,Chen X.Synthesis and structure-acitivity relationship study of

antidiabetic penta-O-galloyl-D-glucopyranose and its analoges[J].J Med Chem,2006,49(9):2829.

[50]Park MY,Lee KS,Sung MK.Effects of dietary mulberry, Korean red ginseng, and banaba on

glucose homeostasis in relation to PPAR-α, PPAR-γ,and LPL mRNA expressions[J].Life Sci,2005,77(26):3344.

[51]Y amada K,Hosokawa M,Fujimoto S,et al.Effect of corosolic acid on gluconeogenesis in

rat liver[J].Diabetes Res Clin Pract,2008,80(1):48.

[52]Y amaguchi Y,Yamada K,Y oshikawa N,et al.Corosolic acid prevents oxidative stress,

inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic

syndrome[J].Life Sci,2006,79(26):2474.

[53]Unno T,Sakane I,Masumizu T,et al.Antioxidative activity of water extracts of

Lagerstroemia speciosa leaves[J].Biosci Biotechnol Biochem,1997,61(10):1772.[54]Lampronti I,Khan MTH,Bianchi N,et al.Bangladeshi medicinal plant extracts inhibiting

molecular interactions between nuclear factors and target DNA sequences mimicking NF-κB binding sites[J].Med Chem,2005,1(4):327.

[55]Mullen W,McGinn J,Lean MEJ,et al.Ellagitannins,flavonoids,and other phenolics in

red raspberries and their contribution to antioxidant capacity and vasorelaxation

properties[J].J Agric Food Chem,2002,50(18):5191.

[56]Soong YY,Barlow PJ.Quantification of gallic acid and ellagic acid from longan (Dimocarpus

longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity[J].Food Chem,2006,97(3):524.

[57]Srivastava A,Rao LJM,Shivanandappa T.Isolation of ellagic acid from the aqueous extract

of the roots of Decalepis hamiltonii:Antioxidant activity and cytoprotective effect[J].Food Chem,2007,103(1):224.

[58]Priya TT,Sabu MC,Jolly CI,et al.Free radical scavenging and anti-inflammatory properties

of Lagerstroemia speciosa (L)[J].Inflammopharmacology,2008,16(4):182.

[59]Sinhabadu A,Das S,Laskar S,et al.Characterization and identification of antibacterial

components in extracts of seeds from Lagerstroemia speciosa[J].Adv Food Sci,1999,21(1/2):19.

[60]Aziz MA,Rahman MA,Quader MA,et al.Phytochemical and antimicrobial studies on the

chloroform extract of the bark of Lagerstroemia speciosa (L.) Pers[J].Dhaka Univ J Sci,2003,52(1):29.

[61]Mazumder A,Saha BP,Basu SP,et al.In vitro Antimicrobial Efficacy of Lagerstroemia

parviflora Roxb.Flowers[J].Pak J Biol Sci,2005,8(8):1157.

[62]Mazumder A,Bhattacharya S,Mazumder R,et al.In vivo antitussive potentiality of

Lagerstroemia parviflora flower extract using a cough model induced by sulfur dioxide in mice[J].Nat Prod Res,2007,21(3):217.

[63]Unno T,Sugimoto A,Kakuda T,et al.Xanthine oxidase inhibitors from the leaves of

Lagerstroemia speciosa (L.) Pers[J].J Ethnopharmacol,2004,93(2-3):391.

[64]Chistokhodova N,Nguyen C,Calvino T,et al.Antithrombin activity of medicinal plants from

central Florida[J].J Ethnopharmacol,2002,81(2):277.

相关文档