文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计第四版课后习题答案_第四版盛骤 浙江大学出版

概率论与数理统计第四版课后习题答案_第四版盛骤 浙江大学出版

概率论与数理统计第四版课后习题答案_第四版盛骤 浙江大学出版
概率论与数理统计第四版课后习题答案_第四版盛骤 浙江大学出版

完全版(一到八章)

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)

浙大第四版(高等教育出版社) 第一章 概率论的基本概念

1.[一] 写出下列随机试验的样本空间

(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)

?

??

????=n n n n o S 1001, ,n 表小班人数

(3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2)

S={10,11,12,………,n ,………}

(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3))

S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为:

C B A 或A - (AB+AC )或A - (B ∪C )

(2)A ,B 都发生,而C 不发生。 表示为:

C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生

表示为:A+B+C

(4)A ,B ,C 都发生,

表示为:ABC

(5)A ,B ,C 都不发生,

表示为:C B A 或S - (A+B+C)或C B A ??

(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,

,中至少有一个发生。故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++

(8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC

6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0.

7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?

解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).

从而由加法定理得

P (AB )=P (A )+P (B )-P (A ∪B )

(*)

(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,

(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

7.[四] 设A ,B ,C 是三事件,且0)()(,4

1

)()()(=====BC P AB P C P B P A P ,

81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=

8

5

08143=+- 8.[五] 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?

记A 表“能排成上述单词”

∵ 从26个任选两个来排列,排法有

2

26

A 种。每种排法等可能。 字典中的二个不同字母组成的单词:55个 ∴

13011

55)(2

26

==

A A P 9. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数中的每一个数都是等可能性地取自0,1,2……9)

记A 表“后四个数全不同”

∵ 后四个数的排法有104种,每种排法等可能。 后四个数全不同的排法有410

A ∴

504.010

)(4410

==A A P

10.[六] 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。 (1)求最小的号码为5的概率。

记“三人纪念章的最小号码为5”为事件A ∵ 10人中任选3人为一组:选法有??

?

??310种,且每种选法等可能。

又事件A 相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有??

?

???251 ∴

121310251)(=??

?

???

?? ???=

A P

(2)求最大的号码为5的概率。

记“三人中最大的号码为5”为事件B ,同上10人中任选3人,选法有???

??310种,且每种选法等可

能,又事件B 相当于:有一人号码为5,其余2人号码小于5,选法有??

? ???241种

201310241)(=??

?

???

?? ???=

B P

11.[七] 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?

记所求事件为A 。

在17桶中任取9桶的取法有9

17C 种,且每种取法等可能。 取得4白3黑2红的取法有2

3

34

4

10C C C ?? 故

2431252

)(6

17

2

334410=??=C C C C A P 12.[八] 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 记“恰有90个次品”为事件A

∵ 在1500个产品中任取200个,取法有??

? ??2001500种,每种取法等可能。

200个产品恰有90个次品,取法有??

? ?????

??110110090400种

??

? ???

?? ????? ??=2001500110110090400)(A P (2)至少有2个次品的概率。 记:A 表“至少有2个次品”

B 0表“不含有次品”,B 1表“只含有一个次品”,同上,200个产品不含次品,取法有??

? ??2001100种,

200个产品含一个次品,取法有??

? ?????

??199********种

10B B A +=且B 0,B 1互不相容。

???

??

?

????????? ????? ????? ??+??? ????? ??-=+-=-=200150019911001400200150020011001)]()([1)(1)(10B P B P A P A P

13.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对” ∵ 从10只中任取4只,取法有??

?

??410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有4245???

?

?? 21

132181)(1)(2182)(410

44

5=-

=-==

?=

∴A P A P C C A P

15.[十一] 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?

记A i 表“杯中球的最大个数为i 个” i=1,2,3, 三只球放入四只杯中,放法有43种,每种放法等可能

对A 1:必须三球放入三杯中,每杯只放一球。放法43332种。 (选排列:好比3个球在4个位置做排列)

166

4

234)(31=??=

A P 对A 2:必须三球放入两杯,一杯装一球,一杯装两球。放法有342

3

??C 种。

(从3个球中选2个球,选法有2

3C ,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球放入其余的一个杯中,选法有3种。

16

9

43

4)(3

2

32=

??=

C A P

对A 3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法

有4种)

161

4

4)(33==

A P 16.[十二] 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?

记A 表“10个部件中有一个部件强度太弱”。 法一:用古典概率作:

把随机试验E 看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。但10组钉铆完10个部件要分先后次序)

对E :铆法有3

23

3443473

50

C C C C ??? 种,每种装法等可能 对A :三个次钉必须铆在一个部件上。这种铆法有〔3

23

3443473

3

C C C C ??〕×10种 00051.01960

1

10

][)(3

23

3473503

2334434733==

???????=C C C C C C C A P 法二:用古典概率作

把试验E 看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。(铆钉要计先后次序)

对E :铆法有

3

50

A 种,每种铆法等可能 对A :三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,30”位置上。这种铆法有

27

47

3327473327473327473310A A A A A A A A ??=+++?+? 种 00051.01960

1

10)(30

50

27

47

33==

??=A A A A P 17.[十三] 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。

解一:

B

A A

B B B A AS A B P B P A P A P ?=?===-==-=)(,6.0)(1)(,7.0)(1)(

注意φ=)

)((B A AB . 故有

P (AB )=P (A )-P (A B )=0.7-0.5=0.2。 再由加法定理,

P (A ∪B )= P (A )+ P (B )-P (A B )=0.7+0.6-0.5=0.8

于是25.08.02

.0)

()()()]([)|(==?=??=

?B A P AB P B A P B A B P B A B P

25.05

.06.07.051

)()()()()()()|(5

1

)|()()(72)|(757.05.0)|()|(0705)|()()(:=-+=-+=???===?==

∴?=??→?=B A P B P A P BA P B A P B B BA P B A B P A B P A P AB P A B P A B P A B P A B P A P B A P 定义 故 解二由已知

18.[十四]

)(,2

1

)|(,31)|(,41)(B A P B A P A B P A P ?===

求。 解:由6

1)()(31

4121)()|()()()()

|(=??

=????→?=B P B P B P A B P A P B P AB P B A P 有定义由已知条件

由乘法公式,得12

1

)|

()()(=

=A B P A P AB P 由加法公式,得3

11216141)()()()(=-+=

-+=?AB P B P A P B A P 19.[十五] 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。 解:(方法一)(在缩小的样本空间SB 中求P(A|B),即将事件B 作为样本空间,求事件A 发生的概率)。

掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1,2,3,4,5,6)并且满足x ,+y =7,则样本空间为 S={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}

每种结果(x , y )等可能。

A={掷二骰子,点数和为7时,其中有一颗为1点。故3

162)(==

A P } 方法二:(用公式)

()

()|(B P AB P B A P =

S={(x , y )| x =1,2,3,4,5,6; y = 1,2,3,4,5,6}}每种结果均可能

A=“掷两颗骰子,x , y 中有一个为“1”点”,B=“掷两颗骰子,x ,+y =7”。则

226

2

)(,6166)(===

AB P B P , 故3

1

626

162

)()()|(2====B P AB P B A P

20.[十六] 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=0.6,P (B |A )=P {母亲得病|孩子得病}=0.5,P (C |AB )=P {父亲得病|母亲及孩子得病}=0.4。求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB ) P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.

21.[十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A )

法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

62.045

28

)(21028===C C A P

法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

45

28)(210

28=

=

A A A P

法三:用事件的运算和概率计算法则来作。 记A 1,A 2分别表第一、二次取得正品。

45

2897108)|()()()(1221=?=

==A A P A P A A P A P (2)二只都是次品(记为事件B )

法一:

45

1)(210

22=

=C C B P 法二:

45

1)(210

22=

=

A A

B P 法三:

45

1

91102)|()()()(12121=

?=

==A A P A P A A P B P (3)一只是正品,一只是次品(记为事件C )

法一:

45

16)(210

1218=

?=C C C C P 法二:

45

16)()(2

10

22

1218=

??=

A A C C C P 法三:

互斥与且21212121)()(A A A A A A A A P C P +=

45

169108292

108)|()()|()(121121=+?=

+=A A P A P A A P A P (4)第二次取出的是次品(记为事件D )

法一:因为要注意第一、第二次的顺序。不能用组合作,

法二:

5

1)(210

1219=

?=A A A D P 法三:

互斥与且21212121)()(A A A A A A A A P D P +=

5

19110292108)|()()|()(121121=?+?=

+=A A P A P A A P A P 22.[十八] 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?

记H 表拨号不超过三次而能接通。 A i 表第i 次拨号能接通。

注意:第一次拨号不通,第二拨号就不再拨这个号码。

10

3819810991109101)|()|()()|()()()(2131211211321211=??+?+=

++=∴

++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥

如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

)|||)|(321211B A A A B A A B PA B H P ++=

)|()|()|()|()|()|(2131211211A A B A P A B A P B A P A B A P B A P B A P ++=

5

3

314354415451=??+?+=

24.[十九] 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?(此为第三版19题(1))

记A 1,A 2分别表“从甲袋中取得白球,红球放入乙袋” 再记B 表“再从乙袋中取得白球”。 ∵ B =A 1B +A 2B 且A 1,A 2互斥 ∴

P (B )=P (A 1)P (B | A 1)+ P (A 2)P (B | A 2)

=

1

11++?

+++++?+M N N

m n m M N N m n n [十九](2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。

记C 1为“从第一盒子中取得2只红球”。 C 2为“从第一盒子中取得2只白球”。

C 3为“从第一盒子中取得1只红球,1只白球”,

D 为“从第二盒子中取得白球”,显然C 1,C 2,C 3两两互斥,C 1∪C 2∪C 3=S ,由全概率公式,有 P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D| C 3)

9953

1161171152

9

1415292

42925=??+?+?=C C C C C C C 26.[二十一] 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?

解:A 1={男人},A 2={女人},B={色盲},显然A 1∪A 2=S ,A 1 A 2=φ 由已知条件知%25.0)|(%,5)|(21

)()(2121====A B P A B P A P A P

由贝叶斯公式,有

212010000

2521100521100521)|()()|()()|()()()()|(22111111=

?

+??

=+==A B P A P A B P A P A B P A P B P B A P B A P

[二十二] 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为

2

P

(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。

解:A i ={他第i 次及格},i=1,2

已知P (A 1)=P (A 2|A 1)=P ,2)|(12P A A P =

(1)B ={至少有一次及格} 所以21}{A A B

==两次均不及格

∴)|()(1)(1)(1)(12

121A A P A P A A P B P B P -=-=-=

)]|(1)][(1[1121A A P A P ---=

22

123)21)(1(1P P P P -=-

--= (2))

()

()

22121(A P A A P A A P 定义

(*)

由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(12112

12A A P A P A A P A P A P +=

2

22

)1(2P P P P P P +=?

-+?=

将以上两个结果代入(*)得1

22

2)|(2221+=

+=

P P

P

P P A A P 28.[二十五] 某人下午5:00下班,他所积累的资料表明:

到家时间 5:35~5:39

5:40~5:44

5:45~5:49

5:50~5:54

迟于5:54

乘地铁到

家的概率 0.10

0.25

0.45

0.15

0.05

乘汽车到

家的概率

0.30

0.35

0.20

0.10

0.05

某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率。 解:设A=“乘地铁”,B=“乘汽车”,C=“5:45~5:49到家”,由题意,AB=φ,A ∪B =S 已知:P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5 由贝叶斯公式有

6923.013

9

65.045.02

1)

|(21)|(45.05.0)

()

()|()|(===+?=

=

B C P A C P C P A P A C P C A P

29.[二十四] 有两箱同种类型的零件。第一箱装5只,其中10只一等品;第二箱30只,其中18只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。试求(1)第一次取到的零件是一等品的概率。(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。

解:设B i 表示“第i 次取到一等品” i=1,2 A j 表示“第j 箱产品” j=1,2,显然A 1∪A 2=S

A 1A 2=φ

(1)4.05

2

301821501021)

(1==?+?=

B P (B 1= A 1B +A 2B 由全概率公式解)。 (2)4857.05

229

17

301821499501021)

()()|(12112=+

==B P B B P B B P

(先用条件概率定义,再求P (B 1B 2)时,由全概率公式解) 32.[二十六(2)] 如图1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率为p ,且设各继电器闭合与否相互独立,求L 和R 是通路的概率。

记A i 表第i 个接点接通

记A 表从L 到R 是构成通路的。

∵ A=A 1A 2+ A 1A 3A 5+A 4A 5+A 4A 3A 2四种情况不互斥

∴ P (A )=P (A 1A 2)+P (A 1A 3A 5) +P (A 4A 5)+P (A 4A 3A 2)-P (A 1A 2A 3A 5)

+ P (A 1A 2 A 4A 5)+ P (A 1A 2 A 3 A 4) +P (A 1A 3 A 4A 5)

+ P (A 1A 2 A 3A 4A 5) P (A 2 A 3 A 4A 5)+ P (A 1A 2A 3 A 4A 5)+ P (A 1A 2 A 3 A 4A 5) + (A 1A 2 A 3 A 4A 5) + P (A 1A 2 A 3 A 4A 5)-P (A 1A 2 A 3 A 4A 5)

又由于A 1,A 2, A 3, A 4,A 5互相独立。 故

P (A )=p 2+ p 3+ p 2+ p 3-[p 4 +p 4 +p 4 +p 4 +p 5 +p 4]

5 3

4

2

1

L

R

+[ p 5 + p 5+ p 5+ p 5]-p 5=2 p 2+ 3p 3-5p 4 +2 p 5

[二十六(1)]设有4个独立工作的元件1,2,3,4。它们的可靠性分别为P 1,P 2,P 3,P 4,将它们按图(1)的方式联接,求系统的可靠性。

记A i 表示第i 个元件正常工作,i=1,2,3,4,

A 表示系统正常。

∵ A=A 1A 2A 3+ A 1A 4两种情况不互斥

∴ P (A )= P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式)

= P (A 1) P (A 2)P (A 3)+ P (A 1) P (A 4)-P (A 1) P (A 2)P (A 3)P (A 4) = P 1P 2P 3+ P 1P 4-P 1P 2P 3P 4

(A 1, A 2, A 3, A 4独立)

34.[三十一] 袋中装有m 只正品硬币,n 只次品硬币,(次品硬币的两面均印有国徽)。在袋中任取一只,将它投掷r 次,已知每次都得到国徽。问这只硬币是正品的概率为多少?

解:设“出现r 次国徽面”=B r “任取一只是正品”=A 由全概率公式,有

r r

r

r r r r

r r r r n m m n m n n m m n m m B P A B P A P B A P n m n

n m m A B P A P A B P A P B P 2)21()

21()()|()()|(1)21()|()()|()()(?+=

++++==∴?+++=

+= (条件概率定义与乘法公式)

35.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7。飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落。求飞机被击落的概率。

解:高H i 表示飞机被i 人击中,i=1,2,3。B 1,B 2,B 2分别表示甲、乙、丙击中飞机 ∵

3213213211B B B B B B B B B H ++=,三种情况互斥。

3

4

2

1

3213213212B B B B B B B B B H ++= 三种情况互斥

3223B B B H =

又 B 1,B 2,B 2独立。 ∴

)()()()()()()(3213211B P B P B P B P B P B P H P +=

36

.07.05.06.03.05.06.03.05.04.0)()()(321=??+??+??=+B P B P B P

)()()()()()()(3213212B P B P B P B P B P B P H P +=

3.05.0

4.0)()()(321??=+B P B P B P

+ 0.4×0.5×0.7+0.6×0.5×0.7=0.41 P (H 3)=P (B 1)P (B 2)P (B 3)=0.4×0.5×0.7=0.14

又因:

A=H 1A+H 2A+H 3A

三种情况互斥

故由全概率公式,有

P (A )= P (H 1)P (A |H 1)+P (H 2)P (A |H 2)+P (H 3)P (AH 3) =0.36×0.2+0.41×0.6+0.14×1=0.458

36.[三十三]设由以往记录的数据分析。某船只运输某种物品损坏2%(这一事件记为A 1),10%(事件A 2),90%(事件A 3)的概率分别为P (A 1)=0.8, P (A 2)=0.15, P (A 2)=0.05,现从中随机地独立地取三件,发现这三件都是好的(这一事件记为B ),试分别求P (A 1|B ) P (A 2|B), P (A 3|B)(这里设物品件数很多,取出第一件以后不影响取第二件的概率,所以取第一、第二、第三件是互相独立地)

∵ B 表取得三件好物品。

B=A 1B+A 2B+A 3B

三种情况互斥

由全概率公式,有 ∴

P (B )= P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3)

=0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.8624

0001

.08624

.0)1.0(05.0)()|()()()()|(1268.08624.0)9.0(15.0)()|()()()()|(8731

.08624

.0)98.0(8.0)()|()()()()|(3

33333

22223

1111=?====?====?===B P A B P A P B P B A P B A P B P A B P A P B P B A P B A P B P A B P A P B P B A P B A P

37.[三十四] 将A ,B ,C 三个字母之一输入信道,输出为原字母的概率为α,而输出为其它一字母的概率都是(1-α)/2。今将字母串AAAA ,BBBB ,CCCC 之一输入信道,输入AAAA ,BBBB ,CCCC 的概率分别为p 1, p 2, p 3 (p 1 +p 2+p 3=1),已知输出为ABCA ,问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的。)

解:设D 表示输出信号为ABCA ,B 1、B 2、B 3分别表示输入信号为AAAA ,BBBB ,CCCC ,则B 1、B 2、B 3为一完备事件组,且P(B i )=P i , i=1, 2, 3。

再设A 发、A 收分别表示发出、接收字母A ,其余类推,依题意有 P (A 收| A 发)= P (B 收| B 发)= P (C 收| C 发)=α,

P (A 收| B 发)= P (A 收| C 发)= P (B 收| A 发)= P (B 收| C 发)= P (C 收| A 发)= P (C 收| B 发)=

2

- 又P (ABCA|AAAA )= P (D | B 1) = P (A 收| A 发) P (B 收| A 发) P (C 收| A 发) P (A 收| A 发) =2

2

)2

1(

αα

-, 同样可得P (D | B 2) = P (D | B 3) =3

)2

1(αα-? 于是由全概率公式,得

3

322213

1

)2

1()()21(

)

|()()(ααP P αa p B D P B P D P i i

i

-++-==

∑=

由Bayes 公式,得 P (AAAA|ABCA )= P (B 1 | D ) =

)

()

|()(11D P B D P B P

=

)

)(1(223211

P P αP αP α+-+

[二十九] 设第一只盒子装有3只蓝球,2只绿球,2只白球;第二只盒子装有2只蓝球,3只绿球,4只白球。独立地分别从两只盒子各取一只球。(1)求至少有一只蓝球的概率,(2)求有一只蓝球一只白球的概率,(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率。

解:记A 1、A 2、A 3分别表示是从第一只盒子中取到一只蓝球、绿球、白球,B 1、B 2、B 3分别表示是从第二只盒子中取到一只蓝球、绿球、白球。

(1)记C ={至少有一只蓝球}

C = A 1B 1+ A 1B 2+ A 1B 3+ A 2B 1+ A 3B 1,5种情况互斥 由概率有限可加性,得

9

592729272947393739273)()()()()()()()()()()

()()()()()(13123121111312312111=?+?+?+?+?=

++++++++=B P A P B P A P B P A P B P A P B P A P B A P B A P B A P B A P B A P C P 独立性

(2)记D={有一只蓝球,一只白球},而且知D= A 1B 3+A 3B 1两种情况互斥

63

1692729473)

()()()()(()(13311331=?+?=+=+=B P A P B P A P B A P B A P D P

(3))(35

16

)()()()()|(D CD C P D P C P CD P C D P ====

注意到

[三十] A ,B ,C 三人在同一办公室工作,房间有三部电话,据统计知,打给A ,B ,C 的电话的概率分别为

51,52,52

。他们三人常因工作外出,A ,B ,C 三人外出的概率分别为4

141

,21,设三人的行动相互独立,求

(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间断打进了3个电话,求(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)这3个电话都打给B ,而B 却都不在的概率。

解:记C 1、C 2、C 3分别表示打给A ,B ,C 的电话 D 1、D 2、D 3分别表示A ,B ,C 外出 注意到C 1、C 2、C 3独立,且5

1

)(,52)()(321==

=C P C P C P

4

1)()(,21)(321===

D P D P D P (1)P (无人接电话)=P (D 1D 2D 3)= P (D 1)P (D 2)P (D 3) =

32

1

414121=

?? (2)记G=“被呼叫人在办公室”,332211D C D C D C G ++=三种情况互斥,由有限可加性与

乘法公式

20

13435143522152)|()()|()()|()()

()()()(333222111332211=

?+?+?=++=++=C D P C P C D P C P C D P C P D C P D C P D C P G P ????

??

??=)()|(k k k D P C D P 故否和来电话无关

由于某人外出与 (3)H 为“这3个电话打给同一个人”

125

17

515151525252525252)(=

??+??+??=

H P (4)R 为“这3个电话打给不同的人”

R 由六种互斥情况组成,每种情况为打给A ,B ,C 的三个电话,每种情况的概率为

125

4

515252=

?? 于是125

24

12546)(=

?

=R P (5)由于是知道每次打电话都给B ,其概率是1,所以每一次打给B 电话而B 不在的概率为4

1,且各次情况相互独立

于是 P (3个电话都打给B ,B 都不在的概率)=64

1

)41(3=

第二章 随机变量及其分布

1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律

解:X 可以取值3,4,5,分布律为

10

61)4,3,2,1,5()5(103

1)3,2,1,4()4(10

11)2,1,3()3(35

2

435

2

335

2

2=?=

===

?====

?=

==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :

10

6

,

103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

35

22)0(315

3

13=

=

=C C X P 3512)1(3

15213

12=?=

=C C C X P 35

1)2(3

15

113

22=?=

=C C C X P 再列为下表 X : 0, 1, 2 P :

35

1

,

3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。(此时称X 服从以p 为参数的几何分布。)

(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。(此时称Y 服从以r, p 为参数的巴斯卡分布。)

(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的

x

1 2

O P

分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -

1p

k=1,2,……

(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功}

,,2,1,0,

)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,

或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p

C r k r

r k

(3)P (X=k ) = (0.55)k -

10.45

k=1,2…

P (X 取偶数)=

31

11

45.0)

55.0()2(1

1

21

=

==∑∑∞

=-∞

=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻

(1)恰有2个设备被使用的概率是多少?

0729.0)9.0()1.0()2(322

525225=??===-C q p C X P

(2)至少有3个设备被使用的概率是多少?

00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=?+??+??=≥C C C X P

(3)至多有3个设备被使用的概率是多少?

3225415505)9.0()1.0()9.0(1.0)9.0()3(??+??+=≤C C C X P

99954.0)9.0()1.0(233

5=??+C

(4)至少有一个设备被使用的概率是多少?

40951.059049.01)0(1)1(=-==-=≥X P X P

[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。

(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。

(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y 的分布律。

(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率。 解:(1)X 的可能取值为1,2,3,…,n ,…

P {X=n }=P {前n -1次飞向了另2扇窗子,第n 次飞了出去}

=3

1

)32(

1?-n , n=1,2,…… (2)Y 的可能取值为1,2,3

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记 经济数学基础二(概率论与数理统计)课程教学大纲 一、课程教学目的与基本要求 概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。本课程是我院经济、管理类及计算 机类专业继微积分课程之后的一门基础课。通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。 1.要正确理解以下概念: 随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念 2. 要掌握下列基本理论、基本定理和公式: 概率的基本性质。概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。切比雪夫大数定律与贝努里大数定律、中心极限定理。常用的统计量的分布。参数估计的基本思想。小概率原理。 3.熟练掌握下列运算法则和方法: 事件的关系与运算。古典概型的概率计算。一元随机变量的分布函数、二元随机变量的边缘分布计算。标准正态分布表的查法。随机变量的数学期望、方差、协方差计算。 4.应用方面: 用数学期望、方差的概念及性质解决具体问题的计算。利用正态分布的理论解决具体问题。用区间估计正确解决实际问题,并能解释其结果。运用小概率原理,对具体问题做假设检验。用一元线性回归方程及相关性检验解决实际问题。 二、课程主要内容 第一章随机事件及其概率(10学时) 1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。 2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。 3. 了解概率的公理化定义。掌握概率的基本性质及概率加法定理。

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论与数理统计及其应用课后答案浙江大学盛骤

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计答案,祝东进

习题 1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止. (4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或 检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2, ,6}i j i j Ω===; (2){|0,1, ,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)}; (5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤. 2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”. (2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”. 解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=; (2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =; (3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =. 3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

概率论与数理统计答案第四版第2章(浙大)

1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元, 若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。 解:设X为公司的赔付金额,X=0,5,20 P(X=0)=1-0.0002-0.0010=0.9988 P(X=5)=0.0010 P(X=20)=0.0002 X 0 5 20 P 0.9988 0.0010 0.0002 2.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律. 解:方法一: 考虑到5个球取3个一共有=10种取法,数量不多可以枚举来解此题。 设样本空间为S S={123,124,125,134,135,145,234,235,245,345 } 易得,P{X=3}=;P{X=4}=;P{X=5}=; X 3 4 5 1/10 3/10 6/10 方法二:X的取值为3,4,5 当X=3时,1与2必然存在,P{X=3}= =; 当X=4时,1,2,3中必然存在2个,P{X=4}= =; 当X=5时,1,2,3,4中必然存在2个,P{X=5}= =; X 3 4 5 1/10 3/10 6/10 (2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律. 解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点) = =; P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点) = =; P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点)

概率论与数理统计复习笔记 (1)

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 ?(事件B 包含事件A )事件A 发生必然导致事件B 发生. ∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生. 5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,

福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案 高等教育出版社 习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -.

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

《概率论与数理统计》笔记

《概率论和数理统计》笔记 一、课程导读 “概率论和数理统计”是研究随机现象的规律性的一门学科 在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类: 确定性现象随机现象 确定性现象 在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象. 随机现象 在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运

动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象. 统计规律性 对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面 朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性. ●使用例子 摸球游戏中谁是真正的赢家 在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”: 结果(比数) A (8:0) B (7:1) C (6:2) D (5:3) E (4:4) 奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答 第一次作业 ★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为 ;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U 或;AB ACBC =或().ABC ABC ABC ABC =-++ (和A B +即并A B U ,当,A B 互斥即AB φ=时,A B U 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率. 22 1M m M C C --或1122 (21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率. A ={8只鞋子均不成双}, B ={恰有2只鞋子成双}, C ={恰有4只鞋子成双}. 61682616()32()0.2238,143C C P A C ===1414 8726 16()80 ()0.5594,143C C C P B C === 22128626 16()30 ()0.2098.143 C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求: (1)其中无次品的概率; (2)其中恰有一件次品的概率. (1)34535014190.724.1960C C == (2)21455350990.2526.392 C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率. (1){P 三位数为偶数}{P =尾数为偶数4 },9= (2){P 三位数为奇数}{P =尾数为奇数5 },9 = 或{P 三位数为奇数}1{P =-三位数为偶数45 }1.99 =-= 6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率. 记事件A ={最小号码为5}, B ={最大号码为5}. (1) 253101();12C P A C ==(2) 2 43101 ().20 C P B C == 7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次, 求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}. 311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8 ()1(),9 P D P B =-=

《概率论与数理统计》笔记(考研特别版)

《概率论与数理统计》笔记(考研版) 一、课程导读 “概率论与数理统计”是研究随机现象的规律性的一门学科 统计规律性 对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面 朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性. 应用例子 摸球游戏中谁是真正的赢家 在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:

注:表中“-2”表示受罚2元 解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是: 38070487301218000994600001554048 4838 582868 187 8 .C C C P(E); .C C 2C P(D); .C C 2C P(C);.C C 2C P(B); .C 2 P(A)8 168168 16 8 168 16========== 假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得 2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识. 戏院设座问题

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案 word 完整版 完全版 概率论与数理统计课后习题答案 第四版盛骤浙江大学 浙大第四版(高等教育出版社) 第一章概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ,n表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S10,11,12,………,n,……… (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。([一] 3) S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111, 2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C (2)A,B都发生,而C不发生。 表示为: 或AB-ABC或AB-C (3)A,B,C中至少有一个发生表示为:A+B+C (4)A,B,C都发生,表示为:ABC (5)A,B,C都不发生,表示为:或S- A+B+C或 (6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生 相当于中至少有一个发生。故表示为:。 (7)A,B,C中不多于二个发生。 相当于:中至少有一个发生。故表示为: (8)A,B,C中至少有二个发生。 相当于:AB,BC,AC中至少有一个发生。故表示为:AB+BC+AC 6.[三] 设A,B是两事件且P A0.6,P B0. 7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少? 解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾). 从而由加法定理得 P ABP A+P B-P A∪B* (1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为 PABPA0.6, (2)从*式知,当A∪BS时,PAB取最小值,最小值为 PAB0.6+0.7-10.3 。

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网 浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解 文章来源:才聪学习网/概率论与数理统计 内容简介 本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容: (1)梳理知识脉络,浓缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几乎浓缩了该教材的知识精华。 (2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。 (3)精选考研真题,培养解题思路。本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

目录 第1章概率论的基本概念 1.1 复习笔记 1.2 课后习题详解 1.3 考研真题详解 第2章随机变量及其分布 2.1 复习笔记 2.2 课后习题详解 2.3 考研真题详解 第3章多维随机变量及其分布3.1 复习笔记 3.2 课后习题详解 3.3 考研真题详解 第4章随机变量的数字特征4.1 复习笔记 4.2 课后习题详解 4.3 考研真题详解 第5章大数定律及中心极限定理5.1 复习笔记 5.2 课后习题详解

5.3 考研真题详解 第6章样本及抽样分布 6.1 复习笔记 6.2 课后习题详解 6.3 考研真题详解 第7章参数估计 7.1 复习笔记 7.2 课后习题详解 7.3 考研真题详解 第8章假设检验 8.1 复习笔记 8.2 课后习题详解 8.3 考研真题详解 第9章方差分析及回归分析 9.1 复习笔记 9.2 课后习题详解 9.3 考研真题详解 第10章bootstrap方法 10.1 复习笔记 10.2 课后习题详解 10.3 考研真题详解 第11章在数理统计中应用Excel软件

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

完全版 概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8 508143=+-

《概率论与数理统计》袁荫棠_课后答案__概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.0812 1)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计答案(1)

概率论与数理统计习题及答案 习题一 1. 略.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生; (2)A与B发生,C不发生; (3)A,B,C都发生; (4)A,B,C至少有一个发生; (5)A,B,C都不发生; (6)A,B,C不都发生; (7)A,B,C至多有2个发生; (8)A,B,C至少有2个发生. 【解】(1)A BC(2)AB C(3)ABC (4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC (5) ABC=A B C (6) ABC (7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC 3. 略.见教材习题参考答案 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1)在什么条件下P(AB)取到最大值? (2)在什么条件下P(AB)取到最小值? 【解】(1)当AB=A时,P(AB)取到最大值为0.6. (2)当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12, 求A,B,C至少有一事件发生的概率. 【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) =1 4 + 1 4 + 1 3 - 1 12 = 3 4 7. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=533213 1313131352 C C C C/C

相关文档
相关文档 最新文档