文档库 最新最全的文档下载
当前位置:文档库 › 780M无线zigbee收发模块说明书

780M无线zigbee收发模块说明书

780M无线zigbee收发模块说明书
780M无线zigbee收发模块说明书

使用手册—XCRF780系列无线收发模块

目录

1模块总体介绍 (1)

1.1总体概述 (1)

1.2模块功能概述 (1)

1.3模块原理框图 (2)

2 接口使用 (5)

2.1 信号连接器接口 (5)

2.2 模块管脚顺序图 (6)

3 接口说明 (6)

3.1 SPI接口 (6)

3.2SLP_TR (6)

3.3 IRQ (6)

3.4 CLK_M (7)

3.5 DIG2 (7)

3.6 RESET (7)

3.7 LDO (7)

3.8 电源接口 (7)

4 接口特性 (8)

4.1 工作、存储温度 (8)

4.2 电源特性 (8)

4.2.1 电源接口 (8)

4.2.2 工作电流 (8)

4.3 ESD特性 (9)

5 天线接口 (9)

6 结构 (10)

6.1外形尺寸 (10)

6.2 连接器 (10)

1模块总体介绍

1.1总体概述

XCRF780系列无线收发模块是一种完全兼容IEEE802.15.4/ZIGBEE标准,工作在780M/868M/915M频段的全功能无线收发器模块,具有低功耗、高灵敏度和穿透力强等特点,在相同发射功率情况下,具有比其他ISM频段的zigbee收发器更强的穿透力、更远的通信距离以及更好的通信质量。

模块有系列可选,一、基本型:低功耗型,输出功率6.8dbm,灵敏度-110dbm,实测通信距离800米以上零误码;二、增强型:输出功率18dbm,灵敏度-110dbm,实测通信距离1800米以上零误码;三、超级型:输出功率18dbm,灵敏度-120dbm,实测通信距离2500米以上零误码;

基本型为低功耗型,可作为中短距离、电池供电的场合使用;

增强型和超级型内部集成了ATMEL AT86RF212模块和PA模块,将原来的信号经行放大,放大后输出功率到达18dbm,并可穿透20层以上实体砖墙,使用场合为长距离、障碍物多、现场环境复杂的环境使用。

本模块采用小尺寸和邮票口设计,可很容易集成到用户的PCB板上,缩短用户的开发时间。

本模块为射频前端收发器模块,不带处理器

1.2模块功能概述

表1 产品特性

1.3模块原理框图

XCRF780系列无线收发模块应用框图如图1所示;

图1 XCRF780系列无线收发模块应用框图XCRF780系列无线收发模块内部原理框图如图2所示:

南京祥测智能科技有限公司

4

图2 XCRF780系列无线收发模块内部原理框图

2 接口使用

2.1 信号连接器接口

XCRF780系列无线收发模块信号连接器功能说明如表2所示:表2 信号连接器接口功能表

2.2 模块管脚顺序图

图4 模块管脚顺序图

3 接口说明

3.1 SPI接口

SPI 接口用于连接XCRF780系列无线收发模块模块的寄存器、帧缓冲、SRAM 及AES 接口,连接到MCU的SPI口作为从设备。

3.2SLP_TR

SLP_TR为多功能引脚,其功能与AT86RF212 当前状态相关,连接时接到MCU的任何一个IO口,可控制XCRF780系列无线收发模块进入睡眠或启动发送。

3.3 IRQ

XCRF780系列无线收发模块所有中断事件均或合并至一个单独的外部中断信号IRQ,连接到MCU的捕获端口或外部中端输入端口。

3.4 CLK_M

XCRF780系列无线收发模块主时钟输出,可接到MCU的XTAL1作为MCU同步运行的系统时钟,或者连接到MCU的定时器输入端作为时钟基准脉冲。

3.5 DIG2

连接到MCU的IO口,可作为天线分集控制信号或时间戳指示。

3.6 RESET

低电平有效,置低时复位XCRF780系列无线收发模块所有寄存器,并把XCRF780系列无线收发模块设为初始状态。

3.7 LDO

AT86RF212芯片控制3.3V电压输出。

3.8 电源接口

XCRF780系列无线收发模块模块电源电压输入范围为1.8V~3.6V,电流必须能够提供模块以最大发射功率发射时所需的电流。推荐使用输出电流大于100mA 的LDO 或开关电源。并且在模块的电源端口处加上一个较大的蓄能电容,推荐使用10uF 的电容。开关电源回路产生的EMC 干扰较大,开关电源电路走线时不要靠近天线部分。

4 接口特性4.1 工作、存储温度

4.2 电源特性

4.2.1 电源接口

模块输入电源要求

4.2.2 工作电流

工作电流要求:

(1)模块以最大功率输出时的电流消耗值。

4.3 ESD特性

模块在使用时需要注意对ESD(Electro-Static discharge 静电放电)进行防护。如果XCRF780系列无线收发模块模块的工作环境容易受到静电干扰,需要在其输入接口上增加TVS(瞬态电压抑制二极管), 放置要尽量靠近模块。

5 天线接口

XCRF780系列无线收发模块采用SMA射频端子,可与780M专用天线直接相连。780M专用天线有三种形式,一种为杆状天线,一种为带延长线的吸盘天线,另一种为弹簧天线,天线增益均为2.5dbc。请根据实际情况选用。

6 结构

6.1外形尺寸

图5 XCRF780系列无线收发模块尺寸图

6.2 连接器

XCRF780系列无线收发模块模块边沿采用邮票口设计,可直接贴在PCB 地板上焊接,也可通过1.27mm间距的单排针与底板相连,封装尺寸如图5所示

南京祥测智能科技有限公司

11

ZigBee的未来发展趋势

ZigBee的未来发展趋势 首先介绍了Zigbee技术的概念、特点及协议框架,在此基础上探讨了ZigBee技术的应用,最后对其发展趋势做了展望。 关键词ZigBee技术IEEE802.15.4 发展趋势 1、简介 ZigBee技术是一种应用于短距离范围内,低传输数据速率下的各种电子设备之间的无线通信技术。ZigBee名字来源于蜂群使用的赖以生存和发展的通信方式,蜜蜂通过跳ZigZag 形状的舞蹈来通知发现的新食物源的位置、距离和方向等信息,以此作为新一代无线通讯技术的名称。ZigBee过去又称为“HomeRF Lite”、“RF-EasyLink”或“FireFly”无线电技术,目前统一称为ZigBee技术。 2、ZigBee技术的特点 自从马可尼发明无线电以来,无线通信技术一直向着不断提高数据速率和传输距离的方向发展。例如:广域网范围内的第三代移动通信网络(3G)目的在于提供多媒体无线服务,局域网范围内的标准从IEEE802.11的1Mbit/s到IEEE802.11g的54Mbit/s的数据速率。而当前得到广泛研究的ZigBee技术则致力于提供一种廉价的固定、便携或者移动设备使用的极低复杂度、成本和功耗的低速率无线通信技术。这种无线通信技术具有如下特点: 功耗低:工作模式情况下,ZigBee技术传输速率低,传输数据量很小,因此信号的收发时间很短,其次在非工作模式时,ZigBee节点处于休眠模式。设备搜索时延一般为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms。由于工作时间较短、收发信息功耗较低且采用了休眠模式,使得ZigBee节点非常省电,ZigBee节点的电池工作时间可以长达6个月到2年左右。同时,由于电池时间取决于很多因素,例如:电池种类、容量和应用场合,ZigBee技术在协议上对电池使用也作了优化。对于典型应用,碱性电池可以使用数年,对于某些工作时间和总时间(工作时间+休眠时间)之比小于1%的情况,电池的寿命甚至可以超过10年。 数据传输可靠:ZigBee的媒体接入控制层(MAC层)采用talk-when-ready的碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻传送,发送的每个数据包都必须等待接收方的确认信息,并进行确认信息回复,若没有得到确认信息的回复就表示发生了碰撞,将再传一次,采用这种方法可以提高系统信息传输的可靠性。同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突。同时ZigBee针对时延敏感的应用做了优化,通信时延和休眠状态激活的时延都非常短。 网络容量大:ZigBee低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。ZigBee定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。对全功能器件,要求它支持所有的49个基本参数。而对简化功能器件,在最小配置时只要求它支持38个基本参数。一个全功能器件可以与简化功能器件和其他全功能器件通话,可以按3种方式工作,分别为:个域网协调器、协调器或器件。而简化功能器件只能与全功能器件通话,仅用于非

无线通讯模块介绍

cc1100/RF1100SE、NRF905、NRF903、nRF24L01无线收发模块开发指南简介 cc1100/RF1100SE微功率无线数传模块 基本特点: (1) 工作电压:~,推荐接近,但是不超过(推荐) (2) 315、433、868、915MHz的ISM 和SRD频段 (3) 最高工作速率500Kbps,支持2-FSK、GFSK和MSK调制方式 (4) 可软件修改波特率参数,更好地满足客户在不同条件下的使用要求高波特率:更快的数据传输速率 低波特率:更强的抗干扰性和穿透能力,更远的传输距离 (5) 高灵敏度(下-110dBm,1%数据包误码率) (6) 内置硬件CRC 检错和点对多点通信地址控制 (7) 较低的电流消耗(RX中,,,433MHz) (8) 可编程控制的输出功率,对所有的支持频率可达+10dBm (9) 无线唤醒功能,支持低功率电磁波激活功能,无线唤醒低功耗睡眠状态的设备 (10) 支持传输前自动清理信道访问(CCA),即载波侦听系统 (11) 快速频率变动合成器带来的合适的频率跳跃系统 (12) 模块可软件设地址,软件编程非常方便 (13) 标准DIP间距接口,便于嵌入式应用 (14) 单独的64字节RX和TX数据FIFO (15) 传输距离:开阔地传输300~500米(视具体环境和通信波特率设定情况等而定) (16) 模块尺寸:29mm *12mm( 上述尺寸不含天线,标配4.5CM长柱状天线) cc1100/RF1100SE微功率无线数传模块应用领域:极低功率UHF无线收发器,315/433/868/915MHz的ISM/SRD波段系统, AMR-自动仪表读数,电子消费产品,远程遥控控制,低功率遥感勘测,住宅和建筑自动控制,无线警报和安全系统, 工业监测和控制,无线传感器网络,无线唤醒功能,低功耗手持终端产品等 详细的cc1100/RF1100SE模块开发文档可到下载 NRF905无线收发模块 基本特点: (1) 433Mhz 开放 ISM 频段免许可证使用 (2) 接收发送功能合一,收发完成中断标志 (3) 170个频道,可满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA (4) 内置硬件8/16位CRC校验,开发更简单,数据传输可靠稳定 (5) 工作电压,低功耗,待机模式仅 (6) 接收灵敏度达-100dBm (7) 收发模式切换时间 < 650us

Zigbee组网流程——理论

星形网络和树型网络可以看成是网状网络的一个特殊子集,所以接下来分析如何组建一个Zigbee网状网络。组建一个完整的Zigbee网络分为两步:第一步是协调器初始化一个网络;第二步是路由器或终端加入网络。加入网络又有两种方法,一种是子设备通过使用MAC层的连接进程加入网络,另一种是子设备通过与一个先前指定的父设备直接加入网络。 一、协调器初始化网络 协调器建立一个新网络的流程如图1所示。 图1 协调器建立一个新网络 1、检测协调器 建立一个新的网络是通过原语NLME_NETWORK_FORMATION.request发起的,但发起NLME_NETWORK_FORMATION.request原语的节点必须具备两个条件,一是这个节点具有ZigBee协调器功能,二是这个节点没有加入到其它网络中。任何不满足这两个条件的节点发起建立一个新网络的进程都会被网络层管理实体终止,网络层管理实体将通过参数值为INVALID_REQUEST的NLME_NETWORK_FORMATION.confirm的原语来通知上层这是一个非法请求。 2、信道扫描 协调器发起建立一个新网络的进程后,网络层管理实体将请求MAC子层对信道进行扫描。 信道扫描包括能量扫描和主动扫描两个过程。首先对用户指定的信道或物理层所有默认的信道进行一个能量扫描,以排除干扰。网络层管理实体将根据信道能量测量值对信道进行一个递增排序,并且抛弃能量值超过了可允许能量值的信道,保留可允许能量值内

的信道等待进一步处理。接着在可允许能量值内的信道执行主动扫描,网络层管理实体通过审查返回的PAN描述符列表,确定一个用于建立新网络的信道,该信道中现有的网络数目是最少的,网络层管理实体将优先选择没有网络的信道。如果没有扫描到一个合适的信道,进程将被终止,网络层管理实体通过参数仠为STARTUP_FAILURE的NLME_NETWORK_FORMATION.confirm的原语来通知上层初始化启动网络失败。 3、配置网络参数 如果扫描到一个合适的信道,网络层管理实体将为新网络选择一个PAN描述符,该PAN 描述符可以是由设备随机选择的,也可以是在NLME_NETWORK_FORMATION.request里指定的,但必须满足PAN描述符小于或等于0x3fff,不等于0xffff,并且在所选信道内是唯一的PAN描述符,没有任何其它PAN描述符与之是重复的。如果没有符合条件的PAN 描述符可选择,进程将被终止,网络层管理实体通过参数值为STARTUP_FAILURE的NLME_NETWORK_FORMATION.confirm的原语来通知上层初始化启动网络失败。确定好PAN 描述符后,网络层管理实体为协调器选择16位网络地址0x0000,MAC子层的macPANID 参数将被设置为PAN描述符的值,macShortAddress PIB参数设置为协调器的网络地址。 4、运行新网络 网络参数配置好后,网络层管理实体通过MLME_START.request原语通知MAC层启动并运行新网络,启动状态通过MLME_START.confirm原语通知网络层,网络层管理实体再通过NLME_NETWORK_FORMATION.confirm原语通知上层协调器初始化的状态。 5、允许设备加入网络 只有ZigBee协调器或路由器才能通过NLME_PERMIT_JOINING.request原语来设置节点处于允许设备加入网络的状态。当发起这个进程时,如果PermitDuration参数值为0x00,网络层管理实体将通过MLME_SET.request原语把MAC层的macAssociationPermit PIB 属性设置为FALSE,禁止节点处于允许设备加入网络的状态;如果PermitDuration参数值介于0x01和0xfe之间,网络层管理实体将通过MLME_SET.request原语把macAssociationPermit PIB属性设置为TRUE,并开启一个定时器,定时时间为PermitDuration,在这段时间内节点处于允许设备加入网络的状态,定时时间结束,网络层管理实体把MAC层的macAssociationPermit PIB属性设置为FALSE;如果PermitDuration参数的值为0xff,网络层管理实体将通过MLME_SET.request原语把macAssociationPermit PIB属性设置为TRUE,表示节点无限期处于允许设备加入网络的状态,除非有另外一个NLME_PERMIT_JOINING.request原语被发出。允许设备加入网络的流程如图2所示。

ZigBee和短距离通信的那些事

基于ZigBee的短距离无线通信网络技术 近年来,各种无线通信技术迅猛发展,极大提高了人们的工作效率和生活质量。然而,在日常生活中,我们仍然被各种电缆所束缚,能否在近距离范围内实现各种设备之间的无线通信?纵观目前发展较成熟的几大无线通信技术,往往比较复杂,不但耗费较多资源,成本也比较高,并不适用于短距离无线通信的场合。蓝牙技术的出现使得短距离无线通信成为可能,但是其协议较复杂、功耗高、成本高等特点不太适用于要求低成本、低功耗的工业控制和家庭网络。本文介绍了一种复杂度、成本和功耗都很低的低速率短距离无线接入技术——ZigBee。该技术主要针对低速率传感器网络而提出,它能够满足小型化、低成本设备(如温度调节装置、照明控制器、环境检测传感器等)的无线联网要求,能广泛地应用于工业、农业和日常生活中。 二、ZigBee技术的特点及应用 ZigBee技术主要用于无线个域网(WPAN),是基于IEEE802.15.4无线标准研制开发的。IEEE802.15.4定义了两个底层,即物理层和媒体接入控制(MediaAccess Control,MAC)层;ZigBee联盟则在IEEE 802.15.4的基础上定义了网络层和应用层。ZigBee联盟成立于2001年8月,该联盟由Invensys、三菱、摩托罗拉、飞利浦等公司组成,如今已经吸引了上百家芯片公司、无线设备公司和开发商的加入,其目标市场是工业、家庭以及医学等需要低功耗、低成本、对数据速率和QoS(服务质量)要求不高的无线通信应用场合。 ZigBee这个名字来源于蜂群的通信方式:蜜蜂之间通过跳Zigzag形状的舞蹈来交互消息,以便共享食物源的方向、位置和距离等信息。与其它无线通信协议相比,ZigBee无线协议复杂性低、对资源要求少,主要有以下特点: 低功耗:这是ZigBee的一个显著特点。由于工作周期短、收发信息功耗较低、以及采用了休眠机制,ZigBee终端仅需要两节普通的五号干电池就可以工作六个月到两年。 低成本:协议简单且所需的存储空间小,这极大降低了ZigBee的成本,每块芯片的价格仅2美元,而且ZigBee协议是免专利费的。

无线、射频收发模块大全

无线收发模块大全 本文中着重通过几种实用的无线收发模块的剖析为你逐步揭开无线收发的原理,应用和结构,希望对你有所裨益! 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频

点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平

Zigbee组网实验之Sample App

Zigbee组网实验之Sample App https://www.wendangku.net/doc/b83197189.html,/ 佳杰科技开发套件,最便宜、最详细、最好的Zigbee开发套件。 1.实验设备: Q2530SB开发底板(V1.1以上版本)2块 RF2530N射频板2块 天线(非必要,影响传输距离)2根 SmartRF04EB仿真器带USB线和仿真器接头线1个 电池盒有电池一个(负责供电) 2.硬件连接说明 射频板RF2530N分别连接底板Q2530SB 仿真器USB线连接电脑和其中一块底板 电池盒连接另外一块底板、保证系统都正常供电 3.实验步骤及效果 1.打开实验代码:在路径Texas Instruments\ZStack-CC2530- 2. 3.0-1. 4.0\Projects\zstack\ Samples\SampleApp\CC2530DB下鼠标双击打开文件SampleApp.eww 2.在应用层APP文件夹中找到SampleApp.c文件,找到函数SampleApp_HandleKeys并双 击打开。 3.将函数中的代码做以下修改 if ( keys & HAL_KEY_SW_1 ) { /* This key sends the Flash Command is sent to Group 1. * This device will not receive the Flash Command from this * device (even if it belongs to group 1). */ SampleApp_SendFlashMessage( SAMPLEAPP_FLASH_DURATION ); } 改为 if ( keys==0x20 ) { /* This key sends the Flash Command is sent to Group 1. * This device will not receive the Flash Command from this * device (even if it belongs to group 1).

zigbee的系统结构和组网方式

简介 ZigBee是一种新兴的短距离、低功耗、低数据传输速率的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。ZigBee是建立在IEEE802.15.4标准之上,它确定了可以在不同制造商之间共享的应用纲要。IEEE802.15.4标准定义了ZigBee协议的PHY层和MAC层。PHY层规范确定了在2.4GHz(全球通用的ISM频段)以250kb/s的基准传输率工作的低功耗展频无线电以及另有一些以更低数据传输率工作的915MHz(北美的ISM频段)和868MHz(欧洲的ISM频段)的实体层规范。MAC层规范定义了在同一区域工作的多个IEEE802.15.4无线电信号如何共享空中通道。 为了促进ZigBee技术的发展,2001年8月成立了ZigBee联盟,2002年下半年,英国Invensys公司、日本三菱电子公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加入“ZigBee联盟”,目前该联盟已经有150多家成员,以研发名为ZigBee的下一代无线通信标准。 正如前面所述,ZigBee不仅仅只是802.15.4的名字,IEEE802.15.4仅处理低级MAC层和PHY层协议,所以ZigBee联盟对其网络层协议和API进行了标准化,还开发了安全层,以保证这种便携设备不会意外泄漏其标识。 ZigBee的组成和构网方式 1.FFD和RFD 利用zigbee技术组件的无线个人区域网(WPAN)是一种低速率的无线个人区域网(LR WPAN),这种低速率个人区域网的网络结构简单、成本低廉,具有有限的功率和灵活的吞 吐量。 在一个LR WPAN网络中,可同时存在两种不同类型的设备,一种是具有完整功能的设备(FFD),另一种是简化功能的设备(RFD)。 在网络中,FFD通常有3中工作状态:(1)作为个人区域网络(PAN)的主协调器;(2) 作为一个普通协调器;(3)作为一个终端设备。FFD可以同时和多个RFD或其他FFD通信。 而RFD则只用一种工作状态即作为一个终端设备,并且一个RFD只能和一个FFD通信。2.ZigBee的体系结构 ZigBee体系结构主要有物理(PHY)层、媒体接入控制(MAC)层、网络/安全层以及应用框架层构成,如下图所示:

基于WIFI 模块的无线数据传输报告

计算机科学与技术学院 课程设计报告(2014—2015学年第2 学期) 课程名称:基于WIFI 模块的无线测温传输系统 班级:电子1204班 学号: P1402120404,P1402120430 姓名:陈磊周艳奎 指导教师: 武晓光胡方强包亚萍袁建华毛钱萍 2015年07月

1.系统总体设计 本章主要内容是论述基于51单片机的温度采集系统的总体设计以及方案论证。本系统由单片机、温度信号采集与A/D转换、人机交互、电源系统单元、通信单元五部分组成,功能模块具体实现的器件的不同,将直接影响整个系统的性能及成本,为了达到高效、实用的目的,在系统设计之前的方案论证是十分重要的。 2.本系统工作流程 单片机:该部分的功能不仅包括向温度传感器写入各种控制命令、读取温度数据、数据处理。单片机是整个系统的控制核心及数据处理核心。

数字温度传感器DS18B20:本部分的主要作用是用传感器检测模拟环境中的温度信号, 温度传感器上电流将随环境温度值线性变化。再把电流信号转换成电压信号,使用A/D转换器将模拟电压信号转换成单片机能够进行数据处理的数字电压信号,本设计采用的是数字温度传感器,以上过程都在温度传感器内部完成。 电源系统单元:本单元的主要功能是为单片机提供适当的工作电源,同时也为其他模块提供电源。在本设计当中,电源系统输出+5 V 的电源。 3.单片机主控单元 本部分主要介绍单片机最小系统的设计。单片机系统的扩展,一般是以基本最小系统为基础的。所谓最小系统,是指一个真正可用的单片机最小配置系统,对于片内带有程序存储器的单片机,只要在芯片外接时钟电路和复位电路就是一个小系统了。小系统是嵌入式系统开发的基石。本电路的小系统主要由三部分组成,一块AT89S51芯片、复位电路及时钟电路。 AT89S51单片机:AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,器件采用ATMEL公司的高密度,非易失性存储技术生产,兼容标准8051指令系统及引脚。4K字节可系统编程的Flash程序存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式,空闲方式停止CPU的工作,但允许RAM、定时/计数器、串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作,并禁止其它所有部件工作,直到下一个硬件复位。 P0是一个8 位双向I/O 端口,端口置1时作高阻抗输入端,作为输出口时能驱动8 个TTL电平。对内部Flash 程序存储器编程时,接收指令字节;校验程序时输出指令字节,需要接上拉电阻。在访问外部程序和外部数据存储器时,P0口是分时转换的地址(低8 位)/数据总线,访问期间内部的上拉电阻起作用。 P1是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,接收低8 位地址信息。 P2是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,接收高8 位地址和控制信息。在访问外部程序和16 位外部数据存储器时,P2口送出高8 位地址。而在访问8位地址的外部数据存储器时其引脚上的内容在此期间不会改变。 P3是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,

Zigbee组网流程

1、网络形成 组网开始时,网络层首先向MAC层请求分配协议所规定的信道,或者由PHY层进行有效信道扫描,网络层管理实体等待信道扫描结果,然后根据扫描结果选择可允许能量水平的信道。找到合适的信道后,为这个新的网络选择一个个域网标识符(PANID)。PANID可由网络形成请求时指定,也可以随机选择一个PANID(除广播PANID固定为0xFFFF外),PANID 在所选信道中应该是唯一的。PANID一旦选定,无线网关将选择16位网络地址0x0000作为自身短地址,同时进行相关设置。完成设置后,通过MAC层发出网络启动请求,返回网络形成状态。 2、网络维护 网络维护网络维护主要包括设备加入网络和离开网络过程。当网络形成后,通过网络管理实体设定MAC层连接许可标志来判断是否允许其他设备加设备初始化为协调器入网络。加入方式有联合方式和直接方式,在协议实现中采取直接加入网络方式。这种方式下由待加入的设备发送请求加入信标帧,网关接收到后,网络管理实体首先判断这个设备是否已存在于网络。存在,则使其加入网络;若不存在,则向设备发送信标帧,为这个设备分配一个网络中唯一的16位的短地址。这里的信标帧是由网关无线协议MAC层生成作为PHY层载荷,它包含PANID、加入时隙分配等信息。网内设备也可以请求断开网络。当网关收到设备断

开连接请求后,MAC层向网络层发送报告,开始执行断开流程,从设备列表中删除该设备相关信息。 网络层上层请求网络层发现当前在运行的网络: NLME NETWORK DISCOVERY.request(ScanChannels,ScanDuration) ScanChannels:高5为保留(b27~b31),低27为分别表示27个有效信道,该位为1,表示扫描;为0不扫描。 ScanDuration:扫描时间,aBaseSuperframeDuration*(2^n+1),n为ScanDuration值。 网络层在家收到该原语后,将通过检查ScanChannels参数发现网络,如果该设备为一个FFD 设备,则执行主动的扫描。如果为一个RFD设备,倘若设备实现主动扫描,那么他会执行主动的扫描,否则 一个合适的父节点需要满足三个条件:匹配的PAN标志符、链路成本最大为3、允许连接,为了寻找合适的父节点,NLME_JOIN.request原语请求网络层搜索它的邻居表,如果邻居表中不存在这样的父节点则通知上层,如果存在多个合适的父节点则选择具有最小深度的父节点,如果存在多个具有最小深度的合适的父节点则随机选择一个父节点。

ZigBee的工作原理

ZigBee 的工作原理_ZigBee 组网技术ZigBee 是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee 数传模块类 似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。Zigbee 技术特点主要有低功耗、低成本、时延短、网络容量大、工作频段灵活、低速率、安全的数据传输等。其中低功耗是Zigbee 技术最重要的特点。由于Zigbee 的传输速率相对较低发射功率较小,使得Zig bee 设备很省电,这是Zigbee 技术能够广泛应用的基石。 ZigBee 协议适应无线传感器的低花费、低能量、高容错性等的要求。Zigbee 的基础是IEEE 802.15.4 。但IEEE仅处理低级MAC层和物理层协议,因此Zigbee 联盟扩展了IEEE,对其网络层协议和API 进行了标准化。Zigbee 是一种新兴的短距离、低速率的无线网络技术。主要用于近距离无线连接。它有自己的协议标准,在数千个微小的传感器之间相互协调实现通信。 ZigBee 组网概述 组建一个完整的zigbee 网状网络包括两个步骤:网络初始化、节点加入网络。其中节点加入网络又包括两个步骤:通过与协调器连接入网和通过已有父节点入网。 ZigBee 网络初始化预备 Zigbee 网络的建立是由网络协调器发起的,任何一个zigbee 节点要组建一个网络必须要满足以下两点要求: (1)节点是FFD节点,具备zigbee 协调器的能力; (2)节点还没有与其他网络连接,当节点已经与其他网络连接时,此节点只能作为该网络的子节点,因为一个zigbee 网络中有且只有一个网络协调器。 FFD:Full Func TIon Device 全功能节点 RFD:Reduced Func TI onDevice 半功能节点

Zigbee无线通信技术

Zigbee无线通信技术 摘要:ZigBee是基于IEEE802.15.4标准的低功耗局域网协议。根据国际标准规定,ZigBee技术是一种短距离、低功耗的无线通信技术。这一名称(又称紫蜂协议)来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。ZigBee是一种低速短距离传输的无线网络协议。ZigBee协议从下到上分别为物理层(PHY)、媒体访问控制层(MAC)、传输层(TL)、网络层(NWK)、应用层(APL)等。其中物理层和媒体访问控制层遵循IEEE 802.15.4标准的规定 关键词:ZigBee技术特性标准协议应用系统 引言 ZigBee作为一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术,有效弥补了低成本、低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。我们有理由相信在不远的将来,将有越来越多的内置式ZigBee功能的设备进入我们的生活,并将极大地改善我们的生活方式和体验。 一、Zigbee技术简介 什么是Zigbee? Zigbee一词源自蜜蜂群在发现花粉位置时,通过跳ZigZag形舞蹈来告知同伴,达到交换信息的目的。可以说是一种小的动物通过简捷的方式实现“无线”的沟通。人们借此称呼一种专注于低功耗、低成本、低复杂度、低速率的近程无线网络通信技术,亦包含此寓意。ZigBee联盟成立于2001年8月,2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司

zigbee芯片与zigbee模块的区别和优缺点对比

zigbee芯片与zigbee模块的区别和优缺点对比 ZigBee在个人网络中越来越被称为短距离无线通信协议。它的最大特点是具有低功耗,低网络,特别是可路由的网络功能,并且在理论上可以无限扩展ZigBee期望的通信范围。对于蓝牙,红外点对点通信和WLAN星型通信,ZigBee协议要复杂得多。因此,我应该选择ZigBee芯片自行开发协议,还是应该直接选择具有ZigBee协议的模块直接应用? 芯片研发:需要足够的人力和技术储备以及长时间的开发 市场上的ZigBee无线收发器“芯片”实际上是符合物理层标准的芯片。因为它仅调制和解调无线通信信号,所以必须将其与单片机结合使用以完成数据收发器和协议的实现。另一方面,单片机仅集成了射频部分和单片机部分,并且不需要额外的单片机。它的优点是节省成本和简化电路。 在这两种情况下,用户都需要自己通过微控制器的结构和寄存器的设置自行开发所有软件部分,还要参考物理层部分的IEEE802.15.4协议和网络层部分的ZigBee协议。对于实际应用用户而言,这种工程量很大,开发周期和测试周期都非常长,并且由于它是无线通信产品,因此不容易保证其产品质量。 目前,许多ZigBee公司都在提供自己的芯片ZigBee协议栈,它仅提供该协议的功能,并不意味着它具有真正的适用性和可操作性。没有提供用户数据界面的详细描述。用户为什么可以忽略芯片中的程序,而只使用芯片来传输自己的数据?这不仅可以简单地实现包含ZigBee协议栈的芯片,也不能仅实现包含ZigBee协议栈的芯片。 所有这些都要求用户基于完整的协议代码和他们自己的上层通信协议,完整的简单

数据无线发送和接收,完整的路由,完整的网络通信以及调试步骤,来修改协议栈的内容。因此,对于实际应用的用户来说,开发周期大大延迟了,具有如此复杂协议的无线产品具有更多不确定因素,并且容易受到外部环境条件的影响。实际的发展问题是多种多样的,难以解决。 模块生产的成本 通过节省ZigBee开发周期,或许可以抓住项目推广的第一个机会。ZigBee模块已经包括所有外围电路和完整的协议栈。这是一种即用型产品。经过制造商的优化设置修订和老化测试,具有一定的质量保证。出色且可靠的zigBee应用程序“模块”紧凑,硬件小巧,具有芯片焊盘设置校正功能,能够内置芯片和外部SMA天线,通信距离范围为100米至1200米。 该软件包括完整的ZigBee协议栈。它在PC上具有自己的部署工具。它可以使用串行端口与用户的产品通信并部署模块的网络拓扑参数,例如发射功率和信道,使用方便快捷。 透传模块的优点在于,用户无需考虑其程序的工作方式,只要用户通过串行端口将其数据发送到模块,模块就会根据预设的网络自动无线传输数据结构体。

各种近距离无线传输对比

蓝牙(Bluetooth)、ZigBee、Wi—Fi、WiMAX、无线USB、UWB 性能对比 蓝牙: 蓝牙是一种支持设备短距离通信(一般是10m之内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。蓝牙的标准是IEEE802.15,工作在2.4GHz 频带,带宽为1Mb/s。 “蓝牙”(Bluetooth)原是一位在10世纪统一丹麦的国王,他将当时的瑞典、芬兰与丹麦统一起来。用他的名字来命名这种新的技术标准,含有将四分五裂的局面统一起来的意思。蓝牙技术使用高速跳频(FH,Frequency Hopping)和时分多址(TDMA,Time DivesionMuli—access)等先进技术,在近距离内最廉价地将几台数字化设备(各种移动设备、固定通信设备、计算机及其终端设备、各种数字数据系统,如数字照相机、数字摄像机等,甚至各种家用电器、自动化设备)呈网状链接起来。蓝牙技术将是网络中各种外围设备接口的统一桥梁,它消除了设备之间的连线,取而代之以无线连接。 蓝牙是一种短距的无线通讯技术,电子装置彼此可以透过蓝牙而连接起来,省去了传统的电线。透过芯片上的无线接收器,配有蓝牙技术的电子产品能够在十公尺的距离内彼此相通,传输速度可以达到每秒钟1兆字节。以往红外线接口的传输技术需要电子装置在视线之内的距离,而现在有了蓝牙技术,这样的麻烦也可以免除了 蓝牙技术的系统结构分为三大部分:底层硬件模块、中间协议层和高层应用。底层硬件部分包括无线跳频(RF)、基带(BB)和链路管理(LM)。无线跳频层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,本层协议主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。 蓝牙技术结合了电路交换与分组交换的特点,可以进行异步数据通信,可以支持多达3个同时进行的同步话音信道,还可以使用一个信道同时传送异步数据和同步话音。每个话音信道支持64kb/秒的同步话音链路。异步信道可以支持一端最大速率为721kb/秒、另一端速率为57.6kb/秒的不对称连接,也可以支持43.2kb/秒的对称连接。 中间协议层包括逻辑链路控制和适应协议、服务发现协议、串口仿真协议和电话通信协议。逻辑链路控制和适应协议具有完成数据拆装、控制服务质量和复用协议的功能,该层协议是其它各层协议实现的基础。服务发现协议层为上层应用程序提供一种机制来发现网络中可用的服务及其特性。串口仿真协议层具有仿真9针RS232串口的功能。电话通信协议层则提供蓝牙设备间话音和数据的呼叫控制指令。 主机控制接口层(HCI)是蓝牙协议中软硬件之间的接口,它提供了一个调用基带、链路管理、状态和控制寄存器等硬件的统一命令接口。蓝牙设备之间进行通信时,HCI以上的协议软件实体在主机上运行,而HCI以下的功能由蓝牙设备来完成,二者之间通过一个对两端透明的传输层进行交互。

Zigbee组网程序

SappleApp.c #include "OSAL.h" #include "ZGlobals.h" #include "AF.h" #include "aps_groups.h" #include "ZDApp.h" #include "SampleApp.h" #include "SampleAppHw.h" #include "OnBoard.h" /* HAL */ #include "hal_lcd.h" #include "hal_led.h" #include "hal_key.h" #include "string.h" #include "MT_UART.h" //#include "Lcd128X64.h" #include "UtOled.h" #include "sensor.h" #include "HAL_ADC.h" #include "exsensor.h" #include "lcd128_64.h" const cId_t SampleApp_ClusterList[SAMPLEAPP_MAX_CLUSTERS] = { SAMPLEAPP_PERIODIC_CLUSTERID, SAMPLEAPP_FLASH_CLUSTERID }; const SimpleDescriptionFormat_t SampleApp_SimpleDesc = { SAMPLEAPP_ENDPOINT, // int Endpoint; SAMPLEAPP_PROFID, // uint16 AppProfId[2]; SAMPLEAPP_DEVICEID, // uint16 AppDeviceId[2]; SAMPLEAPP_DEVICE_VERSION, // int AppDevVer:4; SAMPLEAPP_FLAGS, // int AppFlags:4; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumInClusters; (cId_t *)SampleApp_ClusterList, // uint8 *pAppInClusterList; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumInClusters; (cId_t *)SampleApp_ClusterList // uint8 *pAppInClusterList; };

ZigBee的工作原理

ZigBee得工作原理_ZigBee组网技术ZigBee就是一种高可靠得无线数传网络,类似于CDMA与GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准得75m到几百米、几公里,并且支持无限扩展。Zig bee技术特点主要有低功耗、低成本、时延短、网络容量大、工作频段灵活、低速率、安全得数据传输等。其中低功耗就是Zigbee技术最重要得特点。由于 Zigbee得传输速率相对较低发射功率较小,使得Zig bee设备很省电,这就是 Zigbee技术能够广泛应用得基石。 ZigBee协议适应无线传感器得低花费、低能量、高容错性等得要求。Zigbee 得基础就是IEEE 802.15。4、但IEEE仅处理低级MAC层与物理层协议,因此Zigbee联盟扩展了IEEE,对其网络层协议与API进行了标准化。Zigbee就是一种新兴得短距离、低速率得无线网络技术。主要用于近距离无线连接。它有自己得协议标准,在数千个微小得传感器之间相互协调实现通信。 ZigBee组网概述 组建一个完整得zigbee网状网络包括两个步骤:网络初始化、节点加入网络。其中节点加入网络又包括两个步骤:通过与协调器连接入网与通过已有父节点入网。 ZigBee网络初始化预备 Zigbee网络得建立就是由网络协调器发起得,任何一个zigbee节点要组建一个网络必须要满足以下两点要求: (1)节点就是FFD节点,具备zigbee协调器得能力; (2)节点还没有与其她网络连接,当节点已经与其她网络连接时,此节点只能作为该网络得子节点,因为一个zigbee网络中有且只有一个网络协调器。 FFD:Full Func TI on Device 全功能节点 RFD:Reduced FuncTI onDevice半功能节点

ZigBee无线网络和收发器(葵花宝典中文版)

由于国内暂时还没有该文献的中文版本,而ZigBee Wireless Networks and Transceivers又是ZigBee界的葵花宝典,为了自己更好的学习,所以决定将比较多的蛋疼的时间拿出来做点有意义的事,虽然翻译水平不是很高,但是在翻译的过程中肯定能得到进步,最关键的就是检验自己的毅力,看看能否坚持。在这个过程中,如果还能帮到一些正在入门ZigBee的朋友那就更好了。废话不多说,开始 ZigBee Wireless Networks and Transceivers ZigBee无线网络和收发器 1第一章ZigBee基础 本章主要介绍了短距离无线网络通信的ZigBee标准,本章的主要目的就是对ZigBee的基础特性进行一下简单的概述,包括它的网络拓扑、信道访问机制和每个协议层所扮演的角色,在后续章节中对本章所讨论的内容有详细的解释。 1.1 什么是ZigBee? ZigBee是为低数据速率、短距离无线网络通信定义的一系列通信协议标准。基于ZigBee的无线设备工作在868MHZ, 915MHZ和2.4Z频带。其最大数据速率是250Kbps. ZigBee技术主要针对以电池为电源的应用,这些应用对低数据速率、低成本、更长时间的电池寿命有较高的需求。在一些ZigBee应用中,无线设备持续处于活动状态的时间是有限的,大部分时间无线设备是处于省电模式(也称休眠模式)的。因此,ZigBee设备在电池需要更换以前能够工作数年以上。 ZigBee的其中一个应用就是室内病人监控。例如,一个病人的血压,心率可以通过可穿戴设备测量出来,病人戴的ZigBee设备来周期性的收集血压等健康相关的信息,然后这些数据被无线传送到当地服务器,例如病人家中的一台个人电脑,电脑再对这些数据进行初始分析,最后重要的信息通过互联网被发送到病人的护士或者内科医生那里做进一步的分析。 另一个ZigBee的应用例子就是大型楼宇结构安全的监控。在此应用中,一个建筑内可以安装数个ZigBee无线传感器(如加速度计),所有的这些传感器形成一个网络来收集信息,这些收集来的信息可以用于评估建筑的结构安全和潜在的损坏标志,例如,地震后一个建筑在重新开放前可能需要进行检测。而传感器收集到的数据有助于加速和减少检测的花费。在第二章中还提供了一些其他ZigBee的应用例子。 ZigBee标准是由ZigBee联盟所开发的,该联盟有数百个成员公司,从半导体产业和软件开发者到原始设备生产商、安装商。ZigBee联盟是2002年创立的

无线收发模块大全

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:25x32x8毫米,发射距离500M,9元/只(左图);50-100米发射头,上图5元/只;中间是等效电路图;下图为小型 发射头30-100米5元/块 尺寸:10*18*6MM。该发射模块体积小,工作电压范围极宽(3V-12V),发射功率大,功耗低,广泛应用在简易数据无线传输,无线遥控,防盗报警等场合。 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ/433MHZ (433需定制) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA

6。发射电流:3~50MA 7。工作电压:DC 3~12V ** LC-FS04 /20-100米带编码的4路发射板,3-12V;10元/块 使用时只需将发射的电源经一个开关或单片机的控制的三极管,送到D0/D1/D2/D3的接口即可,GND端和单片机共地,如电源大于5V请在去D0/D1/D2/D3数据端上串接一个30-100欧的电阻去耦。发射距离视电压高低和使用的环境。。。。。 ** LC-FS08 /20-100米带编码的8路发射板,可以直接交流6-9V供电方便工业使用15元/块

本板提供电源,使用时只需在VCC脚接一个51欧的电阻引出到开关的一端,开关的另一端接板上的1---8路的输入控制端即可,按下相应的开关就可以发射相应的路数的控制信号。。。。。

相关文档