文档库 最新最全的文档下载
当前位置:文档库 › 一次函数与几何图形综合专题

一次函数与几何图形综合专题

一次函数与几何图形综合专题
一次函数与几何图形综合专题

一次函数与几何图形综合专题

思想方法小结 : (1)函数方法.

函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.

(2)数形结合法.

数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.

知识规律小结 :

(1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;

当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k

b

>0时,直线与x 轴正半轴相交; 当b=0时,即-

k

b

=0时,直线经过原点; 当k ,b 同号时,即-k

b

﹤0时,直线与x 轴负半轴相交.

③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.

(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)

当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②??

?=≠2

12

1b b k k ?y 1

与y 2

相交于y 轴上同一点(0,b 1

)或(0,b 2

; ③??

?≠=2

121,

b b k k ?y 1

与y 2

平行;

④??

?==2

121,

b b k k ?y 1

与y 2

重合.

例题精讲:

1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB

(1) 求AC

(2) 在OA 的延长线上任取一点

P,作PQ ⊥BP,

交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不变;②(MQ-AC)/PM

的值不变,期中只有一个正确结论,请选择并加以证明。

2.如图①所示,直线L :

5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。

(1)当OA=OB 时,试确定直线L 的解析式;

(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。

(3)当m 取不同的值时,点B 在

y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象

限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。

x

y

x

y

第2题图① 第2题图②

问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。

考点:一次函数综合题;直角三角形全等的判定. 专题:代数几何综合题.

分析:(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;

(2)由OA=OB 得到启发,证明∴△AMO ≌△ONB ,用对应线段相等求长度; (3)通过两次全等,寻找相等线段,并进行转化,求PB 的长.

解答:解:(1)∵直线L :y=mx+5m ,∴A (-5,0),B (0,5m ),由OA=OB 得5m=5,m=1,

∴直线解析式为:y=x+5.

(2)在△AMO 和△OBN 中OA=OB ,∠OAM=∠BON ,∠AMO=∠BNO , ∴△AMO ≌△ONB .∴AM=ON=4,∴BN=OM=3.

(3)如图,作EK ⊥y 轴于K 点.先证△ABO ≌△BEK ,∴OA=BK ,EK=OB .再证△PBF ≌△PKE , ∴PK=PB .∴PB=

21BK=21OA=2

5. 点评:本题重点考查了直角坐标系里的全等关系,充分运用坐标系里的垂直关系证明全等,本题也涉及一次

函数图象的实际应用问题.

3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为

3y x =+,

(1)求直线2l 的解析式;(3分)

(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF

(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)

第2题图③

考点:轴对称的性质;全等三角形的判定与性质.

分析:(1)根据题意先求直线l 1与x 轴、y 轴的交点A 、B 的坐标,再根据轴对称的性质求直线l 2的上点C

的坐标,用待定系数法求直线l 2的解析式;

(2)根据题意结合轴对称的性质,先证明△BEA ≌△AFC ,再根据全等三角形的性质,结合图形证明BE+CF=EF ;

(3)首先过Q 点作QH ⊥y 轴于H ,证明△QCH ≌△PBO ,然后根据全等三角形的性质和△QHM ≌△POM ,从而得HM=OM ,根据线段的和差进行计算OM 的值.

解答:解:(1)∵直线l 1与x 轴、y 轴分别交于A 、B 两点,

∴A (-3,0),B (0,3), ∵直线l 2与直线l 1关于x 轴对称, ∴C (0,-3)

∴直线l 2的解析式为:y=-x-3; (2)如图1. 答:BE+CF=EF .

∵直线l 2与直线l 1关于x 轴对称, ∴AB=BC ,∠EBA=∠FAC , ∵BE ⊥l 3,CF ⊥l 3 ∴∠BEA=∠AFC=90° ∴△BEA ≌△AFC ∴BE=AF ,EA=FC , ∴BE+CF=AF+EA=EF ; (3)①对,OM=3

过Q 点作QH ⊥y 轴于H ,直线l 2与直线l 1关于x 轴对称 ∵∠POB=∠QHC=90°,BP=CQ , 又AB=AC ,

∴∠

ABO=∠ACB=∠HCQ , 则△QCH ≌△PBO (AAS ), ∴QH=PO=OB=CH ∴△QHM ≌△POM ∴HM=OM

∴OM=BC-(OB+CM )=BC-(CH+CM )=BC-OM ∴OM=

2

1

BC=3. 点评:轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,

对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.

4.如图,在平面直角坐标系中,A (a ,0),

B (0,b ),且a 、b 满足.

(1)求直线AB 的解析式;

(2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值;

(3)过A 点的直线交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线交

AP 于点M ,试证明的值为定值.

考点:一次函数综合题;二次根式的性质与化简;一次函数图象上点的坐标特征;待定系数法求正比例函数

解析式;全等三角形的判定与性质;等腰直角三角形.

专题:计算题.

分析:(1)求出a 、b 的值得到A 、B 的坐标,设直线AB 的解析式是y=kx+b ,代入得到方程组,求出即可;

(2)当BM ⊥BA ,且BM=BA 时,过M 作MN ⊥Y 轴于N ,证△BMN ≌△ABO (AAS ),求出M 的坐标即可;②当AM ⊥BA ,且AM=BA 时,过M 作MN ⊥X 轴于N ,同法求出M 的坐标;③当AM ⊥BM ,且AM=BM

时,过M 作MN ⊥X 轴于N ,MH ⊥Y 轴于H ,证△BHM ≌△AMN ,求出M 的坐标即可.

(3)设NM 与x 轴的交点为H ,分别过M 、H 作x 轴的垂线垂足为G ,HD 交MP 于D 点,求出H 、G 的坐标,证△AMG ≌△ADH ,△AMG ≌△ADH ≌△DPC ≌△NPC ,推出PN=PD=AD=AM 代入即可求出答案.

解答:解:(1)要使b=

有意义,必须(a-2)2

=0,

4-b =0,

∴a=2,b=4,∴A (2,0),B (0,4),

设直线AB 的解析式是y=kx+b ,代入得:0=2k+b ,4=b ,解得:k=-2,b=4, ∴函数解析式为:y=-2x+4,答:直线AB 的解析式是y=-2x+4. (2)如图2,分三种情况:

①如图(1)当BM ⊥BA ,且BM=BA 时,过M 作MN ⊥Y 轴于N , △BMN ≌△ABO (AAS ), MN=OB=4,BN=OA=2, ∴ON=2+4=6,

∴M 的坐标为(4,6 ), 代入y=mx 得:m=

2

3, ②如图(2)当AM ⊥BA ,且AM=BA 时,过M 作MN ⊥X 轴于N ,△BOA ≌△ANM (AAS ),同理求出M 的坐标为(6,2),m=

3

1, ③当AM ⊥BM ,且AM=BM 时,过M 作MN ⊥X 轴于N ,MH ⊥Y 轴于H ,则△BHM ≌△AMN , ∴MN=MH ,

设M (x ,x )代入y=mx 得:x=mx ,(2) ∴m=1, 答:m 的值是

23或3

1

或1. (3)解:如图3,结论2是正确的且定值为2,

设NM 与x 轴的交点为H ,分别过M 、H 作x 轴的垂线垂足为G ,HD 交MP 于D 点, 由y=

2k x-2

k

与x 轴交于H 点, ∴H (1,0), 由y=

2k x-2

k

与y=kx-2k 交于M 点,

∴M (3,K ), 而A (2,0),

∴A 为HG 的中点,

∴△AMG ≌△ADH (ASA ), 又因为N 点的横坐标为-1,且在y=

2k x-2

k 上, ∴可得N 的纵坐标为-K ,同理P 的纵坐标为-2K , ∴ND 平行于x 轴且N 、D 的横坐标分别为-1、1 ∴N 与D 关于y 轴对称,

∵△AMG ≌△ADH ≌△DPC ≌△NPC , ∴PN=PD=AD=AM , ∴

AM

PN -PM =2.

点评:本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的

解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.

5.如图,直线AB :y =-x -b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1。

(1)求直线BC 的解析式:

(2)直线EF :y =kx-k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S

△EBD

=S △FBD ?若存在,求出k 的值;若不存在,说明理由?

(3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,

连接QA 并延长交y轴于点K ,当P 点运动时,K 点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。

考点:一次函数综合题;一次函数的定义;正比例函数的图象;待定系数法求一次函数解析式. 专题:计算题.

分析:代入点的坐标求出解析式y=3x+6,利用坐标相等求出k 的值,用三角形全等的相等关系求出点的坐标.

解答:解:(1)由已知:0=-6-b ,

∴b=-6, ∴AB :y=-x+6. ∴B (0,6) ∴OB=6

∵OB :OC=3:1, OC=

3

OB

=2, ∴C (-2,0)

设BC 的解析式是Y=ax+c ,代入得;6=0?a+c , 0=-2a+c ,解得:a=3, c=6,∴BC :y=3x+6. 直线BC 的解析式是:y=3x+6;

(2)过E 、F 分别作EM ⊥x 轴,FN ⊥x 轴,则∠EMD=∠FND=90°.

∵S △EBD =S △FBD ,∴DE=DF .又∵∠NDF=∠EDM ,∴△NFD ≌△EDM ,∴FN=ME . 联立y=kx-k, y=-x+6

得y E =

1k 5k

+,联立y=kx-k ,y=3x+6 得y F =3

-k 9k .

∵FN=-y F ,ME=y E , ∴

1k 5k +=3

-k 9k

-. ∵k≠0,

∴5(k-3)=-9(k+1), ∴k=

7

3; (3)不变化K (0,-6).过Q 作QH ⊥x 轴于H ,∵△BPQ 是等腰直角三角形,

∴∠BPQ=90°,PB=PQ ,∵∠BOA=∠QHA=90°,∴∠BPO=∠PQH ,∴△BOP ≌△HPQ , ∴PH=BO ,OP=QH ,∴PH+PO=BO+QH ,即OA+AH=BO+QH ,又OA=OB , ∴AH=QH ,∴△AHQ 是等腰直角三角形,∴∠QAH=45°,∴∠OAK=45°, ∴△AOK 为等腰直角三角形,∴OK=OA=6,∴K (0,-6).

点评:此题是一个综合运用的题,关键是正确求解析式和灵活运用解析式去解.

6. 如图,直线AB 交X 轴负半轴于B (m ,0),交Y 轴负半轴于A (0,m ),OC ⊥AB 于C (-2,-2)。 (1)求m 的值;

-4

m 2CG OG GB ,,45OA

OB G OB G =∴===∴???∴?

=∠∴?∴=都是等腰直角三角形为等腰直角三角形的垂线,垂足为作过OCB CGO CGB CBO AOB

(2)直线AD 交OC 于D ,交X 轴于E ,过B 作BF ⊥AD 于F,若OD=OE ,求AE

BF 的值;

2

1

BF 2BF BH BF AE BF 2BH BF BH AE BH ASA AOE BOH 90AOE BOH AO BO EAO HBO AOE BOH )(BF ASA AFH AFB )(AF AF 90AFH AFB AFH AFB FEB ADC )(OED FEB ODE

OED OD

OE FAH HBO ===∴

=+==∴???∴??

?

???=∠=∠=∠=∠??=∴???∴??

?

??∠=∠=?=∠=∠??∠=∠∴∠=∠∴∠=∠∴∠=∠∠=∠∠=∠∴=∠=∠BF HF FAH BAF FAH CAD CAD HBO ODE ADC 等)(全等三角形对应边相)

((已知)(已证)中,和在全等三角形对应边相等)

(已证(公共边)中和在对顶角相等,(同角的余角相等)

(3)如图,P 为x 轴上B 点左侧任一点,以AP 为边作等腰直角△APM ,其中PA=PM ,直线MB 交y 轴于Q ,当P 在x 轴上运动时,线段OQ 长是否发生变化?若不变,求其值;若变化,说明理由。

7.在平面直角坐标系中,一次函数y=ax+b 的图像过点B (-1,),与x 轴交于点A (4,0),与y 轴交于

点C ,与直线y=kx 交于点P ,且PO=PA

(1)求a+b 的值;

(2)求k 的值;

(3)D 为PC 上一点,DF ⊥x 轴于点F ,交OP 于点E ,若DE=2EF ,求D 点坐标.

考点:一次函数与二元一次方程(组). 专题:计算题;数形结合;待定系数法.

分析:(1)根据题意知,一次函数y=ax+b 的图象过点B (-1,

2

5

)和点A (4,0),把A 、B 代入求值即可;

(2)设P (x ,y ),根据PO=PA ,列出方程,并与y=kx 组成方程组,解方程组; (3)设点D (x ,-

21x+2),因为点E 在直线y= 21x 上,所以E (x ,2

1x ),F (x ,0),再根据等量关系DE=2EF 列方程求解.

解答:解:(1)根据题意得:

25=-a+b0=4a+b 解方程组得:a=2

1

, b=2 ∴a+b=-

21+2=23,即a+b=2

3

; (2)设P (x ,y ),则点P 即在一次函数y=ax+b 上,又在直线y=kx 上,由(1)得:一次函数y=ax+b 的

解析式是y=-2

1

x+2,又∵PO=PA , ∴x 2

+y 2

=(4-x)2

+y 2

y=kx y=

2

1

x+2, 解方程组得:x=2,y=1,k=2

1, ∴k 的值是

2

1; (3)设点D (x ,-

21x+2),则E (x ,21

x ),F (x ,0), ∵DE=2EF ,∴-21x+2-21x=2×2

1

x ,解得:x=1,

则-21x+2=-21×1+2=23,∴D (1,2

3).

点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.

8. 在直角坐标系中,B 、A 分别在x ,y 轴上,B 的坐标为(3,0),∠ABO=30°,AC 平分∠OAB 交x 轴于C ; (1)求C 的坐标;

解:∵∠AOB=90° ∠ABO=30°

∴∠OAB=30°

又 ∵ AC 是∠OAB 的角平分线 ∴∠OAC=∠CAB=30° ∵OB=3 ∴OA=

3

OC=1

即 C(1,0)

(2)若D 为AB 中点,∠EDF=60°,证明:CE+CF=OC 证明:取CB 中点H ,连CD,DH ∵ AO= 3 CO=1 ∴AC=2

又∵D,H 分别是AB,CD 中点 ∴DH=AC 2

1

AB=23 ∵ DB=

2

1

AB=3 BC=2 ∠ABC=30° ∴ BC=2 CD=2 ∠CDB=60° CD=1=DH

∵ ∠EOF=∠EDC+∠CDF=60 ° ∠CDB=∠CDF+∠FDH=60°

∴∠EDC=∠FDH ∵AC=BC=2 ∴CD ⊥AB ADC=90° ∵∠CBA=30°∴∠ECD=60° ∵HD=HB=1∴∠DHF=60°在△DCE 和 △DHF 中∠EDC=∠FDH ∠DCE=∠DHFDC=DH ∴△DCE ≌ △DHF(AAS)∴CE=HF ∴CH=CF+FH=CF+CE=1 OC=1∴CH=OC ∴OC=CE+CF

(3)若D 为AB 上一点,以D 作△DEC ,使DC=DE ,∠EDC=120°,连BE ,试问∠EBC 的度数是否发生变化;若不变,请求值。

解:不变 ∠EBC=60° 设DB 与CE 交与点G DC=DE ∠EDC=120° ∴∠DEC=∠DCE=30° 在△DGC 和△ DCB 中

∠CDG=∠BDC

∠DCG=∠DBC=30∴△DGC

∽ △DCB

DG DC =

DC

DB

DC=DE ∴

DG DE =

DE

DB

在EDG 和BDE 中

DG DE =

DE

DB

∠EDG=∠BDE ∴△EDG ∽ △BDE ∴∠DEG=∠DBE=30°∴∠EBD=∠DBE+∠DBC=60° 9、如图,直线AB 交x 轴正半轴于点A (a ,0),交y 轴正半轴于点B (0, b ),且a 、b 满足4 a + |4

-b |=0

(1)求A 、B 两点的坐标;

(2)D 为OA 的中点,连接BD ,过点O 作OE ⊥BD 于F ,交AB 于E ,求证∠BDO =∠EDA ;

(3)如图,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt △PBM ,其中PB =PM ,直线MA 交y 轴于点Q ,

当点P 在x 轴上运动时,线段OQ 的长是否发生变化?若不变,求其值;若变化,求线段OQ 的取值范围.

考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数

的性质:算术平方根.

专题:证明题;探究型.

分析:①首先根据已知条件和非负数的性质得到关于a 、b 的方程,

解方程组即可求出a ,b 的值,也就能写出A ,B 的坐标;

②作出∠AOB 的平分线,通过证△BOG ≌△OAE 得到其对应角相

等解决问题;

③过M 作x 轴的垂线,通过证明△PBO ≌△MPN 得出MN=AN ,转化到等腰直角三角形中去就很好解决了.

解答:解:①∵

4 a +|4-b|=0

∴a=4,b=4,

∴A (4,0),B (0,4);

(2)作∠AOB 的角平分线,交BD 于G , ∴∠BOG=∠OAE=45°,OB=OA , ∠OBG=∠AOE=90°-∠BOF , ∴△BOG ≌△OAE , ∴OG=AE .

∵∠GOD=∠A=45°,OD=AD , ∴△GOD ≌△EDA . ∴∠GDO=∠ADE .

(3)过M 作MN ⊥x 轴,垂足为N . ∵∠BPM=90°, ∴∠BPO+∠MPN=90°. ∵∠AOB=∠MNP=90°,

∴∠BPO=∠PMN ,∠PBO=∠MPN . ∵BP=MP , ∴△PBO ≌△MPN , MN=OP ,PN=AO=BO , OP=OA+AP=PN+AP=AN , ∴MN=AN ,∠MAN=45°. ∵∠BAO=45°,

∴∠BAO+∠OAQ=90°∴△BAQ 是等腰直角三角形.∴OB=OQ=4.∴无论P 点怎么动OQ 的长不变.

点评:(1)考查的是根式和绝对值的性质.

(2)考查的是全等三角形的判定和性质.

(3)本题灵活考查的是全等三角形的判定与性质,还有特殊三角形的性质. 10、如图,平面直角坐标系中,点A 、B 分别在x 、y 轴上,点B 的坐标为(0,1), ∠BAO =30°.(1)求AB 的长度;

(2)以AB 为一边作等边△ABE ,作OA 的垂直平分线MN 交AB 的垂线AD 于点D .求证:BD =OE .

(3)在(2)的条件下,连结DE 交AB 于F .求证:F 为DE 的中点.

考点:全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质;含30度角的直角三角形. 专题:计算题;证明题.

分析:(1)直接运用直角三角形30°角的性质即可.

(2)连接OD ,易证△ADO 为等边三角形,再证△ABD ≌△AEO 即可. (3)作EH ⊥AB 于H ,先证△ABO ≌△AEH ,得AO=EH ,再证△AFD ≌△EFH 即可.

解答:(1)解:∵在Rt △ABO 中,∠BAO=30°,

∴AB=2BO=2; (2)证明:连接OD , ∵△ABE 为等边三角形, ∴AB=AE ,∠EAB=60°,

∵∠BAO=30°,作OA 的垂直平分线MN 交AB 的垂线AD 于点D , ∴∠DAO=60°. ∴∠EAO=∠NAB 又∵DO=DA ,

∴△ADO 为等边三角形. ∴DA=AO .

在△ABD 与△AEO 中,

∵AB=AE ,∠EAO=∠NAB ,DA=AO ∴△ABD ≌△AEO . ∴BD=OE .

(3)证明:作EH ⊥AB 于H . ∵AE=BE ,∴AH=2

1

AB , ∵BO=

2

1

AB ,∴AH=BO , 在Rt △AEH 与Rt △BAO 中, AH=BO ,

AE=AB

∴Rt △AEH ≌Rt △BAO ,∴EH=AO=AD .又∵∠EHF=∠DAF=90°,在△HFE 与△AFD 中, ∠EHF=∠DAF ,∠EFH=∠DFA ,EH=AD ∴△HFE ≌△AFD ,∴EF=DF .∴F 为DE 的中点.

点评:本题主要考查全等三角形与等边三角形的巧妙结合,来证明角相等和线段相等.

11.如图,直线y=

3

1

x+1分别与坐标轴交于A 、B 两点,在y 轴的负半轴上截取OC=OB. (1)求直线AC 的解析式; 解:∵ 直线y=3

1

x+1分别与坐标轴交于A 、B 两点 ∴

可得点A 坐标为(-3,0),点B 坐标为(0,1)

∵ OC=OB

∴ 可得点C 坐标为(0,-1) 设直线AC 的解析式为y=kx+b

将A (-3,0),C (0,-1)代入解析式

-3k+b=0且b=-1可得k=-31

,b=-1 ∴ 直线AC 的解析式为y=3

1

x-1

(2)在x 轴上取一点D (-1,0),过点D 做AB 的垂线,垂足为

E ,交AC 于点

F ,交y 轴于点

G ,求F 点的坐标; 解:∵ GE ⊥AB ∴

k k

1E G A B

?=-

13

1k ==3

GE --

设直线GE 的解析式为'

y=-3x+b

将点D 坐标(-1,0)代入,得

'

y=-3b 0?(-1)+=

'b 3=-

∴ 直线GE 的解析式为y=-3x-3 联立y=

3

1x-1与y=-3x-3,可求出

34x =-, 将其代入方程可得y=34-,

∴ F 点的坐标为(

34-,3

4-)

(3)过点B 作AC 的平行线BM ,过点O 作直线y=kx (k >0),分别交直线AC 、BM 于点H 、I ,试求AB

BI

AH +的值。

解:过点O 作AC 的平行线ON 交AB 于点N ∵BM//AC

OI OB OH

OC

=∵OB=OC ∴OI=OH ∴O 为IH 的中点 ∵BM//AC

=NB OI NA

OH

∵ OI=OH ∴ NB=NA ∴ N 为AB 中点∴ ON 是四边形ABIH 的中位线

∴ AH+BI=2ON ∵ N 是AB 的中点,?AOB 是直角三角形

∴ AB=2ON (直接三角形斜边的中线等于斜边的一半) ∴ AH+BI=AB ∴AB

BI AH +=1

12.如图,直线AB :y=-x-b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1.

(1)求直线BC 的解析式;

解:(1)因为直线AB :y=-x -b 过点A (6,0).

带入解析式 就可以得到 b=-6 即直线AB :y=-x+6 ∵B 为直线AB 与y 轴的交点 ∴点 B (0,6) ∵OB :OC=3:1 ∴OC=2 点 C (-2,0)

已知直线上的两点 B 、C 。设直线的解析式为y=kx+m 带入B 、C 的坐标。可以算出k=3 ,m=6 所以BC 的解析式为:y=3x+6

(2)直线EF :y=kx-k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若存在,求出k 的值;若不存在,说明理由? (2) 假设 存在满足题中条件的k 值 因为直线EF: y=kx-k (k ≠0)交x 轴于点D 。 所以D 点坐标为(1,0)

在图中标出点D,且过点D 做一直线,相交与直线AB,BC 分别与点E,F 然后观察△EBD 和△FBD 则 S △EBD=

21DE ×h S △FBD=2

1

DF ×h 两个三角形的高其实是一样的

要使这两个三角形面积相等,只要满足DE=DF 就可以了 ∵点E 在直线AB 上,∴设点E 的坐标为(p ,-p+6) ∵点F 在直线BC 上,∴设点F 的坐标为(q ,3q+6) 而上面我们已经得到点D 的坐标为(1,0)

点E 、F 又关于点D 对称,所以我们就可以得到两个等式,即: (p+q)/2=1 (-p+6+3q+6)/2=0

这样就可以求得:p=

29,q=-25

点E 的坐标即为(29,23),点F 的坐标即为(-25,-2

3

把点E 代入直线EF 的解析式,得到k=7

3 所以存在k ,且k=

7

3 (3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y 轴于点K ,当P 点运动时,K 点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由。 (3) K 点的位置不发生变化

理由:首先假设直线QA 的解析式为y=ax+b ,点P 的坐标为(p ,0)过点Q 作直线QH 垂直于x 轴,交点为H

这样图中就可以形成两个三角形,分别是△BOP 和△PHQ ,且两个三角形都是直角三角形。

∵△BPQ 为等腰直角三角形,直角顶点为P ∴BP=PQ ,∠BPO+∠QPH=180o—90o=90o 又∵在直角三角形中,∴∠QPH+∠PQH=90o ∴根据上面两个等式,我们可以得到∠BPO=∠PQH 且PB=QP

所以在△BOP 和△PHQ 中

∴△BOP ≌△PHQ (AAS )

∴OP=HQ=p OB=HP=6 (全等三角形的对应边相等) ∴点Q 的坐标为(p+6,p )

然后将点A 和点Q 的坐标代入直线QA 的解析式:y=ax+b 中,得到: a=1,b=-6

也就是说a,b 为固定值,并不随点P (p ,0)的改变而改变

这样直线QA :y=x-6的延长线交于Y 轴的K 点也不会随点P 的变化而变化了。 求得点K 的坐标为(0,-6) 实战练习:

1.已知,如图,直线AB :y=-x+8与x 轴、y 轴分别相交于点B 、A ,过点B 作直线AB 的垂线交y 轴于点D. (1)求直线BD 的解析式;

(2)若点C 是x 轴负半轴上的任意一点,过点C 作AC 的垂线与BD 相交于点E ,请你判断:线段AC 与CE 的大小关系?并证明你

的判断;

∠BOP=∠PHQ

∠BPO=∠PQH PB=QP

(3)若点G为第二象限内任一点,连结EG,过点A作AF⊥FG于F,连结CF,当点C在x轴的负半轴上运动时,∠CFE的度数是否发生变化?若不变,请求出∠CFE的度数;若变化,请求出其变化范围.

2.直线y=x+2与x、y轴交于A、B两点,C为AB的中点.

(1)求C的坐标;

(2)如图,M为x轴正半轴上一点,N为OB上一点,若BN+OM=MN,求∠NCM的度数;

(3)P为过B点的直线上一点,PD⊥x轴于D,PD=PB,E为直线BP上一点,F为y轴负半轴上一点,且DE=DF,试探究BF-BE的值的情况.

3.如图,一次函数y=ax-b与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于B(0,-4)且OA=AB,△OAB的面积为6.

(1)求两函数的解析式;

(2)若M(2,0),直线BM与AO交于P,求P点的坐标;

(3)在x轴上是否存在一点E,使S△ABE=5,若存在,求E点的坐标;若不存在,请说明理由。

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

中考数学专题训练---二次函数的综合题分类含详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.(10分)(2015?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画. (1)请用配方法求二次函数图象的最高点P的坐标; (2)小球的落点是A,求点A的坐标; (3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积; (4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标. 【答案】(1)(2,4);(2)(,);(3);(4)(,). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直 线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛 物线的解析式联立,得到方程组,解方程组即可求出点M的坐标. 试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4, 故二次函数图象的最高点P的坐标为(2,4); (2)联立两解析式可得:,解得:,或. 故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B. S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣×× =4+﹣ =; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积. 设直线PM的解析式为y=x+b, ∵P的坐标为(2,4), ∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,). 考点:二次函数的综合题

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

二次函数综合应用专题归纳训练一

二次函数综合应用专题归纳训练一 一、相似三角形的存在性问题 1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式. 二、等腰三角形的存在性问题 2.如图,直线3 y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x =x 3+ 轴于另一点C(3,0). ⑴求抛物线的解析式 ⑵在抛物线的对称轴上是否存在点Q,使△ABQ 存在,求出符合条件的Q点坐标;若不存在,请说明理由.

3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线L上的一个动点,当△PAC的周长最 小时,求点P的坐标; (3)在直线L上是否存在点M,使△MAC为等腰三角 形?若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由.

三、平行四边形的存在性问题 4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案 一、二次函数 1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点, ①求PC PD -的最大值及对应的点P 的坐标; ②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2 ||23y a x a x =-+的图像只有一个公共点,求t 的取值范围. 【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最 ,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或 332t ≤<或72t =. 【解析】 【分析】 (1)先利用对称轴公式x=2a 12a --=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式; (2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ?-++≥=?--+

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD 、 (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+、 (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式就是_______、 2、如图,P 就是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于 点Q,已知AD=6cm,AB=8cm,设AP=x(cm),BQ=y(cm)、 (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)就是否存在点P,使BQ=2AP 。若存在,求出AP 的长;若不存在, 说明理由。 3、如图,矩形EFGH 内接与△ABC,AD ⊥BC 与点D,交EH 于点M,BC=10cm, AD=8cm, 设EF=x cm,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。 5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l)如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l)中y 与x 之间的函数关系式还成立?试说明理由. 6、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2、 (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积 (用含a 的 A B C D P Q A B C D E F M H G

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

几何中的函数问题(一)

几何中的函数问题 金汇学校初三数学备课组 教学目标: 以四边形为载体探究几何图形中两个变量的数量关系,了解、掌握在几何图形背景中建立函数解析式常见的方法;研究几何图形的性质,沟通函数与几何的关系,体验函数在几何图形中的应用;进一步感悟和运用数形结合思想、分类讨论思想、方程思想解决综合问题。 教学重点与难点: 探求几何图形中两个变量之间的函数关系,寻找解题规律,并正确写出函数定义域。 教学过程: 问题1:已知正方形ABCD 中,点P 在对角线BD 上,联结PC ,过点P 作PE ⊥PC ,交AB 于点E ,如图1所示。 求证:PE=PC . (学生独立思考并解答,让学生体会随着点P 的运动,变量PE 、 PC 之间的关系) 问题2:如果把条件中的正方形改为梯形ABCD ,其中AD ∥BC , ∠ABC = 90,并设AD =3,AB =4,BC =6,(如图)若将一个直角顶点P 放在对角线BD 上移动,一条直角边过点C ,另一条直角边与腰AB (或AB 思考:图中哪些量在变化? 探究一:当Q 在AB 的上 时试探究PQ 、PC 之间有怎样的数量关系,并证明你的结论; (说明:以问题(1)为铺垫,从几何图形入 手,根据几何图形的特点,运用几何图形的有关 性质,来找到两个变量PQ 、PC 之间的关系。) 探究二、在图2中,联结AP ,且点Q 在线段AB 上时,设点B Q 、之间的距离为x , APQ PBC S y S △△,其中APQ S △表 示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函 数解析式,并写出函数定义域; 说明:(1)解题的关键是用含x 的代数式表示出相关的线段,利 图1 D C B A E P 。 O

相关文档
相关文档 最新文档