文档库 最新最全的文档下载
当前位置:文档库 › 高考数学总复习经典测试题解析版8.7立体几何中的向量方法(ⅰ)----证明平行与垂直

高考数学总复习经典测试题解析版8.7立体几何中的向量方法(ⅰ)----证明平行与垂直

高考数学总复习经典测试题解析版8.7立体几何中的向量方法(ⅰ)----证明平行与垂直
高考数学总复习经典测试题解析版8.7立体几何中的向量方法(ⅰ)----证明平行与垂直

立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( ). A .l 1∥l 2

B .l 1⊥l 2

C .l 1与l 2相交但不垂直

D .以上均不正确 答案 B

2.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A .s 1=(1,1,2),s 2=(2,-1,0) B .s 1=(0,1,-1),s 2=(2,0,0)

C .s 1=(1,1,1),s 2=(2,2,-2)

D .s 1=(1,-1,1),s 2=(-2,2,-2) 解析 两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直. 答案 B

3.已知a =? ????1,-32,52,b =? ?

???-3,λ,-152满足a∥b ,则λ等于( ).

C .-92

D .-2

3

解析 由1-3=-32

λ=5

2-152,可知λ=9

2

.

答案 B

4.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是 ( ). A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 解析 若l ∥α,则a·n =0.而A 中a·n =-2, B 中a·n =1+5=6,

C 中a·n =-1,只有

D 选项中a·n =-3+3=0. 答案 D

5.若平面α,β平行,则下面可以是这两个平面的法向量的是( ) A .n 1=(1,2,3),n 2=(-3,2,1) B .n 1=(1,2,2),n 2=(-2,2,1)

C .n 1=(1,1,1),n 2=(-2,2,1)

D .n 1=(1,1,1),n 2=(-2,-2,-2) 解析 两个平面平行时其法向量也平行,检验知正确选项为D. 答案 D

6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ).

解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),

∴???

7=2t -μ5=-t +4μ,λ=3t -2μ

∴?????

t =

337

μ=

177

λ=657

.

答案 D

7.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( ) A .(1,-1,1)

解析 对于选项A ,PA =(1,0,1),则PA ·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,PA =? ????1,-4,12,则PA ·n =? ?

???1,-4,12·(3,1,2)=0,

验证可知C 、D 均不满足PA ·n =0. 答案 B 二、填空题

8.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则

l 1与l 2的位置关系是_______. 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 平行

9.平面α的一个法向量n =(0,1,-1),如果直线l ⊥平面α,则直线l 的单位方向向量是s =________.

解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是 s =±? ????

0,22,-22.

答案 ±?

????

0,22,-22

10.已知点A ,B ,C ∈平面α,点P ?α,则AP →

·AB →=0,且AP →·AC →=0是AP →·BC →

=0的_______. 解析 由???

??

AP →·AB →=0

AP →·AC →=0

,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →

=0,

反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0?AP →·AB →=AP →·AC →

,未必等于0. 答案 充分不必要条件

11.已知AB →

=(2,2,1),AC →

=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则?????

AB →·n =0,AC →·n =0,

即??

?

2x +2y +z =0,

4x +5y +3z =0.

令z =1,得??

?

x =12,

y =-1,

∴n =? ????12,-1,1,

∴平面ABC 的单位法向量为±n |n|=±? ????1

3

,-23,23.

答案 ±? ????1

3

,-23,23

12.已知AB →=(1,5,-2),BC →=(3,1,z),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________. 解析 由题知:BP →⊥AB →,BP →⊥BC →.

所以???

AB →·BC →=0,

BP →·AB →=0,

BP →·BC →=0,

即???

1×3+5×1+-2×z=0,

x -1+5y +-2×-3=0,3x -1+y -3z =0.

解得x =407,y =-15

7

,z =4. 答案

407,-157

,4 三、解答题

13.已知:a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a∥b ,b⊥c ,求:

a ,

b ,

c .

解析 因为a∥b ,所以

x

-2=4y =1

-1

,解得x =2,y =-4, 这时a =(2,4,1),b =(-2,-4,-1).

又因为b⊥c ,所以b·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2). 14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:

MN ∥平面A 1BD .

证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直

线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1, 则M ?

????0,1,12,N ? ????

12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →

=? ????1

2

,0,12,

设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→

=0,且n ·DB →

=0,得??

?

x +z =0,

x +y =0.

取x =1,得y =-1,z =-1.∴n =(1,-1,-1).

又MN →·n

=? ????1

2,0,12·(1,-1,-1)=0,∴MN →

⊥n ,又MN ?平面A 1BD ,

∴MN ∥平面A 1BD .

法二 MN →

=C 1N →

-C 1M →

=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=1

2DA 1→

∴MN →∥DA 1→

,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ?平面A 1BD ,A 1D ?平面A 1BD ,∴MN ∥平面A 1BD .

15.如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.

(1)求证:E ,B ,F ,D 1四点共面;

(2)若点G 在B C 上,BG =2

3

,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥面

BCC 1B 1.

证明 (1)建立如图所示的坐标系,则BE →

=(3,0,1),BF →=(0,3,2),BD 1→

=(3,3,3).

所以BD 1→

=BE →

+BF →

,故BD 1→

、BE →

、BF →

共面. 又它们有公共点B ,所以E 、B 、F 、D 1四点共面.

(2)如图,设M (0,0,z ),则GM →

=? ?

???0,-23,z ,而BF →

=(0,3,2),

由题设得GM →·BF →

=-2

3

×3+z ·2=0,得z =1.

因为M (0,0,1),E (3,0,1),所以ME →

=(3,0,0). 又BB 1→

=(0,0,3),BC →

=(0,3,0),所以ME →

·BB 1→

=0,ME →

·BC →

=0, 从而ME ⊥BB 1,ME ⊥BC .

又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.

16.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,

AF =1,M 是线段EF 的中点.

求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF . 证明 (1)建立如图所示的空间直角坐标系,

设AC ∩BD =N ,连接NE .则点N 、E 的坐标分别为? ????

22,22,0、(0,0,1).

∴NE →

=? ??

??-22,-22,1.

又点A 、M 的坐标分别是(2,2,0)、? ????22,2

2,1

∴AM →

=? ??

??-22,-22,1.

∴NE →=AM →

且NE 与AM 不共线.∴NE ∥AM .

又∵NE ?平面BDE ,AM ?平面BDE ,∴AM ∥平面BDE . (2)由(1)知AM →

=? ??

??

-22,-22,1,

∵D (2,0,0),F (2,2,1),∴DF →

=(0,2,1) ∴AM →·DF →

=0,∴AM ⊥DF .

同理AM ⊥BF .又DF ∩BF =F ,∴AM ⊥平面BDF .

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

空间几何中的向量方法

第一讲:空间几何中的向量方法---------坐标运算与法向量 一、空间向量的坐标运算 1. 若123(,,)a a a a = ,123(,,)b b b b = ,则 (1)112233(,,)a b a b a b a b +=+++; (2)112233(,,)a b a b a b a b -=---; (3)123(,,),a a a a R λλλλλ=∈; (4)112233a b a b a b a b ?=++; (5)112233//,,,(0,)a b a b a b a b b R λλλλ?===≠∈; (6)1122330a b a b a b a b ⊥?++=; (7 )a == (8 )cos ,a b a b a b ?<>= = ?. 例1 已知(2,3,5),(3,1,4),a b =-=-- 求,,8,,a b a b a a b +-? 的坐标. 2.若111222(,,),(,,),A x y z B x y z 则212121(,,)AB x x y y z z =--- 练习1: 已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB,PC 的中点,且PA=AD=1, 求向量MN 的坐标. 二、空间直角坐标系中平面法向量的求法 1、 方程法 利用直线与平面垂直的判定定理构造三元一次方程组,由于有三个未知数,两个方程,要设定一个变量的值才能求解,这是一种基本的方法,容易接受,但运算稍繁,要使法向量简洁,设值可灵活,法向量有无数个,他们是共线向量,取一个就可以。 例1 已知(2,2,1),(4,5,3),AB AC == 求平面ABC 的法向量。 解:设(,,)n x y z = ,则由,,n AB n AC ⊥⊥ 得=0=0n AB n AC ??????? 即220453=0x y z x y z ++=?? ++? 不妨设1z =,得12 =-1 x y ?=? ???, 取1(,1,1)2n =-

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

【新课标】备战高考数学专题复习测试题_立体几何(文科)

高考第一轮复习专题素质测试题 立体几何(文科) 班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚) 一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱 AB 、1CC 、11A D 所在直线的距离相等的点( ) A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无数个 2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线, 则//αβ的一个充分而不必要条件是( ) A. 1////m l βα且 B. 12////m l l 且n C. ////m n ββ且 D. 2////m n l β且 3.(08四川)直线l α?平面,经过α外一点A 与l α、都成30?角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条 4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ; ④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①② B. ②③ C. ①④ D.③④ 6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积 为( ) A.3πa 2 B.6πa 2 C.12πa 2 D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为?60,则该棱锥的体积

相关文档
相关文档 最新文档