文档库 最新最全的文档下载
当前位置:文档库 › 同步电机的应用

同步电机的应用

同步电机的应用
同步电机的应用

永磁同步电机的应用分析

电子信息与电气工程学院 11电气卓越 11020312 刘闯

摘要:永磁同步电机在性能具有许多优势,特别是随着现代电力电子技术的发展,使得其应用变得越来越广泛。本文主要介绍永磁同步电机的工作原理、特点并对永磁同步电机的应用进行分析,同时指出制约永磁同步电机应用的问题和相应的解决措施。

关键词:永磁同步电机;工作原理;应用

1、引言

随着国民经济的不断增长,高新技术也随之蓬勃发展,永磁同步电机是众多高新技术和高新技术产业的基础,代表了21世纪电机发展的方向。因此,对电机的技术要求越来越高,永磁同步电机由于其一系列优点,在我国各行业已得到广泛应用,开发与推广应用高效节能同步电机具有重要意义。

2、永磁同步电机的结构和工作原理

2.1、永磁同步电机的结构

电机是以磁场为媒介的进行机械能和电能的相互转换的电磁装置为了在电机内建立进行机—电能转换所需要的气隙磁场,可以有两种方法:一种是在电机绕组内通以电流,但这既需要专门的绕组和相应的装置,又要不断提供能量以维持电流的流动;另一种是由永磁体来产生气隙磁场,这样既可以简化电机结构又可以节约能量,这就是永磁同步电机。

永磁同步电机的运行原理与电励磁同步电机相同,只是它是用永磁体代替了电励磁,从而省去了励磁线圈、滑环与电刷,其定子电流与绕线式同步电机基本相同。

永磁同步电机的主体由转子和定子两部分组成。其结构如图1所示。电机的定子指的是电机在运行时的不动部分,主要由硅钢冲压片,三相对称的分布在其槽中的绕组、固定铁心用的机壳以及端盖等部分组成。永磁同步电机的定子和异步电动机的定子结构基本相同。转子主要由永磁体、导磁轭和转轴构成。永磁体贴在导磁轭上,导磁轭为圆筒形,套在转轴上。

图1

2.2、永磁同步电机的原理

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=s n=60f/p,其中f为电网频率,p为电机极数的一半,s n称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。

同步电动机按转子结构分永磁式、磁阻式、磁滞式和绕线式四种基本类型。其中永磁式由于其转子是永磁铁,结构简单,在小功率场合得到较广泛的应用。下面以两极永磁同步电动机为例,简要说明其原理:如图1,定子绕组中电流产生一个两极的圆形旋转磁场,中间转子是一个两极的永磁体,当定子磁场以同步转速按图示方向旋转时,根据磁极间同性相斥,异性相吸原理,转子就应当与旋转磁场一起旋转,由电机统一理论知道,两磁场在电机稳态运行时,必须保持相对静止,才能产生稳定的电磁转矩,驱动电动机以同步转速旋转。其中转子磁极轴线与定子磁极轴线之间的夹角随负载转矩的变化而改变,称为功率角。

图1 图2(a)(b)

但永磁式同步电动机起动比较困难,我们以图2来说明这个问题。电机原来是静止的,刚一合上电源时,电机气隙内就产生旋转磁场,电机转子受到的力矩为T,方向与磁场转向相同,如图2(a)示,由于转子具有惯性,初速度又为零,所以刚开始时转子转速极低,而定子电流所产生的旋转磁场的转动是没有惯性的,一开始就是同步转速s n。当旋转磁场已转了180度时,转子还没有明显的角位移,于是成为图2(b)中的情况,这时转子所受到的转矩与相反,转子应以相反方向转动。

3、永磁同步电机的优点

永磁同步电机具有结构简单、损耗小、功率因素高、效率高、功率密度高等显著特点。

(1)、功率因素高、效率高

与感应电动机相比,永磁同步电动机不需要无功励磁电流,可以显著提高功率因素,减少了定子电流和定子电阻损耗,而且在稳定运行时没有转子电阻损耗,减小或去掉冷却风扇,使相应的风磨损耗减小,从而使效率比同规格的感应电机提高 2%-8%。同时功率因素、效率的提高,可减少系统成本。而且,永磁同步电动机在25%—120%额定负载范围内均可以保持较高的功率因素和效率,使轻载运行时效果更为显著,在长期的使用中可以大幅度地节省电能。

美国GM与Unique Mobility公司曾联合对峰值功率100 kW的异步电机和永磁同步电机驱动系统做过比较,结果参见下表

进过上述的对比分析,永磁同步电机是一种比较理想的电动汽车驱动系统。它相比较异步电动机而言有较多的优势。

(2)、起动力矩大

在需要大起动转矩的设备中,可以用较小容量的永磁电机替代较大容量的感应电机,较好的解决了“大马拉小车”现象,节省了设备的投入费用,提高了系统的运行效能。

(3)、力能指标好

感应电机在60%的负荷下工作时,效率下降15%,功率因素下降30%,力能指标下降40%。而永磁电机在25%-120%额定负载范围内均可保持较高的效率和功率因素。当只有20%负荷时,其力能指标仍为满负荷的80%以上,则使轻载运行时的节能效果更为显著。

(4)、温升低、功率密度高

转子无电阻损耗,定子绕组几乎不存在无功电流,因而电机温升低,同体积、重量的永磁电机功率可提高30%左右;同功率容量的永磁电机体积、重量、所用材料可减少30%左右,使永磁电机的成本优势显著。(5)、结构多样化,应用范围广

永磁同步电动机由于转子结构极其多样,产生了特点和性能各异的许许多多的品种,从工业到农业,从民用到国防,从日常生活到航空航天,从简单电动工具到高科技产品,几乎无所不包。

(6)、通过增加电机的励磁电流,可以实现对电网无功补偿

在电网电压U为常值,电磁功率为常值时,励磁电流与功率因数的关系就可以由电枢电流得到,见右图。调节励磁就可以调节同步电动机的功率因数,从而使其工作在超前、平激、滞后三种状态。

永磁同步电机U形曲线

这样既提高同步电动机运行的稳定性,又给企业带来可观的经济效益。

4、永磁同步电机的主要应用

随着新材料、机电一体化、电力电子技术、计算机等各种相关新技术的发展,永磁同步电机控制系统已经开拓了很广泛的应用领域,实现高速、高精度、高稳定度、快速响应、高效节能的运动控制。

4.1定速

工农业生产中有大量的生产机械要求

连续地以大致不变的速度单方向运行,例如风机、泵、压缩机、普通机床等。对这类机械以往大多采用三相或单相异步电动机来驱动。异步电动机成本较低,结构简单牢靠,维修方便,很适合该类机械的驱动。但是,异步电动机效率、功率因数低、损耗大,而该类电机使用面广量大,故有大量的电能在使用中被浪费了。其次,工农业中大量使用的风机、水泵往往亦需要调节其流量,通常是通过调节风门、阀来完成的,这其中又浪费了大量的电能。70年代起,人们用变频器调节风机、水泵中异步电动机转速来调节它们的流量,取得可观的节能效果,但变频器的成本又限制了它的使用,而且异步电动机本身的低效率依然存在。

4.2调速

有相当多的工作机械,其运行速度需要任意设定和调节,但速度控制精度要求并不非常高。交流永磁同步电动机由于其体积小、重量轻、高效节能等一系列优点,是当今社会的低碳电机。已越来越引起人们重视,由于同步电机的运行特性和其控制技术日趋成熟。中小功率的直流电动机、异步电动机变频调速正逐步被永磁同步电动机调速系统所取代。

4.3精密控制

高精度的伺服控制系统。伺服电动机在工业自动化领域的运行控制中扮演了十分重要的角色,应用场合的不同对伺服电动机的控制性能要求也不尽相同。实际应用中,伺服电动机有各种不同的控制方式,例如转矩控制/电流控制、速度控制、位置控制等。伺服电动机系统也经历了直流伺服系统、交流伺服系统、步进系统,直至近年来最为引人注目的永磁电动机交流伺服系统。最近几年进口的各类自动化设备、自动加工装置和机器人等绝大多数都采用永磁的交流伺服系统。

5、制约永磁同步电机应用的问题及改进措施

5.1制约永磁同步电机应用的问题

5.1.1、启动问题

同步电机的电磁转矩是定子旋转磁场与转子磁场相互作用产生的。但它们仅仅在相对静止时,也就是转子以同步转速旋转时,才有恒定方向的转矩。当电动机启动时,如果仿照异步电动机那样直接接在三相定子绕组中通以额定频率的三相电流,那么转子磁极还没动,但定子电枢绕组中通过三相交流电形成的以同步转速旋转的磁场,使得转子磁极所受的电磁转矩的方向瞬息交变,每经过半个周期,转矩方向就改变一次,因此转子所受的平均转矩等于零。所以同步电机没有启动转矩,就不能自启动。

同步电机启动过程示意图

5.1.2、失步问题

同步电机保持正常同步运行的一个必要条件和显著标志是:它的转速必须与电网严格对应,电动机的转子和转子磁场必须与定子旋转磁场严格同步。这种严格的对应和同步关系是以转轴上的转矩平衡为基础的。但来自电网、负载以及电机本身的各种扰动不断地破坏着电机轴上的转矩平衡关系。尽管电机按其本身的特性,具有一定的调节能力,以功角8的相应变化自动地调节电磁转矩的大小,以抵消各种扰动所引起的不平衡,使转轴上的转矩关系处于动平衡之中。但电机的这种自动调节能力是有限度的,当扰动大到一定程度或超过一定就会导致电机失步。按失步原因及性质的不同,可分为三种失步类型,即断电失步、带励失步和失磁失步。

5.2改进措施

5.2.1启动问题改进措施

(1)、定子电流的频率由低到高逐渐增加,最终将转子牵入同步转速。

(2)、利用绝对式光电码盘或旋转变压器获得转子磁极的初始位置,再给出相应的启动转矩实现启动。

(3)、采用带有简单磁极定位功能的增量式编码器。

(4)、在电机启动之前向定子通入直流电,产生一个静止的磁场以便将转子转到事先约定的零位置上,这样就完成了转子位置初始化。

5.2.2失步问题改进措施

(1)、逆功率继电器的动作时限应大于引起电机失步的极限断电时间。

(2)、逆功率继电器的动作时限应大于同步震荡的半个周期。

(3)、逆功率继电器的动作时限一般不宜大于0.5S

(4)、反应定于电流增大的保护。同步电动机失步后,定于电流增大超过额定电流。因此可由有限反时限特性的过电流器(GI 一l0或GI 一2O系列)构成带励失步或失磁失步保护。

(5)、反应定于电压和电流之间相位角变化的保护。带励失步时,由于电动机定于电压和转于电动势之间夹角发生变化,故定于电压和电流间的相位角也随着变化.失磁失步时,电动机由正常运行时的发送无功功率变为吸取无功功率,故定于电压和电流之间相监角也会发生变化。因此,利用定子电压和电流间相位角的变化,也可构成失步保护。

6、永磁同步电机应用趋势

永磁同步电机是众多高新技术和高新科技产业的基础,它与电力电子技术和微电子控制技术相结合,可以制造出许多新型的、性能优异的机电一体化产品和设备,代表了21世纪电机发展的方向。

(1)、向高效节能方向发展

永磁电机是一种高效节能产品,平均节电率高达10%以上,专用稀土永磁电机可高达15%-20%。根据我国国情,高性能的稀土永磁材料已实现产业化。

(2)向机电一体化方向发展

实现机电一体化的基础,是发展各种机电一体化需用的各种高性能稀土永磁电机,

如数控机床用伺服电机,计算机用VCM音圈电机等。变频调速稀土永磁同步电机和无刷直流电机是机电一体化的基础。

(3)向高性能方向发展

现代化装备向电机工业提出各种各样的高性能要求,如军事装备要求提供给各种高性能信号电机,移动电站、自动化装备用伺服系统及电机,航空航天用高性能、高可靠性永磁电机,化纤设备用高调速精度变频调速同步电动机,数控车床、加工中心、机器人用高调速比稀土永磁伺服电机,计算机用高精度摆动电机及主轴电机等。

(4)向专用电机方向发展

电机所驱动的负载千变万化,如全部采用通用型计算机,在某些情况下,技术经济很不合理。因此国外大力发展专用电机,专用电机约占总产量的80%,通用电机占20%,而我国恰恰相反。专用电机是根据不同负载特性专门设计的,如油田用抽油机专用稀土永磁电机,节能率高达25%。这方面的节能潜力很大。

(5)向轻型化方向发展

航空航天产品,电动车辆、数控机床、计算机、视听产品、医疗器械、便携式光机一体化产品等,都对电机提出体积小重量轻的严格要求。永磁同步电机以其体积小、节能、控制性能好、又容易做成低速直流驱动,消除齿轮减速装置,可通过频率的变化进行调速等优点,在电梯技术上得以开发应用。相信随着电子技术和控制技术的发展,稀土永磁同步电机技术会朝着高效节能、机电一体化、高性能、专用电机、轻型化的方向发展并日趋完善。

7、思考

永磁同步电机的应用迅速发展的原因:(1)、高性能永磁材料的发展。永磁材料的发展极大地推动了永磁同步电动机的开发应用。在同步电动机中用永磁体取代传统的电激磁磁极的好处是:用永磁体替代电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;省去了激磁直流电源,消除了激磁损耗和发热。当今中小功率的同步电动机绝大多数已采用永磁式结构。

(2)、电力电子技术的发展大大促进了永磁同步电动机的开发应用。

(3)、规模集成电路和计算机技术的发展完全改观了现代永磁同步电动机的控制集成电路和计算机技术是电子技术发展的代表,它不仅是高新电子信息产业的核心,又是不少传统产业的改造基础。它们的飞速发展促进了电机控制技术的发展与创新。

8、总结

随着电子技术和控制技术的发展,永磁同步电机的控制技术渐渐成熟并日趋完善,因此永磁同步电机在性能上具有许多优势。同时,人类对环境的保护意识不断增强,能源问题的社会意识及要求越来越高,永磁同步电机具有高效节能的特点必将被广泛应用。永磁同步电机的应用前景也越来越明显,其应用必将在生活的众多领域中起到极其重要的作用。

参考文献

[1]顾绳谷. 电机及拖动基础[M]北京:机械工业出版社,2003.

[2] 彭宏才. 电机原理及拖动[M] 武汉: 华中理工大学出版社,2007

[3] 林忠岳,张兴. 现代电力电子应用技术[M] 北京:科学出版社,2005

[4] 阮毅,陈伯时. 电力拖动自动控制系统—运动控制系统[M] 北京:机械工业出版社,2003

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

多电机速度同步控制

多电机速度同步控制 在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。 薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。 在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。 牵引电机和印刷电机采用变频调速,其控制框图如图1所示。在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。

同步电机与异步电机的概念、区别及应用前景

异步电机与同步电机的控制原理,应用领域 和研究热点 班级: 学号: 姓名:

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场 运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。 1.转速闭环恒压频比控制 转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。 2.转差频率控制 转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩 3.矢量控制 矢量控制框图如图2 所示。 1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。

同步电动机原理

同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步。

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

同步电机的控制原理

同步电机的控制原理 一、控制原理 主机结构,包括定子、转子以及控制系统。 定子和异步电机完全相同。转子和线绕异步电机转子相同,有三个线圈,其中两个是励磁绕组,一个是阻尼绕组。励磁绕组通直流电,形成和定子对应的转子磁极,转子磁极在定子旋转磁场的作用下旋转,和定子保持同步。阻尼绕组的作用是防止已进入同步运转的电机失步。 启动状态下,转子的三个绕组起异步启动作用,产生感应电流,使电机逐步升速,直到接近于投磁前的亚同步状态。电机被拉入同步以前,两个励磁绕组经凸轮控制器串联,阻尼绕组经线路转换开关自成回路,这时通入直流电,把异步运转的电机强行拉入同步。 同步运转状态下,阻尼绕组和旋转磁场之间没有相对运动,不产生电流;失步状态下,阻尼绕组和旋转磁场之间有相对运动,产生电流和电动力,电动力的方向刚好和电机失步的方向相反,因此能起到阻止电机失步的作用。 控制系统包括一次系统控制回路和二次系统控制回路两部分。 一次系统控制回路主要是一台六氟化硫开关和一系列保护。有差动保护,过流保护,低电压保护,接地方向保护。 差动保护针对的是定子内部的短路或接地,定子内部短路或接地时,差动保护动作。过流保护主要保护电机的过载,在过载情况下动作。低电压保护在电网出现较长时间低电压情况下动作。接地方向保护在6kV单相完全接地或不完全接地情况下动作。各种保护动作,在切断主回路的同时,也切断直流回路。 二次回路包括励磁控制和启动回路。励磁控制是一套可控硅系统,功能和直流电机控制系统类似而较为简单,没有那么多反馈控制环,只有一个电流反馈控制环; 另外有联锁回路和失步、失磁、过激保护回路。励磁投入必须具备一定条件,如各种保护都没有动作,慢动电机处于脱开的位置,电机启动已进入亚同步状态的信号已送出,等。根据这些条件来准备控制可控硅的投入时间就是连锁,相应的回路称为连锁回路。 相对于一次回路的保护而言,失步、失磁和过激保护属于二次回路的保护。失步保护保护电动的失步。电机失步的破坏性很大,形成的异步力量能剪切转子线圈,所以这个保护功能必须可靠,否则一旦发生失步,后果很严重。该回路检测定子电流、电压。 众所周知,电机运行在功率因数超前状态,定子电流比定子电压滞后;运行在功率因数滞后状态,定子电流比定子电压超前。不论超前还是滞后,6kV回路的电流波和电压波之间都没有相对运动。如果电机失步,电机的电流波和电压波之间立即产生来来回回的相对运动,失步检测回路即捕捉此电流波和电压波来回运动时重合的脉冲。重合一次证明失步一次,重合两次失步保护动作。 失磁是欠激的极限状态,不清楚为什么有失磁保护而没有欠激保护,请各位探讨。失磁信号和过激信号的确定都通过比较放大器实现,比较放大器的给定可以调整。 二、启动过程 同步电机启动必须满足三个条件:1、继电器30C不激磁(过电流保护50/51未动作,接地方向继电器67G未动作,差动继电器87未动作,欠压继电器27未动作,故障继电器86X未动作,激磁变压器一次侧空气开关未跳,故障包括:失磁,失步,过激,启动限时,凸轮控制器及线路转换开关过载保护49AX,慢动电机总空气开关,慢动抱闸空气开关,慢动热保护49I,可控硅风机开关,及其热保护49FX,

多台电机同步调速器的应用

多台电机同步调速器的应用 (TB-4同步控制器使用说明书) 同步控制是工业控制中常见的控制方式,传统的机械同步控制由于精度和可调性差而逐渐减少,我所开发的TB-4 同步控制器由于控制精度高,输出模拟量可选性多,能多台同步器并联使用, 等优点而在电线电缆, 皮革, 钢铁, 纺织, 造纸, 等一些需要电机同步同速和同步非同速控制的行业被大量应用。TB-4 同步控制器就其工作原理而言,实际上是一台具有4 路直流模拟量(电压或电流)控制信号输出的信号发生器。 技术参数; 自动控制输入:0-5VDC 。0-10V DC 手动控制:主调10K 电位器 模拟量输出四组电压型;0-5VDC . 1-5VDC. 0-10V . 2-10V 。 模拟量输出四组电压型:0-10ma. 0-20ma .2-10ma.4-20ma 软启动时间调节:0-60 秒 控制电机台数;4-48 台 可接口调速器:力矩电机控制器,直流电机调速器,变频器,电磁电机调速器,等可调速电机控制器。 外型尺寸 原理示意图

同步器的技术及其特点 TB-4 同步器,内部采用MAXI 公司的是最新12 位D/A ,A/D 转换电路,他能通过主调电位器同时输出 4 组电压量或电流量信号,这四组信号可通过4 个多圈微调电位器,在原有主调电位器调节输出的(电压或电流)基础上增加或衰减,以达到多台电机的同步同速和同步非同速控制。 软启动曲线图 该控制器具有输出模拟量(电压或电流)随时间线性上升功能,调节机器内部电位器W1 可使上升时间,0-60秒线性调节(图 1 ) 注:V/I 输出电压和电流,ms 启动时间 应用举例:

浅析两台异步电机的同步控制

龙源期刊网 https://www.wendangku.net/doc/b79889195.html, 浅析两台异步电机的同步控制 作者:殷雄 来源:《科技资讯》2012年第02期 摘要:在两台异步电机(分别命名为1#,2#,下同)的控制中,以1#电机为基准,采用基 于PLC技术的变频控制,根据根据负载需要,不断改变1#电机的转速,为了达到两台异步电机的同步运行,以1#电机的转速为给定量,2#电机的转速为随动量,也采用基于PLC技术的闭环变频控制。从而实现两台异步电机的精确同步运行,也达到了节能之目的。 关键词:异步电机同步控制节能 中图分类号:TPO文献标识码:A文章编号:1672-3791(2012)01(b)-0134-01 随着国民经济的发展,生产过程中的机械化程度不断提高,而机械化程度的不断提高与电机特别是异步电机的广泛应用和精确控制是密不可分的。在海绵、塑料制品和钢铁行业生产过程中,对异步电机的同步控制要求十分高。例如:在海绵发泡过程中,必须保证两台电机转速的同步,如果2#电机的转速大于1#电机的转速,就会造成切断机刀架拉坏,如果2#电机的转速小于1#电机的转速就不能切断海绵。这两种情况在实际生产中是不允许的,因为这会造成 设备的损坏和产品的报废,从而造成经济损失,影响企业的效益。本文依据负载需要对两台电机采用闭环PLc变频控制,从而实现两台异步电机的转速同步控制,以满足工业生产的需要。 1基于PLC技术的1#电机转速变频控制的实现 先令1#电机以最低频率(35Hz)进行启动,当电机启动后,依据生产需要,不断改变电机转速的给定值,并将给定值输入PLC相应模块,与1#电机的相连的测速电机对1#电机进行测速,并将所测的速度值也输入PLC相应模块,让PLC进行判断。如果测速电机所测的速度大于给定速度时,那么PLC向1#电机的变频器发出无极降速的指令,从而让1#电机的变频器降低频率进而降低转速;如果测速电机所测的速度小于给定速度时,那么PLC向1#电机的变频器发出无极升速的指令,从而让1#电机的变频器提高频率进而升高转速。其PLC闭环控制原理图如图1所示,其PLC闭环控制流程图如图2所示。

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

同步电机练习试题和答案解析

第六章 同步电机 一、填空 1. ★在同步电机中,只有存在 电枢反应才能实现机电能量转换。 答 交轴 2. 同步发电机并网的条件是:(1) ;(2) ;(3) 。 答 发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致 3. ★同步发电机在过励时从电网吸收 ,产生 电枢反应;同步电动机在过励时向电网输出 ,产生 电枢反应。 答 超前无功功率,直轴去磁,滞后无功功率,直轴增磁 4. ★同步电机的功角δ有双重含义,一是 和 之间的夹角;二是 和 空间夹角。 答 主极轴线,气隙合成磁场轴线,励磁电动势,电压 5. 凸极同步电机转子励磁匝数增加使q X 和d X 将 。 答 增加 6. 凸极同步电机气隙增加使q X 和d X 将 。 答 减小 7. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为 。 答 δs i n 2)X 1X 1( mU d q 2 - 二、选择 1. 同步发电机的额定功率指( )。 A 转轴上输入的机械功率; B 转轴上输出的机械功率; C 电枢端口输入的电功率; D 电枢端口输出的电功率。 答 D 2. ★同步发电机稳态运行时,若所带负载为感性8.0cos =?,则其电枢反应的性质为( )。 A 交轴电枢反应; B 直轴去磁电枢反应; C 直轴去磁与交轴电枢反应; D 直轴增磁与交轴电枢反应。 答 C 3. 同步发电机稳定短路电流不很大的原因是( )。 A 漏阻抗较大; B 短路电流产生去磁作用较强; C 电枢反应产生增磁作用; D 同步电抗较大。 答 B

4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为( )。 A q aq d ad X X X X X >>>>σ; B σX X X X X q aq d ad >>>>; C σX X X X X ad d aq q >>>>; D σX X X X X aq q ad d >>>>。 答 D 5. 同步补偿机的作用是( )。 A 补偿电网电力不足; B 改善电网功率因数; C 作为用户的备用电源; D 作为同步发电机的励磁电源。 答 B 三、判断 1. ★负载运行的凸极同步发电机,励磁绕组突然断线,则电磁功率为零 。 ( ) 答 错 2. 同步发电机的功率因数总是滞后的 。 ( ) 答 错 3. 一并联在无穷大电网上的同步电机,要想增加发电机的输出功率,必须增加原动机的输入功率,因此原动机输入功率越大越好 。 ( ) 答 错 4. 改变同步发电机的励磁电流,只能调节无功功率。 ( ) 答 错 5. ★同步发电机静态过载能力与短路比成正比,因此短路比越大,静态稳定性越好。( ) 答 错 6. ★同步发电机电枢反应的性质取决于负载的性质。 ( ) 答 错 7. ★同步发电机的短路特性曲线与其空载特性曲线相似。 ( ) 答 错 8. 同步发电机的稳态短路电流很大。 ( ) 答 错 9. 利用空载特性和短路特性可以测定同步发电机的直轴同步电抗和交轴同步电抗。( ) 答 错 10. ★凸极同步电机中直轴电枢反应电抗大于交轴电枢反应电抗。 ( ) 答 对 11. 与直流电机相同,在同步电机中,U E >还是U E <是判断电机作为发电机还是电动机运行的依据之一。 ( ) 答 错 12. ★在同步发电机中,当励磁电动势0 E 与I 电枢电流同相时,其电枢反应的性质为直轴电枢反应 。 ( ) 答 错 四、简答 1. ★测定同步发电机的空载特性和短路特性时,如果转速降至0.951n ,对试验结果有什么影

伺服电机同步控制技术在印刷行业的应用

伺服电机同步控制技术在印刷行业的应用 在印刷机械行业中,多电机的同步控制是一个非常重要的问题。由于印刷产品的特殊工艺要求,尤其是对于多色印刷,为了保证印刷套印精度(一般≤0.05mm),要求各个电机位置转差率很高(一般≤0.02%)。在传统的印刷机械中,以往大都采用以机械长轴作为动力源的同步控制方案,但机械长轴同步控制方案易出现振荡现象,各个机组互相干扰,而且系统中有许多机械零件,不方便系统维护和使用。随着机电一体化技术的发展,现场总线技术不断应用到各个领域并得到了广泛的应用。本文针对机组式印刷机械的同步需求,提出了一种基于CAN现场总线的同步控制解决方案,并得以验证。 一、无轴传动印刷机控制系统的同步需求 机组式卷筒印刷机一般由给纸机组、印刷机组、张力机组、加工机组和复卷机组等机组组成。在传统的有轴传动印刷机中,动力源由异步电机通过皮带轮带动一根机械长轴(约10-20m),然后通过长轴带动各机组的齿轮、凸轮、连杆等传动元件,再通过传动元件带动设备的执行元件完成设备的输人、输出任务。 卷筒印刷机要求印刷速度为300m/min,套印精度≤0.03mm,为了满足套印精度,要求在各个机组定位精度≤0.03 mm。在印刷机印刷过程中,要求各机组轴与机械长轴保持一定的同步运动关系,能否很好的实现各个机组轴的同步关系,将直接影响到印刷速度、套印精度等。其中,给纸机组、印刷机组要求与主轴转动速度成一定的比例关系,张力机组根据不同的印刷速度调整张力系数,加工机组需要与主轴保持凸轮运动关系,而复卷机组的运动规律,要求随着纸卷直径的增大而减小。 我们把机械长轴作为主轴(参考轴),各印刷机组轴为从动轴,如图1,各从动轴与主轴要满足同步关系θ1=f1(θ),θ2=f2(θ),θ3=f3(θ)···,其中,θ为主轴位置转角,θ1、θ2、θ3···为从动轴位置转角。 二、同步控制系统设计

同步电机原理和结构

每相感应电势的有效值为

(15.2) ◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: (15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 ? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机 水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。 隐极式转子 隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机。 永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转

第五篇同步电机·第二十章概述·第一节同步电机的基本结构和额定值

第五篇同步电机·第二十章概述·第一节同步电机的基本结构和额定值 1.转子本体与基波旋转磁场同速的电机称为同步机。对 2.转子本体与基波旋转磁场异速的电机称为同步机。错 3.实际应用的同步机多是转枢式。错 4.同步电机实际运行状态取决于定、转子磁场的相对位置。对 5. 无刷励磁需要刷-环机构。错 第五篇同步电机·第二十一章同步发电机的运行原理·第一节同步发电机的空载运行1. 空载电势又叫励磁电势。对 第五篇同步电机·第二十一章同步发电机的运行原理·第二节对称负载时的电枢反应 1.电枢反应改变的是主极磁场。对 2.内功因角是空载电势与电枢电流之间的夹角。对 3. 电枢反应与内功因角无关。错 第五篇同步电机·第二十一章同步发电机的运行原理·第三节隐极同步发电机的数学模型 1.计及饱和时,可以引入电枢反应电抗的概念。错 2. 不计饱和时,电枢反应电势可以写成负的电抗压降形式。对 第五篇同步电机·第二十一章同步发电机的运行原理·第四节凸极同步发电机的数学模型 1.计及饱和时,可以应用双反应理论。错 2.引入虚拟电势后,可以画出凸极同步发电机的等效电路。对 3.直轴同步电抗下雨交轴同步电抗。对

第五篇同步电机·第二十一章同步发电机的运行原理·第五节同步发电机的功率和转 矩 1.对同步发电机言,输入功率扣掉铁耗、机耗,剩下的就是电磁功率。对 2.对同步发电机言,电磁功率就是空载电势发出的电功率。对 3.对同步发电机言,空载转矩对应铁耗与机耗之和,电磁转矩对应电磁功率。对 4. 功率角既是空载电势与端电压之间的夹角,又近似地是主磁场与合成磁场之间的夹角。对 第五篇同步电机·第二十二章同步发电机的特性·第一节同步发电机的基本特性 1.空载特性反映了定子量与转子量之间的关系。错 2.短路特性不是直线。错 3. 零功率因数负载特性和空载特性之间相差一个特性三角形。对 第五篇同步电机·第二十二章同步发电机的特性·第二节同步发电机的参数测定 1.短路试验时磁路是饱和的。错 2.短路比反映了一定条件下短路电流的大小。对 3.短路比等于饱和直轴同步电抗的倒数。对 4.零功率因数特性的实测曲线要比理想曲线高。错 5. 坡梯漏抗比实际漏抗略大。对 第五篇同步电机·第二十二章同步发电机的特性·第三节同步发电机的运行特性 1.感性负载的调整特性是降低的。错 2.感性负载的外特性是升高的。错 3. 额定效率是同步发电机的性能指标之一。对、、 第五篇同步电机·第二十三章同步发电机的并联运行·第一节投入并联运行的条件和方法

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子: 转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明:

第四篇同步电机习题解答

第四篇 同步电机习题解答 15-1 一台三相隐极同步发电机,25000kW N P =,10.5kV N U =,Y 接,cos 0.8 N ?=滞后,已知7.52, 0t a x R =Ω≈,每相励磁电动势07520V E =。求下列几种情况下的电枢电流,并说明其电枢反应的性质:(1)每相接7.52Ω的三相对称纯电阻负载;(2)每相接7.52Ω的三相对称纯电感负载;(3)每相接15.04Ω的三相对称纯电容负载;(4)每相接7.547.54j -Ω的三相对称电阻电容负载。 解:0a t L a t L t E U IR jIx IZ IR jIx IZ jIx =++=++≈+ 0L t E I Z jx =+ , 令0075200V E =∠ (1)7.52L Z =Ω 00075200701.145(A)7.527.52 L t E I Z jx j ∠===∠++ 为直轴和交轴电枢反应; (2)7.52L Z j =Ω 0007520050090(A)7.527.52 L t E I Z jx j j ∠===∠-++ 为直轴去磁电枢反应; (3)15.04L Z j =-Ω 000 75200100090(A)15.047.52 L t E I Z jx j j ∠===∠+-+ 为直轴增磁电枢反应; (4)7.527.52L Z j =-Ω 000 7520010000(A)7.527.527.52 L t E I Z jx j j ∠===∠+-+ 为交轴电枢反应。 15-2 一台凸极同步发电机,72500kW N P =,10.5kV N U =,Y 接, c o s 0.8N ?=滞后,1, 0.554, 0 d q a x x R * *==≈。试求额定负载下运行时发电机的0, , d q I I E ψ及。 解:Y 接,0cos 0.8, 36.87N N ??==

第五篇同步电机

第五篇 同步电机 5.1 同步电机和异步电机在结构上有哪些区别? 5.2 什么叫同步电机?怎样由其极数决定它的转速?试问75r/min 、50Hz 的电机是几极的? 5.3 为什么现代的大容量同步电机都做成旋转磁极式? 5.4汽轮发电机和水轮发电机的主要结构特点是什么?为什么有这样的特点? 5.5 伞式和悬式水轮发电机的特点和优缺点如何?试比较之。 5.6 为什么水轮发电机要用阻尼绕组,而汽轮发电机却可以不用? 5.7 一台转枢式三相同步发电机,电枢以转速n 逆时针方向旋转,对称负载运行时,电枢反应磁动势对电枢的转速和转向如何?对定子的转速又是多少? 5.8 试分析在下列情况下电枢反应的性质。 (1)三相对称电阻负载; (2)纯电容性负载8.0=*C X ,发电机同步电抗0.1=* t X ; (3)纯电感性负载7.0=* L X ; (4)纯电容性负载2.1=*C X ,同步电抗0.1=* t X 。 5.9 三相同步发电机对称稳定运行时,在电枢电流滞后和超前于励磁电动势0E 的相 位差大于?90的两种情况下(即?<>?-18090ψ), 电枢磁动势两个分量ad F 和aq F 各起什么作用? 5.10 在凸极同步电机中,如果ψ为一任意锐角,用双反应理论分析电枢反应磁通a Φ 和电枢反应磁动势a F 两个矢量是否还同相?a Φ 与它所感应的电动势a E 是否还差?90? 5.11 试述交轴和直轴同步电抗的意义。为什么同步电抗的数值一般较大,不可能做

得很小?请分析下面几种情况对同步电抗有何影响? (1)电枢绕组匝数增加; (2)铁心饱和程度提高; (3)气隙加大; (4)励磁绕组匝数增加。 5.12 试根据不饱和时的电动势相量图证明下列关系式。 (1)隐极同步发电机 ? ? ψcos sin tan U IR U IX a t ++= ψψθsin cos cos 0t a IX IR U E ++= (2)凸极同步发电机 ? ?ψcos sin tan U IR U IX a q ++= ψψθsin cos cos 0d a IX IR U E ++= 其中,?为I 滞后于U 的夹角,即功率因数角;ψ为I 滞后于0E 的夹角;θ为U 滞后于0 E 的夹角,且有?ψθ-=。 5.13 试证明不考虑饱和时ad X 和aq X 的公式为 d N ad k p k N k l mf X 2 1 204δπτμδ= q N aq k p k N k l mf X 2 1 204δπτμδ= 5.15 为什么d X 在正常运行时应采用饱和值,而在短路时却采用不饱和值?为什么q X 一般总只采用不饱和值? 5.16 测定同步发电机空载特性和短路特性时,如果转速降为N n 95.0,对实验结果

同步电动机原理

同步电动机原理 Synchronous Motor Principle 三相交流电动机是用三相交流电产生的旋转磁场来带动电机转子旋 转的,有关旋转磁场的产生原理在前面已作介绍,在这里只介绍电机转 子是如何在旋转磁场的作用下旋转的。 永磁交流同步电动机 最简单的方法是在产生旋转磁场的空间放一永久磁铁,该磁铁就会 跟着磁场旋转了。下图就是这样一个永久磁铁转子。 永久磁铁转子 把永久磁铁转子放在能产生旋转磁场的定子铁芯中,它将会跟随旋 转磁场同步旋转,其转速与旋转磁场一致,故称之为同步电动机,下图 便是一个永磁同步电动机模型的示意图。

永磁同步电动机模型 下面是该三相交流同步电动机模型的动画截图,为看清线圈与磁力线,定子与转子用半透明显示。动画中有输入三相电流的变化波形,有旋转磁场与跟着旋转的永磁转子。

永磁同步电动机动画截图 请观看永磁转子同步电动机原理模型3D动画 这个三相交流同步电动机的旋转磁场只有一对磁极,永磁转子也是一对磁极,转速与交流电源相同,用50周的交流电供电时转子转速是每秒50转。

电励磁交流同步电动机 实际上的三相交流同步电动机转子多数是电励磁的,转子上有励磁绕组,用直流励磁电源产生固定磁场,下图是一个电励磁三相交流同步电动机原理模型旋转动画的截图。 电励磁三相交流同步电动机模型 请观看三相交流同步电动机原理3D动画 该三相交流同步电动机的旋转磁场只有一对磁极,电励磁转子也是一对磁极,用50周的交流电供电时转子转速是每秒50转,也即每分钟3000转。两极同步电动机的转子一般采用隐极式转子。

多极交流同步电动机 许多场合需用低转速,大力矩输出的交流同步电动机,此时的电机多做成大直径的多极电机形式,定子绕组产生多对磁极旋转磁场,转子采用多对凸极结构。下图是一个3对磁极同步电动机模型示意图,定子有3个3相绕组,转子有3对(6个)凸极,转速为每分钟1000转。 多极三相交流同步电动机模型

相关文档