文档库 最新最全的文档下载
当前位置:文档库 › 信号传输线理论及其特性阻抗

信号传输线理论及其特性阻抗

信号传输线理论及其特性阻抗
信号传输线理论及其特性阻抗

信号传输线及其特性阻抗

高华东

随着电子产品小型化、数字化、高频化和多功能化等的快速发展与进步,作为电子产品中电气的互连件—PCB中的导线的作用,已不仅只是电流流通与否的问题,而且是作为“传输线”的作用。也就是说,对于高频信号或高速数字信号的传输用的PCB之电气测试,不仅要测试线路的“通”、“断”、“短路”等是否合乎要求,而且还要其“特性阻抗值”是否合乎要求,只有这两方面都“合格”了,PCB才符合允收性。

1 信号传输线的提出

1.1 信号传输线的定义

这是为了区别常规导线而提出的名称。按IPC-2141的3.4.4条的定义:“当信号在PCB 导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线”了。有的文献认为,导线的长度接近波长的1/10时,应按信号传输线处理。显然,后者更严格(显得‘过分’),但大多数人认定为前者。

大家知道,电流通过导体时,会受到一个“阻力”,在直流电中是电阻,符合欧姆定律。即:

R=V/I

在交流电中的“阻力”是由“电阻”、“感抗”和“容抗”的综合结果,即:

Z=〔R2+(X L-X C)2〕1/2

1.2信号传输线的判断

元件有很高频率信号传输,但经过导线传输后,频率下降(时间延迟)了,导线越长,时间延长越厉害,当导线的长度接近于波长时,或信号速度(频率)提高到某一范围时,传输的信号便会出现明显的“失真”。

⑴高频信号的传输。

假设:(一)元件的信号传输频率f=10MH Z,导线L=50cm,则

C=f*λ

λ= C/f

λ/L= C/f*L=60

属于常规导线。

(二)元件的信号传输频率f=1GH Z,导线的长度L=10cm,则

λ/L= C/f*L=3

不属于常规导线,应进行特性阻抗值控制的传输线。

⑵脉冲信号的传输。在数字电路中从“0”到“1”的上升时间t r是很短的.但可用下面公式来计算频率f max:

f max=0.35/t r

假设:元件的上升时间t r是=2ns,则

f max=0.35/t r=175 MH Z

L= C/( f max*7)=24.5 cm

当导线长度≥24.5 cm时,应作为信号传输线处理。

目前:TTL(transister-transister logic)的t r为4ns→1ns→0.5ns→

ECL(emitter-coupled logic) 的t r为3ns→1ns→0.5ns→

⑶信号传输线必须进行特性阻抗值控制。

如果不进行特性阻抗值控制时,在线路中产生的信号“反射”,会“抵消”正在传输信

号。λ/L比率越小,“反射”越严重,则会产生如下问题:

①信号(或能量)传输效率明显下降;

②由于反复干扰(抵消)信号传输,将随着频率增加而严重化;

③部分“能量”是会以电磁波辐射出去,在内部导线或网络之间形成EMI。

1.3信号普通线与信号传输线的差别

信号普通线与信号传输线的差别主要有三个方面:

⑴信号普通线是指第一信号传输被接受完成后,才发送第二个信号,因此第一个信号传输过程中的“反射”信号,不会抵消第二个信号。而信号传输线的特征是第一个信号传输还没有被接受,就发送第二个信号,因此第一信号传输过程中产生的“反射”信号就可抵消第二个信号而削弱了第二个信号,频率越快的传输信号,则“失真”就越多,甚至信号消失。

⑵信号普通线,由于信号传输速度慢,“反射”信号不会抵消后面传输的信号。因此,导线的粗细、缺陷(缺口、针孔)等是允许某些程度存在着。而在信号传输线中,这些粗细、缺陷等要进行十分严格的要求。

⑶信号普通线,不要求特性阻抗值控制,只要求“通”、“断”、“短路”的电气测试。而信号传输线要求特性阻抗值控制,即除了要求“通”、“断”、“短路”的电气测试外,还必须有特性阻抗值控制的测试。

2PCB中特性阻抗值Z0的设计

2.1 Z0的的结构类型与计算方法

主要有两种:微带线和带状线及其派生的各种各样的结构,如何选用,应视元件和电子产品而定。

微带线(适合Z0较大的场合)。

Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}

带状线(适合Z0较小的场合)。

Z0 =60ln{4D/[0.67π(0.8W+T) ]}

公式中的D为介质量层厚度。

2.2微带线的的结构与计算方法

根据信号传输线的不同位置可以形成各种各样的结构及其计算方法(参见《现代印制电路基础》一书第十四章)。

2.3 特性阻抗值Z0的一般设计规则

⑴选用合适的基板(CCL)材料和PCB结构,确定信号传输线的长度等以确定PCB尺寸。

⑵合理的布局与布线,使每组(网络)导线的特性阻抗值Z0与元(组)件的特性阻抗值相匹配。

⑶应考虑基板材料品质的不稳定波动、PCB制造过程的偏差与控制和PCB设计的因素等带来在PCB中特性阻抗值Z0偏差的补救与修正的措施和办法。

3 信号传输线的布设

3.1信号传输线的长度越短越好

根据信号“传输线”的定义,信号线布设得很短,使其长度小于1/7传输信号波长,便可消除传输信号被“反射”信号而削弱问题。或者说,信号线布设,其长度短到小于1/7传输信号波长,则其布设的导线便可按普通线处理。

如何使信号线布设得更短呢!除了高频的元件合理布设外,应在PCB板上的互连结构上下工夫,如采用埋/盲孔、盘内孔(hole in pad)、叠孔和HDI/BUM等结构来缩短走线。3.2 高密度布线,介质层越薄,串扰越小

介质层越厚,电磁交叉感应越强,串扰越严重!

介质层要薄,必须选择低εr材料。

3.3 采用非平行走线

密集的平行走线将带来更大的电感与电容,从而产生更大的串扰,也是产生杂音的原因之一。应采用:

⑴相邻的导线层之间互为直角布设;

⑵同一层上采用阶梯式斜向(45度)布设;

⑶通过导通孔的绞线布设。

3.4 采用差分传输线

采用差分传输线可以明显减小传输线的干扰,这在高频和高速数字的信号传输中非常重要。

⑴差分传输线可以明显减小传输线中信号的干扰,提高传输信号的完整性,这是PCB设计者所熟悉的。但是,不同差分传输线减小干扰信号的程度是不同的。为了减小对传输信号的“共模”干扰,采用的差分传输线,主要应做到如下四个:(一)形状和长度相同,做到“共模”拐角,即不要使形状和长度不相同而引起“共模”干扰;(二)由直角改为45度角,实验表明,其“共模”干扰可降低50%;(三)采用补偿电容,如在拐角的短线加一个合适的电容,可降低干扰;(四)形成双绞方式差分传输线。

⑵双绞差分传输线。采用通孔在不同层之间来形成双绞差分传输线是目前最有效地降低干扰信号的方法。

①有偏位(移)双绞差分传输线。又可称为常规双绞差分传输线。

②没有偏位(移)双绞差分传输线。可获得较好的降低信号干扰。

4特性阻抗值Z0对基板(CCL)材料的要求

从Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}公式中可以看出:影响特性阻抗值Z0的主要因素:(一)介电常数εr;(二)介质层厚度H;(三)信号传输线的宽度W;(四)信号传输线的厚度。这些表明:特性阻抗值Z0与基板材料是息息相关着。实验也表明,影响特性阻抗值Z0从大到小是9(二)、(三)、(一)、(四)顺序排列的。

4.1介电常数εr对特性阻抗值Z0的影响

⑴介电常数εr影响着信号的传输速度。

信号的传输速度是随着介电常数εr的增加而下降。根据电磁波理论中的马克斯威尔公式,即:

V s=c/(εr)1/2

表1

⑵介电常数εr的大小是复合材料的“加权和”。这就是说,介电常数εr的大小是与介质层的组成、结构(复合组成与结构)有关。如FR-4材料中,由于采用E-玻纤布的结构(如7628、2116、1080、106等)不同,其树脂含量是不同的,因此,其介电常数εr值是不一样的。对于严格控制特性阻抗值Z0来说,PCB设计和制造都应该了解和加以计算,才能获得更精准的控制与结果。

⑶εr值变动的大小比其它因素影响大,位居第三位。介电常数εr对特性阻抗值Z0的影响可以从Z0的公式中看出来:

Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}

显然,介电常数εr值越小,Z0值越大,εr值变动的大小影响大,应加以认真控制。

4.2 介质厚度对特性阻抗值Z0的影响

⑴从Z0的公式中可看出,Z0的值是与介质厚度H的自然对数成正比的。

⑵在相同的厚度下,微带线有较大的Z0值。

⑶厚度偏差对Z0值的影响是处于第一位的,因此必须很好控制介质层的厚度。但由于厚度偏差主要是由CCL制造商,其次是PCB制造者(多层压板)来控制的,一般偏差可控制在较小的范围内。

4.3导线厚度对特性阻抗值Z0的影响

⑴从Z0的公式中可看出,Z0的值是随着导线厚度T的减少而增加着。

⑵在相同的厚度下,微带线有较大的Z0值。

⑶厚度偏差对Z0值的影响是最小的。

4.4 导线宽度对特性阻抗值Z0的影响

⑴从Z0的公式中可看出,Z0的值是随着导线宽度W的下降而增加。

①计算与实验表明,导线宽度W对特性阻抗值Z0的影响是最大的。

②导线宽度W是PCB生产最难控制的,也是最需要进行控制的。

⑵导线宽度偏差控制的意义。

导线宽度偏差控制的意义,在某种程度上是控制了PCB(OEM设计)的特性阻抗值Z0的范围。因为选定CCL材料和完成PCB设计之后,这意味着:

①介电常数εr值、介质厚度H值和导线厚度T值等基本不变,或变动不大;

②导线宽度偏差最大,也最难控制,因为制造过程长、影响多。

③导线较长又是用来传输信号的,导线宽度偏差是影响特性阻抗值Z0的最大因素。

所以,导线宽度偏差值的控制是当今HDI/BUM板的关键技术。

⑶导线宽度偏差的控制。

①导线宽度尺寸的迅速缩小,其控制越难,属于“精细”节距的控制。

②常规的图形转移技术越来越不能满足精细导线的要求了。

③激光直接成像技术是目前最好的制造精细导线的选择。

5特性阻抗值Z0的测试

5.1特性阻抗的测试样板

特性阻抗的测试样板可按IEC 61188-1-2规定进行。IPC-D-275(四种电路板传输线),IPC-D-317(高速电路板设计规范中传输线的种类)和IPC-TM-650等也作了规定。

特性阻抗的测试仪

目前是以英国Polar公司生产的特性阻抗测试仪。它是由时域反射计(TDR)、台式计算机和特制的附有1米长电缆测试探头以及待测的样板(或互连板)等组成。

特性阻抗的测试原理是由时域反射计(TDR)向印制板发射出一个信号电压(高频信号或高速脉冲信号的电压),测量出反射回来的电压变化,然后通过PC计算并输出特性阻抗值Z0来。计算公式:

Z0 =Z参V线/(V参-V线)

AOI对特性阻抗值的控制

由于导线制造的完整性(尺寸偏差)在特性阻抗值的控制中的重要性,越来越走向精细化。采用“目检”已经不能胜任,而随着AOI的不断改进与完善,采用AOI技术来控制精

细导线已经成为现实,虽然不能完全取代特性阻抗的测试,但是,可以提高PCB的生产率(合格率),进一步达到控制特性阻抗值的目的。

2007,7,13.

传输线理论与电感

目錄 第一章傳輸線理論 一傳輸線原理 二微帶傳輸線 三微帶傳輸線之不連續分析第二章被動元件之電感設計與分析一電感原理 二電感結構與分析 三電感設計與模擬 四電感分析與量測

第一章 傳輸線理論 傳輸線理論與傳統電路學之最大不同,主要在於元件之尺寸與傳導電波之波長的比值。當元件尺寸遠小於傳輸線之電波波長時,傳統的電路學理論才可以使用,一般以傳輸波長(Guide wavelength )的二十分之ㄧ(λ/20)為最大尺寸,稱為集總元件(Lumped elements );反之,若元件的尺寸接近傳輸波長,由於元件上不同位置之電壓或電流的大小與相位均可能不相同,因而稱為散佈式元件(Distributed elements )。 由於通訊應用的頻率越來越高,相對的傳輸波長也越來越小,要使電路之設計完全由集總元件所構成變得越來越難以實現,因此,運用散佈式元件設計電路也成為無法避免的選擇。 當然,科技的進步已經使得集總元件的製作變得越來越小,例如運用半導體製程、高介電材質之低溫共燒陶瓷(LTCC )、微機電(MicroElectroMechanical Systems, MEMS )等技術製作集總元件,然而,其中電路之分析與設計能不乏運用到散佈式傳輸線的理論,如微帶線(Microstrip Lines )、夾心帶線(Strip Lines )等的理論。 因此,本章以討論散佈式傳輸線的理論開始,進而以微帶傳輸線為例介紹其理論與公式,並討論微帶傳輸線之各種不連續之電路,以作為後續章節之被動元 1.1(a)。其中的集總元件電路模型描述,其中 (a) (b) i (z, t ) v z, t ) z

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

传输线反射以及终端电阻

传输线反射以及终端电阻 传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器 ,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻 R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

微波实验二传输线上的波的测量与阻抗匹配教材

微波技术与天线实验报

(1)负载开路,负载短路,与负载匹配 负载开路与短路即为令终端负载L Z 为∞或0,而对于功率输出,当负载匹配时会得到最大的功率输出;对于电源电压输出,指电源内阻越小在内阻上的压降越小,会得到最大的电压输出,就是说电源的效率最大,当内阻r=0,电源的效率等于1(100%)。 (1)传输线的工作状态 传输线的工作状态取决于传输线终端所接的负载,有三种状态。其中负载开路与短路即为令终端负载L Z 为∞或0导致传输线工作于驻波状态,Z L =Z 0时传输线工作于行波状态。 行波状态:传输线上无反射波出现,只有入射波的工作状态。 当传输线终端负载阻抗等于传输线的特性阻抗,即Z L =Z 0时,线上只有入射波(反射系数为零)。此时 z z e U e Z I U z U '' =+= 'γγ20222 )( z z e I e Z Z I U z I ' +'=+= 'γγ20 0222)( 对于无损耗线=γj β,则

本实验用微带传输线模块模拟测量线。利用驻波测量技术测量传输线上的波,可以粗略地观察波腹、波节和波长,进而测量反射系数|Γ|和驻波比ρ。若条件允许可以使用反射测量电桥以较精确地测量反射损耗。 (1)实验仪器 RZ9908综合实验箱频率合成信号发生器电场探头频谱分析仪反射测量电桥终端负载(2)实验思路 用驻波分布法测量微带传输线上电磁波的波长。观测微带传输线上驻波分布,测量驻波的波腹、波节、反射系数和驻波比。 (3)实验过程 实验装置大致如下,应用实验箱固定模块可简化操作。 原理如下: 实验连接图如下:

微带传输线模块测量端开路(不接负载)。 把频率合成信号发生器设置成为:CENTER FREQUENCY=1000MHz,SPAN=1MHz,参考电平-30dBm,在保证信号不超出屏幕顶端的情况下,参考电平越小越好,尽量使信号谱线的峰值显示在屏幕的第一格和第二格之间。 频率合成信号发生器设置为输出频率1000MHz和最小衰减量。 如图1连接,逐次移动探头。记录探头位置刻度读数和频谱分析仪读数,必要时可调节信号发生器的输出功率或频谱分析仪的参考电平。 改变频率合成信号发生器的输出频率为800MHz,再重复进行驻波分布测试。 用反射测量电桥来测量驻波损耗,按图2连接好实验装置

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

传输线的特性阻抗分析

传输线的特性阻抗分析 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段l可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。

传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。 单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下: ?? 与迹线到参考平面的距离(介质层厚度)成正比 ?? 与迹线的线宽成反比

同轴线的特征阻抗

任健201520000114 李晶201520000115 同轴线特性阻抗测量方法综述 一.前言 微波工程中复杂截面传输线已经广泛用于微波滤波器、定向耦合器、阻抗变换器以及振荡电路等场合。求解这类传输线的特性阻抗由于其结构特点,要分析其各种特性参数和场分布,一般都不能用常规解析法进行直接求解目前,采用的方法大致有近似解析法、保角变换法、多极理论法等,这篇文章将对几种方法进行简单的介绍。二.数值计算法 数值计算方法具有较好的通用性,但由于圆形传输线的边界是曲线,为获得较高的计算精度一般都要采用样条拟合的方法进行求解,数学处理比较复杂,所以数值计算方法的使用需要较高的专业技能,且对计算机资源要求较高。 三.有限元法 有限元法是以变分原理剖分差值为基础的方法,它不仅具有变分方法的优点,而且兼有差分方法的灵活性。它在40年代初就已提出,随着高速电子计算机的出现和发展,它的技术日趋成熟,应用也越来越广泛。 由于TEM传输线的横向场型比拟于相同截面结构的二维静电场型,所以我们可以应用静电场的方法求解特性阻抗由静电场所满足的

一定边界条件下的拉普拉斯方程求出电位分布后,根据传输线单位长度静电场储能和单位长度静电电容、电位差的关系,求得静电电容,再根据静电电容和特性阻抗的关系,得到传输线的特性阻抗。 [2]基于Matlab PDE工具箱的有限元算法,引用静电场计算方法,计算了内圆外正N边形、外圆内正N边形正多边形、外矩内圆、矩形、外椭圆内圆柱、偏心圆等各种复杂面低损耗同轴传输线的特性阻抗并与各种文献结果进行了比较。 由于传输线的横向场型比拟于相同截面结构的二维静电场型,设由导体面Sa. Sb。构成的两分立导体间的电位差值为Uo、并设导体表面Sb。上为参考零电位,则可写出电位函数的狄利克雷问题。如果解出边界条件U|xa=Uo和U|xb=0下的电位u的分布值,根据传输线单位长度静电场储能和单位长度静电电容、电位差的关系,可推得,静电电容c的计算式 式中X为同轴传输线绝缘材料的相对介电常数,真空或空气中的X为Xo传输线的特性阻抗为:

关于阻抗匹配的理解

关于阻抗匹配的理解 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。实际的电压源总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P="I"*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r) =U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共轭匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信

号源跟负载之间匹配的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R,如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等),在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的朋友可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

实验1 理想微带传输线特性阻抗模拟

實驗一理想微帶傳輸線特性阻抗模擬 ㄧ、原理說明 一般常見的電子電路都是以集總模式(lumped mode)來描述電路的行為,主要的假設是電路的工作波長遠大於實際電路尺度的大小,在頻率很低時可以得到相當正確的近似。然而電路工作頻率變高時,也就是說工作波長與實際電路尺度大小差不多時,以集總模式來描述電路的行為其誤差相當大,因此必須以分散式模式(distributed mode )來考慮電路的行為,分散式模式的做法是將電路分成很小的片段,每一小片段可用電阻、電容及電感代表小片段的電路的行為,將每一小片段整合起來即為整個電路的行為。圖1.1為傳輸線的等效電路圖,根據此圖可列出電壓在x+ x與x處的電壓差方程式,配合 圖1.1 傳輸線的等效電路圖

RLCG 元件可得出公式(1-1),同理可得出電流方程式(1-2)。 兩邊同時除以?x ,可得公式(1-3)及(1-4) 兩邊對x 微分,得公式(1-5)及(1-6) 將公式(1-4)及(1-6)代入公式(1-5),得 以極座標向量(phasor notation)表示電壓電流 可得到頻率領域的表示式 (,)(,)(,)(,)()(,)() (1-1) (,) (,)(,)(,)()(,)() (1-2) i x t v x x t v x t v x t R x i x t L x t v x x t i x x t i x t i x t G x v x x t C x t ?+?-=?=-?-???+?+?-=?=-?+?-??(,)(,)(,) (1-3)(,)(,) (,) v x t i x t Ri x t L x t i x t v x t G v x t C x t ??=--????=--?? (1-4) 2 2 22 2 2 (,)(,)(,) (1-5)(,)(,)(,) v x t i x t i x t R L x x x t i x t v x t v x t G C t x t t ???=--???????=--???? (1-6) 2 2 22 2 2 2 2 (,)(,)(,)()(,)0 (1-7) (,)(,)(,)() (,)0 (1-8) v x t v x t v x t RC LG LC RG v x t x t t i x t i x t i x t RC LG LC RG i x t x t t ???-+--=??????-+--=???(,)Re[()] (1-9) (,)Re[()] jwt jwt v x t V x e i x t I x e == (1-10)

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

传输线特性阻抗基知识

什么叫传输线的特性阻抗? 传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。 传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。

单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下:与迹线到参考平面的距离(介质层厚度)成正比 与迹线的线宽成反比 与迹线的高度成反比 与介电常数的平方根成反比 单端传输线特性阻抗的范围通常情况下为25Ω至120Ω,几个较常用的值是28Ω、33Ω、50Ω、52.5Ω、58Ω、65Ω、75Ω。 差分传输线路 下图为典型的差分(通常称为平衡式)传输线电路。 差分传输线适用于对噪声隔离和改善时钟频率要求较高的情况。在差分模式中,传输线路是成对布放的,两条线路上传输的信号电压、电流值相等,但相位(极性)相反。由于信号在一对迹线中进行传输,在其中一条迹线上出现的任何电子噪声与另一条迹线上出现的电子噪声完全相同(并非反向),两条线路之间生成的场将相互抵消,因此与单端非平衡式传输线相比,只产生极小的地线回路噪声,并且减少了外部噪声的问题。 这是一个平衡线路的示例-- 信号线和回路线的几何尺寸相同。平衡式传输线不会对其他线路产生噪声,同时也不易受系统其他线路产生的噪声的干扰。 差分模式传输线的特性阻抗(也就是通常所说的差分阻抗)指的是差分传输线中两条导线之间的阻抗,它与差分传输线中每条导线对地的特性阻抗是有区别的,

(完整word版)传输线理论

实验一:传输线理论* (Transmission Line Theory) 一.实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWA VE软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50ΩBNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩBNC 连接线2条CA-3、CA-4(黑色) 5 MICROWA VE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: 此两个方程式的解可写成: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++ ≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

传输线阻抗匹配方法

传输线阻抗匹配方法 匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1.并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。 并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。 对长走线进行并联终端匹配后仿真,波形如下: 2.串联终端匹配 串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻,是一种源

端的终端匹配技术。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。 而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。 串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。 由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式为串联匹配电阻来选择一个最合适的值。 对长走线进行串联终端匹配后仿真,波形如下: 3.戴维南终端匹配

关于天线传输馈线的基本知识

关于天线传输馈线的基本知识 1、传输线的特性阻抗 无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧] 式中:D 为同轴电缆外导体铜网内径; d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。通常Z0 = 50 欧,也有Z0 = 75 欧的。 由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关. 2、馈线的衰减系数 信号在馈线里传输,除有导体的电阻性

损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。 单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。 设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB ) 衰减系数为:β =TL / L ( dB / m ) 例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β =4.1 dB / 100 m ,也可写成β =3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功

率要少一半。 而普通的非低耗电缆,例如, SYV-9-50-1,900MHz 时衰减系数为 β =20.1 dB / 100 m ,也可写成β = 3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。 3、匹配概念 什么叫匹配?简单地说,馈线终端所接 负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。匹配时, 馈线上只存在传向终端负载的入射波, 而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天 线取得全部信号功率。当天线阻抗为50欧时,与50欧的电缆是匹配的,而当天线阻抗为80欧时,与50欧的电缆是不匹配的。如果天线振子直径较粗,天线 输入阻抗随频率的变化较小,容易和馈

高速PCB设计的传输线及其特性阻抗

高速PCB设计的传输线及其特性阻抗 一. 什么是传输线 我们经常会用到传输线这一术语,可是讲到其具体定义时,很多工程师都是欲言又止,似懂非懂…… 我们知道,传输线用于将信号从一端传输到另一端,下图说明了所有传输线的一般特征 所以,可以这样理解:传输线由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。 1. 分析传输线,一定要联系返回路径,单根的导体并不能成为传输线 2.和电阻,电容,电感一样,传输线也是一种理想的电路元件,但是其特性却大不相同,用于仿真效果较好,但电路概念却比较复杂 3.传输线有两个非常重要的特征:特性阻抗和时延 二. 传输线分类 经常用到的双绞线,同轴电缆都是传输线

对于PCB来说,常有微带线和带状线两种 微带线通常指PCB外层的走线,并且只有一个参考平面 带状线是指介于两个参考平面之间的内层走线 下图为微带线和带状线示意图及其阻抗计算公式,可以从这个公式中看出,阻抗和那些因素有关,但是实际工程应用中,都是用一些专业软件进行阻抗计算,比如Polar

三. 传输线阻抗 先来澄清几个概念,经常会看到阻抗,特性阻抗,瞬时阻抗,严格来讲,他们是有区别的,但是万变不离其宗,它们仍然是阻抗的基本定义. 将传输线始端的输入阻抗简称为阻抗 将信号随时遇到的及时阻抗称为瞬时阻抗 如果传输线具有恒定不变的瞬时阻抗,就称之为传输线的特性阻抗 特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素 如果没有特殊说明,一般用特性阻抗来统称传输线阻抗

简单的来说,传输线阻抗可以用上面的公式来说明,但如果往深里说,我们就要分析信号在传输线中的行为,Eric Bogatin 博士在他的著作《Signal Integrity :Simplified》里面有很详细的说明,读者可以找原著来进行细究,这里只做一个简述: *以下分析收自与网络资料网际星空网站oldfriend 老师的作品* 当讯号沿着一条具有同样横截面的传输线移动时,假定把1V的阶梯波(step function)加到这条传输线中(如把1V的电池连接到传输线的发送端,电压跨在发送线和回路之间),一旦连接,这个电压阶梯波沿着该线以光速传播,它的速度通常约为6英寸/ns。这个信号是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。 讯号能量在第一个0.01n s前进了0.06英寸,这时发送线路有多余的正电荷(由电池提供),而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1V电压差,且这两个导体间也形成了一个电容器。在下一个0.01n s中,又要将下一段0.06英寸传输线的电压从0 调整到1V,这必须再加一些正电荷到发送线路,与加一些负电荷到接收线路。每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。每隔0.01n s,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。电荷来自传输线前端的电池,当讯号沿着这条线移动时,就给传输线的连续部份充电,因而在发送线路和回路之间形成了1V的电压差。每前进0.01ns,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流藉由上、下线路组成的电容,结束整个循环过程。

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

相关文档