文档库 最新最全的文档下载
当前位置:文档库 › 液压泵漏油的防止和措施

液压泵漏油的防止和措施

    液压泵漏油的防止和措施
    液压泵漏油的防止和措施

液压泵漏油的防止和措施

湖南理工职业技术学院湖南湘潭 411102

摘要:液压系统漏油是一个日益突出的问题。从管路安装、油温控制、油液污染、选用和装配密封件4个方面阐述防治措施,提出相关防漏治漏理论关键词:液压系统漏油防治

设备液压系统漏油不仅浪费大量能源、污染环境,而且导致设备运转异常、效率降低,严重时造成停机损失。据有关资料统计,在工程机械故障中,漏油(仅限于外漏)故障约占20%~30%,如果再加上内漏,则所占比例将更大。因此,对于液压系统漏油问题应予以足够重视。液压系统漏油的原因很多,防治措施各异,归纳起来主要有4个方面.

一、正确安装管路

液压系统中使用的管路很多,根据工作压力及安装位置的不同,选用的有钢管、紫铜管、橡胶管、尼龙管和塑料管等。管路漏油在液压系统漏油故障中所占比例较大,其原因主要是管路安装不当。例如,在安装管接头时,如果紧固力矩严重超过规定时,会使接头的喇叭口断裂,螺纹拉伤、脱扣,发生漏油。

1.避免管路弯曲不良

在装配硬管的过程中,应按规定弯曲半径使管路弯曲,否则会使管路产生不同的弯曲内应力,在油压的作用下逐渐产生渗漏。通常情况下,硬管转弯处的半径应大于油管外径的3~5倍。如果弯曲半径过小,就会导致管路外侧管壁变薄,内侧管壁存在皱纹,使管路在弯曲处存在很大内应力,强度大大减弱,在剧烈振动或高压冲击时,管路就易产生横向裂纹而漏油;如果弯曲半径过大,当管内油压脉动时就易产生纵向裂纹而漏油。安装软管时同样要注意弯曲处的半径,通常应使弯曲半径大于9倍软管外径,弯曲处到管接头的距离至少等于6倍软管外径。

2.注意管路使用环境

液压系统在工作过程中,要时刻注意环境的变化。管路(特别是软管)如果安装不当,极易受环境影响而变形,造成漏油事故。因此,软管直线安装时要有30%左右的余量,以适应油温变化、软管所受拉力和振动的需要;橡胶管应避开高温和腐蚀性气体,一经发现严重龟裂、变硬或鼓泡现象,就应立即更换;如果系统软管较多,应分别安装管固定或用橡胶板隔开,以避免管路错乱

3.合理固定安装

在安装油管时,切忌不顾管路的长度、角度、螺纹是否合适而强行装配,这会使管路变形,产生安装应力,同时很容易碰伤管路而导致其强度下降;安装时还要注意油管的固定,以防拧紧螺栓时管路随之一起转动,造成管路扭曲或与别的部件相碰而产生摩擦,缩短管路使用寿命;管路卡子的固定要适宜,如果过松会使管路与卡子间产生的摩擦、振动加强;如果过紧则使管路表面夹伤变形,所有这些情况都会使管路破损而漏油。

二、防止油温过高

液压系统油液的工作温度一般维持在35~60℃的范围较好。油温太高将使油液深度下降、容积效率降低、润滑油膜变薄、机械磨损加剧,从而导致液压油内泄漏增加,同时泄漏和磨损又引起系统温度升高,而温升又会加重泄漏和磨损,甚至造成恶性循环,使液压元件很快失效。油温过高还将加速密封件老化,使密封效能随之降低,最终导致密封件失效而漏油。

1.工作中的控制

正确调节液压回路的某些参数,例如液压泵的输出流量和压力不应超过规定值,在保证系统正常工作条件下,应尽可能的调低;可调背的开启压力也应尽量调低,以减少能量损失;工作中防止和高温物体接近,如果周围环境温度高而使油温升高时,应利用隔热材料使系统和外界热源隔离;工作中还要注意,若执行机构不工作时,要及时使系统卸荷。

2.日常维护

在日常维护中应经常使油箱中的油面处于所要求的高度,使油液有足够的冷却条件,保持冷却器内水量充足,管道畅通,充分发挥冷却器对油液的冷却效果。此外,选择合适度的液压油也是十分必要的。油液流动时的能量损耗增加;厚度过低,泄漏就会增多,两者都会使油温升高。

三、避免油液污染

液压系统的油液一旦被污染,将会导致系统中的元件磨损,密封性能下降,液压元件容积效率降低,产生内外泄漏。当液压油中含有水分时,会促使液压油形成乳化液,降低液压油的润滑和防腐作用,加速液压元件及液压导管内壁的磨损和腐蚀。当液压油中含有大量气泡时,将引起强烈的液压冲击,易损坏元件及导管,产生内外泄漏。

1.严格净化液压用油

净化是防止固体杂质损害系统的重要手段。液压系统应根据需要配置粗、精过滤器。过滤器应当经常检查清洗,发现损坏应及时更换。向油箱中注油前,必须彻底清洗油箱及液压管路,加注液压油时在加口处应放置滤网,并在无风沙、无污染的场所加注。

2.定期检查和更换油液

对液压油应做到定期检查,一旦查出油液性能不符合要求,就应及时更换。液压系统一般在累计工作1000h后,应当换油。如继续使用,油液将失去润滑性能,并可能具有酸性。在间断使用时,可根据具体情况隔半年至一年换油一次。

3.液压设备及元件的维护保养

对露天停放的工程机械或液压设备,应加盖蒙布,做好防尘、防雨雪工作,雨雪过后应及时进行除水、晾晒和防锈。对于液压元件不要轻易拆卸,如必须拆卸时,应将零件清洗后放在干净的地方,重新装配时要防止金属屑、棉纱等杂质落入元件中。在液压元件维修时,也应防止杂物、水分带入液压系统。

四、正确选用和装配密封件

密封件是以弹性材料制作、用于阻绝或控制流体之流向,阻止工作介质的泄漏及防止外界气体、灰尘等侵入,达到密封要求的元件。密封保证了液压系统高效、长期、安全、稳定的工作,如果密封件选用或装配不当,将会造成液压油的泄漏。

1.选用合适的密封件

密封件的选择是根据实际情况而定的。不同的工作压力、温度、介质、运动形式、运动速度决定了密封件的不同类型。例如O形圈适用于静止、旋转运动的密封;Y形圈的耐磨性好,适合于往复运动的密封等等。在领取密封件时要认真查看出厂时间、变形、老化以及尺寸是否合格等各方面情况,有问题者绝不能勉强使用。

2.正确装配密封件

安装密封圈时,因不慎被花键、螺纹等锐边处的毛刺划伤就会造成漏油,这在维修装配工作中要特别小心。当密封圈安装须通过轴上有键槽、螺纹等开口部分时,应使用引导工具,装配不要用螺丝刀等金属工具,否则会划伤密封圈,还会使其扭曲。装配时还应注意方向的正确性,有方向性的密封圈唇部如果装反,不仅起不到密封作用,而且会引起漏油。安装时用力不当亦会导致漏油,例如,

安装O形圈时,不要将其拉到永久变形的位置,也不要边滚动边安装,否则可能因密封圈扭曲而造成漏油。

五、结束语

液压系统漏油是液压设备的共性问题,这个问题的解决,关系到液压系统的实际工作质量,也将直接影响到液压技术的发展与普及。液压系统漏油的原因很多,涉及面广,如果从管路安装、油温、油液污染和选用装配密封件等方面都认真研究控制,漏油问题是可以解决的。

参考文献

1刘忠,杨国平工程机械液压传动原理、故障诊断与排出[M].机械工业出版社,2005

2李新德.工程机械液压系统漏油预防措施[J].液压气动与密封,2005 郑金龙.液压系统的漏油及对策[J].航海技术,2003(1)3林树枫.液压系统漏油的防治[J].有色冶金节能,2002(4)

4蔡文海.液压导管漏油故障分析及其预防措施[J].液压与气动,2001(12)

液压与气压传动习题

1.绪论 例1:图1中,两个液压缸水平放置,活塞5用以推动一个工作台,工作台的运动阻力为Fr 。活塞1上施加作用力F ,缸2的孔径为20mm ,缸4的孔径为50mm ,Fr=1962.5N 。计算以下几种情况下密封容积中液体压力并分析两活塞的运动情况。 (1) (1) 当活塞 1上作用力F 为314N 时; (2) (2) 当F 为 157N 时; (3) (3) 作用力 F 超过314N 时。 解: (1)密封腔内液体压力为 1Mpa N/m 01102.04/3142621=?=?== πA F p 液体作用在活塞5上的力为 1962.5N /0.020.05314F F 221 2 ' R =?=? =A A 由于工作台上的阻力F R 为1963.5N ,故活塞1通过液体使活塞5和工作台作等速运动,工作台速度为活塞1速度的4/25。 (2)密封腔内液体压力为 Mpa 5.0N/m 010.502.04/1572 621=?=?== πA F p 作用于活塞5上的力为 N 981425 157F F 12' R =?=? =A A 不足以克服工作台的阻力,活塞1和活塞5都不动。 (3)由于工作台上阻力为1962.5N ,由(a ),当活塞1上作用力为314N 时,两活塞即以各自的速度作等速运动。故作等速运动时,活塞1上的力只能达到314N

例2:图1-8中有两个同心圆筒,内筒外径 ?100mm,内筒外壁与外筒内孔在半径方向的间隙为0.05mm 。筒长200mm ,间隙内充满某种液体。当外筒不转,内筒以每分钟120转的速度旋转时,测得所需转距1.44N ·m (不计轴承上的摩擦转距)。已知液体密度为870kg/m 3。 求液体的动力粘度和运动粘度。 解: 由F=μAdu/dz 因为间隙很小,所以可以看成 F=μAU/h 轴上的转距为 22D h U A D F M μ== 所以 AUD Mh 2= μ 1 .060120 1.02.01.0105.044.124 ?????????= -ππ =3.6×10-2Pa ·S /s m 100.41870 106.324-2 ?=?==ρυu 所以图1-8表示了一种测量油液粘度的方法。 2.流体力学基础 2-1、如图2-4(a )所示U 型管测压计内装有水银,U 型管左端与装有液体的容 器相连,右端开口与大气相通,已知:mm h mm h 30,201==,容器内液体为水, 水银的密度为3 3/106.13m kg ?。 (1) (1) 试利用静压力基本方程中等压面的概念,计算A 点的相对压力和 绝对压力。 (2) (2) 又如图2-4(b )所示,容器内装有同样的水,mm h mm h 30,151==试求A 点处的真空度和绝对压力。

液压泵的变量控制(力士乐培训教材)概要

液压泵的变量控制 液压泵的变量控制 液压泵的变量控制 液压泵的变量控制 液压泵的变量控制 泵控液压系统与阀控液压系统能耗比较泵控系统 节流阀控系统负荷传感阀控系统 Q Q Q P P P

执行机构A 执行机构B 浪费掉的能量 液压泵的变量控制 液压泵的变量控制Power: P= Q x p [ P= (q v * Δp / (600 * ηt ]→二次曲线 工作压力 Vg 恒 定 输入功率 max. power

液压泵的变量控制液压泵的变量控制 液压系统对泵变量控制的要求 液压系统, 特别是容积调速的泵控系统对泵的变量控制要求越来越高, 主要的有如下几点: 1. 压力、流量和功率均可控制 2. 流量控制范围大,可正向控制,也可负向控制 3. 较短的换向时间,较高的固有频率,适应闭环控制需要 4. 阀控系统中,节能高效 5. 较高的功率利用率-接近理论二次曲线的恒功率控制 6. 电子控制,以实现与上位机或其他电子控制器的通讯

液压泵的变量控制 液压泵的变量控制 液压油泵变量方式汇总 * 压力控制变量*压差控制变量*带有反馈的排量控制变量*速度感应变量* 电子控制变量*压力指令变量*逆向控制变量 液压泵的变量控制 液压泵的变量控制 轴向柱塞泵的变量控制Pump Control P control 压力信号控制 ΔP control 负荷传感控制 Q control 机械反馈变量 DA-SSC control 速度感应变量 Electronic control 电子泵Pres. Comm.

压力指令变量 Mooring Cont.逆向控制 恒压控制DR DP 恒功率控制LR 负荷传感控制DFR P st i M n 伺服控制HS / HS3EO EP DFE 二次调节DS1 压力指令控制DRG q α HD 液控变量 HW 手动变量 EP 电控变量 ±q 控制控制A10V-DFE1A4VSO E1 -S02 速度感应控制DA

液压与气压传动课后习题1

3.1 某一减速机要求液压马达的实际输出转矩T=, 转速n=30r/min。设液压马达的排量V M=12.5cm3/r,液压马达 的容积效率=0.9,机械效率=0.9,求所需要的流量和 压力各为多少? 3.2 某液压马达每转排量V M=70mL/r,供油压力p=10MPa,输 入流量q=100L/min ,液压马达的容积效率=0.92,机械效率=0.94,液压马达回油腔的背压为0.2MPa,试求1. 液压马达输出转矩2.液压马达的转速 3.3 液压马达的排量V M=40ml/r,当马达在p=6.3MPa和n=1450r/min时,马达输入的实际流量q M=63L/min,马达的 实际输出转矩T M=37.5N.m ,求液压马达的容积效率机械效率和总效率 3.4 如图所示,A1和A2分别为两液压缸有效作用面积,A1=50cm2, A2=20cm2,液压泵流量q P=3L/min,负载W1=5000N,W2=4000N,不计损失,求两缸工作压力p1 p2及两活塞运动速度 V1 V2 6.6如图所示为某专用铣床液压系统,已知:泵的输出流量q P=30L/min,溢流阀调整压力P Y=2.4MPa,液压缸两腔作用面积分别为A1=50cm2, A2=25cm2,切削负载F L=9000N,摩擦负载F f=1000N,切削时通过调速阀的流量为q i=1.2L/min,若忽略元件的泄漏和压力损失,试求 1.活塞快速趋近工件时,活塞的快进速度v1及回路的效率n2 2.切削进给时,活塞的工进速度v2及回路的效率n2 1.快进时,1Y断电,2Y得电,只克服摩擦负 载2.切削进给时,由调速阀调速,1Y得电。2Y得电 2.9 有一齿轮泵,已知顶圆直径=48mm,齿宽B=24mm,齿数z=13。若最大工作压力p=10MPa,电动机转速n=980r/min。求电动机功率(泵的容积效率,总效率

K3V液压泵变量原理

液压挖掘机K3V泵的结构 主泵主要由转子部分,斜盘部分,配油盘三个部分组成。转子部分接受动力进行旋转动作,使柱塞在缸体中移动 (该装置是整体功能的主要部分)。斜盘摆动可改变排量。配油盘可转换吸油和排油。 1.转子部分 转子部分由驱动轴l、缸体1 6、柱塞5、滑履14、球形衬套24,缸体弹簧23等组成。驱动轴由轴承和滚针轴承在两端支承。后驱动轴左端与前驱动轴用花键套l 9连接,右端花键孔与伺服齿轮泵花键轴连接。这就组成了一个三联串联泵。 柱塞15的球头被滑履包住(可以转动),且有小孔将压力油输送到滑履的球面及与底盘10相接触的平面上。形成静压力轴承,碱小磨擦。 缸体弹簧23的推力将缸体1 6和配油盘18压紧。(此处为球面) 2.斜盘部分见图3—8 斜盘部分由斜盘、底板、斜盘支承、衬套、拨销和伺服活塞等组成。(参见图3—7)斜盘由斜盘支承定位,并可绕其中心摆动。当伺服活塞随调节器控制的液压油进入伺服活塞一端或两端时,斜盘经拨杆的球形部分推动使其绕斜盘支承的中心摆动改变夹角a,而改变泵的排量。 3.配油盘部分 配油盘部分(见图3—8中配油盘部分)中泵体3、配油盘1和配油盘销2组成。配油盘有两个肾形孔,一个吸油一个排油,并与中泵体上外接口相连。 4.泵的最大和最小排量调节 参见图3—7,图中前泵调节螺钉6是泵最大排量调节螺钉。当该螺钉向外松时可使伺服活塞多向右移动,使斜盘摆角增大,使泵的最大排量增加。反之,当该螺钉向内紧时,使泵的最大排量、减小。 前泵,伺服活塞左端(小头端)的螺钉,是泵的最小排量调节螺钉。当该螺钉向外松时,可以使斜盘的角度变得更小,使泵的最小排量变小。反之,当该螺钉向内紧时泵的最小排量变大。 液压挖掘机K3V泵控制原理 一,变量调节器的原理 1.1功率控制 在输入恒定转速恒定扭矩的条件下,双泵上的调节器根据串联的双泵压力载荷的总和,控制泵的斜盘角度以改变泵的流量与压力,通过变量调节阀自动控制每台泵的功率输出变化可以使发动机

泵的控制方式11 (1)讲解

变量泵控制方式及其应用 分类方式一: 变量泵可以通过排量调节来适应机械在作业时的复杂工况要求,由于其具有明显的优点而被泛使用。变量泵的控制方式多种多样,主要有压力切断控制、功率控制、排量控制和负载敏感控制四基本控制方式。通过这四种基本控制方式的组合,可以得到具有复杂输出特性的组合控制。 1.1 压力切断控制 压力切断控制是对系统压力限制的控制方式,有时也简称为压力控制。当系统压力达到切断压力值,排量调节机构通过减小排量使系统的压力限制在切断压力值以下,其输出特性如图1-1a所示。如果切断力值在工作中可以调节则称为变压力控制,否则称为恒压力控制。图1-1b所示为压力切断控制的典型实方式。当系统压力升高达到切断压力时,变量控制阀阀芯左移,推动变量机构使排量减小,从而实现压力断控制。阀芯上的Pr为液控口,可以对切断压力进行液压远程控制和电液比例控制。 一些液压工况复杂,作业中执行机构需要的流量变化很大,压力切断控制可以根据执行机构的调速要按所需供油,避免了溢流产生的能量损失,同时对系统起到过载保护的作用。 a输出特性b典型实现形式 图1-l 压力切断控制变量泵 1.2 功率控制 功率控制是对系统功率限制的控制方式。当系统功率达到调定的功率值时,排量调节机构通过减小排量使系统的功率限制在调定功率值以下。如果功率限制值在工作中可调则称为变功率控制,否则称为恒功率控制。图1-2中所示为力士乐(Rexroth)A11VO恒功率泵的输出特性和具体实现结构。其工作原理如下: 变量油缸和复位油缸分别布置在泵体两侧,对变量机构进行差动控制,其中面积较大的变量油缸的压力受到变量控制阀的控制。作用在小活塞上的系统压力经摇杆在控制阀芯左侧作用推力F,而阀芯右侧受到弹簧力的作用。由于小活塞装在与变量机构一起运动的复位活塞上,所以摇杆对阀芯的推力为 F=PAL l/L2(1) 式中:P为系统压力;A为小活塞面积;L1为小活塞到摇杆铰点的距离;L2为变量控制阀杆到摇杆铰点的距离。 当摇杆推力大于弹簧推力时,阀芯右移,使泵的排量减小,从而维持摇杆推力为近似常

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

液压泵和液压马达习题及答案

第四章 液压泵和液压马达 液压泵完成吸油和排油,必须具备什么条件 泵靠密封工作腔的容积变化进行工作,容积增加吸油,容积减小排油。 什么是齿轮泵的困油现象有何危害如何解决 一部分的油液困在两轮齿之间的密闭空间,空间减小,油液受积压,发热,空间增大,局部真空,气穴、振动、噪声。在两侧盖板上开卸荷槽。 齿轮泵、双作用叶片泵、单作用叶片泵各有哪些特点。如何正确判断转向、油腔和进出油口。 齿轮泵结构简单、尺寸小、重量轻、价格低、流量压力脉动大、泄漏大。 叶片泵流量压力脉动小、噪声小、结构复杂、吸油差、对污染敏感。 单作用叶片泵可做成变量泵。 叶片泵根据叶片方向判断转向。根据容积变化判断进出油口。 为什么轴向柱塞泵适用于高压 柱塞泵配合精度高、泄漏小、容积效率高。 已知泵的额定压力和额定流量,管道压力损失忽略不计,图c 中的支路上装有节流小孔,试说明图示各种工况下泵出口处的工作压力值。 a) b) c) d) e) F F T ,n M 题图 a) b)油回油箱,出口压力为0。 c) 节流小孔流量ρP A C q d ???=20

出口压力 20)( 2A C q P d ?=?ρ d) 出口压力A F P = e) 功率关系M T T V q T T q P ? ?=?=?πω2 出口压力M V T P ?=π2 设液压泵转速为950r/min ,排量为V P =168m l /r ,在额定压力和同样转速下,测得的实际流量为150l /min ,额定工况下的总效率为,求: 1) 泵的理论流量q t ; 2) 泵的容积效率ηv ; 3) 泵的机械效率ηm ; 4) 泵在额定工况下,所需电机驱动功率P ; 5) 驱动泵的转矩T 。 1)理论流量min /6.159/168min /950l r ml r V n q p t =?=?= 2) 容积效率94.06 .159150===t v q q η 3) 机械效率93.094 .087.0===v m ηηη 4) 电机功率kW l Mpa q p P 48.887.0min//15095.2/=?=?=η 5) 转矩Nm n P P T 3.85602===πω 某液压马达排量V M =250ml/r ,入口压力为,出口压力为,总效率η=,容积效率ηV =。当输入流量为×10-3m 3/s 时,试求: 1) 液压马达的输出转矩; 2) 液压马达的实际转速。 1)功率关系n T V n p p m m ??=???-πη2)(21 输出转矩Nm V p p T m m 5.3622)(21=??-=π η v m ηη η=

A10VSO液压泵简介( 变量调节过程)

A10VSO液压泵功能简介 一、结构及工作原理 A10VSO液压泵是REXROTH公司生产的一种中负荷斜盘式变量泵,由于其优异的性价比,在冶金、机床、化工、工程等各领域得到了广泛的应用。 如图1为其结构图。 图1 结构图 1 驱动轴 2 止推盘 3 控制活塞 4 控制阀 5 压力侧 6 配油盘 7 吸油侧 8 缸体 9 柱塞10 柱塞滑靴11 摇杆12 预压腔13 回程活塞 电机把一个输入扭矩传递给泵驱动轴1,缸体8和柱塞9随驱动轴一起旋转,在每个旋转周期内,柱塞9产生一个线性的位移,这个位移的大小由摇杆11的角度决定。通过止推板2,柱塞滑靴10紧紧

地贴在摇杆11上,在每个旋转周期内,每个柱塞9都转过由其初始位置决定的下死点和上死点,通过配油盘6上的两个窗口吸入与排出的流体容积与柱塞面积和位移相匹配。在吸油区,流体进入柱塞腔容积增大部分,与此同时,各个柱塞把流体压出柱塞腔容积减小部分。在柱塞到达压力区之前,通过优化的预压缩容腔12,柱塞腔内流体压力已经得到提升。这就极大地减少了压力冲击。 摇杆11上斜盘的角度在最小与最大范围内无级调整,通过改变斜盘角度,柱塞位移即排量得到改变,通过控制活塞3就能改变斜盘角度。在静压支撑作用下,摇杆可以平稳运动,并且克服回程活塞13的作用力而保持平衡。增加斜盘角度即增大排量,减小角度即减小排量。斜盘角度永远不可能到达完全的零位,因为一个最小的流量是必须的: 冷却柱塞 补偿内泄漏 润滑所有运动部件 二、变量形式 与其它液压泵一样,该泵也可以组成多种变量形式,主要有压力控制、流量控制、功率控制、电子控制等,还可以把几种控制形式组合成复合控制。 1、两位控制 简称DG(Two Position Control),顾名思义,只有两个位置的控制,要么泵最小摆角(零摆角),要么泵最大摆角,是一种特殊的控

液压第二章习题答案

练习 一、填空题: 1.变量泵是指()可以改变的液压泵,常见的变量泵有( )、( )、( )其中()和()是通过改变转子和定子的偏心距来实现变量,()是通过改变斜盘倾角来实现变量。 (排量;单作用叶片泵、径向柱塞泵、轴向柱塞泵;单作用叶片泵、径向柱塞泵;轴向柱塞泵) 2.液压泵的实际流量比理论流量();而液压马达实际流量比理论流量()。(小;大) 3.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为()与()、()与()、()与()。 (柱塞与缸体、缸体与配油盘、滑履与斜盘) 4.外啮合齿轮泵的排量与()的平方成正比,与的()一次方成正比。因此,在齿轮节圆直径一定时,增大(),减少()可以增大泵的排量。(模数、齿数;模数齿数)5.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是()腔,位于轮齿逐渐进入啮合的一侧是()腔。 (吸油;压油) 6.为了消除齿轮泵的困油现象,通常在两侧盖板上开(),使闭死容积由大变少时与()腔相通,闭死容积由小变大时与()腔相通。(卸荷槽;压油;吸油)7.齿轮泵产生泄漏的间隙为()间隙和()间隙,此外还存在()间隙,其中()泄漏占总泄漏量的80%~85%。 (端面、径向;啮合;端面) 8.双作用叶片泵的定子曲线由两段()、两段()及四段()组成,吸、压油窗口位于()段。

(长半径圆弧、短半径圆弧、过渡曲线;过渡曲线) 9.调节限压式变量叶片泵的压力调节螺钉(弹簧预压缩量),可以改变泵的压力流量特性曲线上()的大小,调节最大流量调节螺钉,可以改变()。(拐点压力;泵的最大流量) 二、选择题: 1.双作用叶片泵从转子_径向力_平衡考虑,叶片数应选_偶数__;单作用叶片泵的叶片数常选__奇数__,以使流量均匀。 (a) 轴向力、(b)径向力;(c) 偶数;(d) 奇数。 2、_________叶片泵运转时,存在不平衡的径向力;___________叶片泵运转时,不平衡径向力相抵消,受力情况较好。 (a) 单作用;(b) 双作用。 3、对于直杆式轴向柱塞泵,其流量脉动程度随柱塞数增加而____________, ___________柱塞数的柱塞泵的流量脉动程度远小于具有相邻_____________柱塞数的柱塞泵的脉动程度。 (a) 上升;(b) 下降。(c) 奇数;(d) 偶数。 4、液压泵的理论输入功率____________它的实际输出功率;液压马达的理论输出功率__________其输入功率。 (a) 大于;(b) 等于;(c) 小于。 5、双作用叶片泵具有()的结构特点;而单作用叶片泵具有()的结构特点。 (A)作用在转子和定子上的液压径向力平衡 (B)所有叶片的顶部和底部所受液压力平衡 (C)不考虑叶片厚度,瞬时流量是均匀的 (D)改变定子和转子之间的偏心可改变排量 (A、C;B、D)

第二章液压泵和液压马达练习题

第二章液压泵和液压马达三、习题 (一)填空题 1.常用的液压泵有、和三大类。 2.液压泵的工作压力是,其大小由决定。 3.液压泵的公称压力是的最高工作压力。 4.液压泵的排量是指。 5.液压泵的公称流量。 6.液压泵或液压马达的总效率是和的乘积。 7.在齿轮泵中,为了,在齿轮泵的端盖上开困油卸荷槽。 8.在CB-B型齿轮泵中,减小径向不平衡力的措施是。 9.是影响齿轮泵压力升高的主要原因。在中高压齿轮泵中,采取的措施是采用、、自动补偿装置。 10.双作用叶片泵定子内表面的工作曲线是由、和组成。常用的过渡曲线是。 11.在YB1型叶片泵中,为了使叶片顶部和定子内表面紧密接触,采取的措施是。 12.在高压叶片泵中,为了减小叶片对定子压紧力的方法有和。 13.变量叶片泵通过改变,来改变输出流量,轴向柱塞泵通过改变,来改变输出流量。 14.在SCYl4-1B型轴向柱塞泵中,定心弹簧的作用是。 15.在叶片马达中,叶片要放置,叶片马达的体积小,转动惯量小,动作灵敏,适用于的场合。由于泄漏大,叶片马达一般用于、、和的场合。 (二)判断题 1.液压泵的工作压力取决于液压泵的公称压力。( ) 2.YB1型叶片泵中的叶片是依靠离心力紧贴在定子内表面上。( ) 3.YB1型叶片泵中的叶片向前倾,YBX型叶片泵中的叶片向后倾。( ) 4.液压泵在公称压力下的流量就是液压泵的理论流量。( ) 5.液压马达的实际输入流量大于理论流量。( ) 6.CB-B型齿轮泵可作液压马达用。( ) (三)选择题

1.液压泵实际工作压力称为;泵在连续运转时,允许使用的最高工作压力称为;泵在短时间内过载时所允许的极限压力称为。 A.最大压力 B.工作压力 C.吸入压力 D.公称压力 2.泵在单位时间内由其密封容积的几何尺寸变化计算而得的排出液体的体积称为。 A.实际流量 B.公称流量 C.理论流量 3.液压泵的理论流量实际流量。 A.大于 B.小于C.等于 4.YB1型叶片泵中的叶片靠紧贴在定子内表面;YBX型变量叶片泵中的叶片靠紧贴在定子内表面。 A.叶片的离心力 B.叶片根部的油液压力 C.叶片的离心力和叶片根部的油液压力 5.CB-B型齿轮泵中,泄漏途径有三条,其中对容积效率的影响最大。 A.轴向间隙 B.径向间隙 C.啮合处间隙 6.对于要求运转平稳,流量均匀,脉动小的中、低压系统中,应选用。 A.CB-B型齿轮泵 B.YB1型叶片泵 C.径向柱塞泵 7.液压泵的最大工作压力应其公称压力,最大输出流量应其公称流量。 A.大于 B.小于 C.等于 D.大于或等于 E.小于或等于 8.公称压力为6.3MPa的液压泵,其出口接油箱。则液压泵的工作压力为。A.6.3MPa B.O C.6.2MPa (四)问答题 1.液压泵要完成吸油和压油,必须具备的条件是什么? 2.在齿轮中,开困油卸荷槽的原则是什么? 3.在齿轮泵中,为什么会产生径向不平衡力? 4.高压叶片泵的结构特点是什么? 5.限压式变量叶片泵的工作特性是什么? (五)计算题 1.某液压泵的工作压力为10MPa,实际输出流量为60L/min,容积效率为0.9,机械效率为O.94,试求: 1)液压泵的输出功率。 2)驱动该液压泵的电动机所需功率。 2.某液压马达的排量为V M=100mL/r,输入压力为p=10MPa,背压力为1MPa,容积效率ηMV=O.96,机械效率ηMm=0.86,若输入流量为40L/min,求液压马达的输出转速、转矩、输入功率和输出功率。 3.已知液压泵的输出压V M=100mL/r力p=12MPa,其机械效率ηm=0.94,容积效率ηV=0.92,排量V=10mL/r;马达的排量为V M=100mL/r,马达的机械效率为ηMm=0.92,马达的容积效率ηMV=O.85,

变量泵的原理及应用

1.1液压变量泵(马达)的发展简况、现状和应用 1.1.1 简述 液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。 使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。使用变量泵进行位置和速度控制时,能量损耗最小。正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。 此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。 表1-1 三大类泵的主要应用现状 图1-1 三大类泵的变量调节

1.1.2 叶片变量泵(马达)的研发历史和发展 根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。 恒压式变量泵一般系单作用泵。该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。在工作中,还可根据要求调节其恒定压力值。因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。该泵如与比例电磁阀匹配,可以在系统中实现多工作点自动控制。 限压式变量叶片泵有内反馈式和外反馈式两种。内反馈式变量泵的操纵力来自泵本身的排油压力,外反馈式是借助于外部的反馈柱塞实现反馈的。 限压式变量叶片泵具有压力调整装置和流量调整装置。泵的输出流量可根据负载变化自动调节,当系统压力高于泵调定的压力时流量会减少,使功率损失降为最低,其输出功率与负载工作速度和负载大小相适应,具有高效、节能、安全可靠等特点,特别适用于作容积调速液压系统中的动力源。先导式带压力补偿的变量叶片泵允许根据系统要求自动调节其流量,可在满足工作要求的同时降低能耗。压力补偿的工作原理是:在先导压力作用下,被控柱塞移动,从而使泵的定子在某一位置平衡。当输出压力与先导压力相等时,定子向中心移动,并使输出流量满足工作要求。在输出流量为零的情况下,泵的输出为补偿泄漏和提供先导压力油,而系统压力保持不变。补偿器的响应时间非常短,不会产生压力超调。 叶片马达和叶片泵一样,也有单作用式和双作用式之分。由于单作用式液压马达的偏心量小,容积效率低,结构复杂,故一般所用的液压马达都是双作用式的。因此,变量叶片马达很少在工业上使用。 轴向柱塞泵(马达)的发展历史 (1)弯轴或轴向柱塞泵(马达) 这是汉斯·托马(Hans Thoma)1940年的发明。此后于1946年,他又对缸体的同步驱动进行了改进,将万向接头改为连杆方式,将阀板由平面改成球面。最近,博世力士乐(Bosch Rexroth)公司又推出了将连杆与柱塞组成一体的采用锥形柱塞(柱塞杆装在密封部上)的改进型式。该发明自问世以来60多年间内不断进行改进,现在已经成为各领域最广泛应用的产品。 目前只有博世力士乐公司生产变量弯轴泵,主要品种有A7V系列,排量为20~1000mL/r,最高压力为35MPa,变量角为18°。该公司还开发了A7VO系列泵,该泵为锥形连杆活塞式,排量为28~1000mL/r,最高压力为40MPa。 在A7V和A7VO基础上,博世力士乐公司还开发了A6V和A6VM变量马达。此外,

斜盘式变量双液压泵

现在的挖掘机多为斜盘式变量双液压泵,所谓变量泵就是泵的排量可以改变,它是通过改变斜盘的摆角来改变柱塞的行程从而实现泵排出油液容积的变化。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,达到高效节能的效果,但其结构和制造工艺复杂,成本高,安装调试比较负责。按照变量方式可分为手动变量、电子油流变量、负压油流变量、压力补偿变量、恒压变量、液压变量等多种方式。现在的挖掘机多采用川崎交叉恒功率调节系统,多为反向流控制,功率控制,工作模式控制(电磁比例减压阀控制)这三种控制方式复

合控制。

调节器代码对应的调节方式 调节器内部结构 各种控制都是通过调节伺服活塞来控制

斜盘角度,达到调节液压泵流量的效果。大家知道在压强相等的情况下,受力面积的受到的作用力就大。 调节器就是运用这一原理,通过控制伺服活塞的大小头与液压泵出油口的联通关闭来控制伺服活塞的行程。在伺服活塞大小头腔都有限位螺丝,所以通过调节限位螺丝可以调节伺服活塞最大或最小行程,达到调节液压泵的最大流量或 者最小流量的效果。 向内调整限制伺服活塞最大和最小行程及限制最大流量和最小流量 要谈谈反向流控制,就必须要弄明白反向流是如何产生的。在主控阀中有一

条中心油道,当主控阀各阀芯处于中位时(及手柄无操作时)或者阀芯微动时(及手柄微操作时)液压泵的液压油通过中心油道到达主控阀底部溢流阀,经过底部溢流阀的增压产生方向流(注当发动机启动后无动作时液压回路是直通油箱,液压系统无压力)。 所以方向流控制的功能是减少操作控制

阀在中位时,泵的流量,使泵流量随司机操作所属流量变化,改善调速性能, 避免了无用能耗。 大家注意方向流控制并非交叉控制,一个泵对应一个主控阀块(一般主控阀都为双阀块)。如果单边手柄动作速度很慢特别是回转和铲斗奇慢,复合动作正常一般就是反向流油管安装反了。 反向流的调整方法:就上图而言,松开801的螺帽,调整924,松则流量减小,对应下图的蓝色曲线,挖掘机速度减慢。紧则流量增大,对应下图的红色曲线, 挖掘机速度增快。

04-04 液压泵和液压马达习题及答案

第四章 液压泵和液压马达 4.1 液压泵完成吸油和排油,必须具备什么条件? 泵靠密封工作腔的容积变化进行工作,容积增加吸油,容积减小排油。 4.2 什么是齿轮泵的困油现象?有何危害?如何解决? 一部分的油液困在两轮齿之间的密闭空间,空间减小,油液受积压,发热,空间增大,局部真空,气穴、振动、噪声。在两侧盖板上开卸荷槽。 4.3 齿轮泵、双作用叶片泵、单作用叶片泵各有哪些特点。如何正确判断转向、油腔和进出油口。 齿轮泵结构简单、尺寸小、重量轻、价格低、流量压力脉动大、泄漏大。 叶片泵流量压力脉动小、噪声小、结构复杂、吸油差、对污染敏感。 单作用叶片泵可做成变量泵。 叶片泵根据叶片方向判断转向。根据容积变化判断进出油口。 4.4 为什么轴向柱塞泵适用于高压? 柱塞泵配合精度高、泄漏小、容积效率高。 4.5 已知泵的额定压力和额定流量,管道压力损失忽略不计,图c 中的支路上装有节流小孔,试说明图示各种工况下泵出口处的工作压力值。 a) b) c) d) e) F F T ,n M 题4.5图 a) b)油回油箱,出口压力为0。 c) 节流小孔流量ρP A C q d ???=20

出口压力 20 )(2A C q P d ?=?ρ d) 出口压力A F P = e) 功率关系M T T V q T T q P ??=?=?πω2 出口压力M V T P ?=π2 4.6设液压泵转速为950r/min ,排量为V P =168m l /r ,在额定压力2.95MPa 和同样转速下,测得的实际流量为150l /min ,额定工况下的总效率为0.87,求: 1) 泵的理论流量q t ; 2) 泵的容积效率ηv ; 3) 泵的机械效率ηm ; 4) 泵在额定工况下,所需电机驱动功率P ; 5) 驱动泵的转矩T 。 1)理论流量min /6.159/168min /950l r ml r V n q p t =?=?= 2) 容积效率94.06 .159150===t v q q η 3) 机械效率93.094.087 .0===v m ηηη 4) 电机功率kW l Mpa q p P 48.887.0min//15095.2/=?=?=η 5) 转矩Nm n P P T 3.8560 2== =πω 4.7 某液压马达排量V M =250ml/r ,入口压力为9.8MPa ,出口压力为0.49Mpa ,总效率η=0.9,容积效率ηV =0.92。当输入流量为0.3×10-3m 3/s 时,试求: 1) 液压马达的输出转矩; 2) 液压马达的实际转速。 1)功率关系n T V n p p m m ??=???-πη2)(21 输出转矩Nm V p p T m m 5.3622)(21=??-=πη v m ηηη=

变量柱塞泵知识讲解

变量柱塞泵

变量柱塞泵 1、变量柱塞泵概述及工作原理 变量柱塞泵的压力油经泵体、泵壳变量壳体中的通油孔通过单向阀进入变量壳体的下腔,当拉杆向下运动时,推动伺服活塞向下移动,伺服阀的上阀口打开,变量壳体下腔的压力油经变量活塞中的通油孔进入变量壳体上腔,由于上腔面积大于下腔,液压力推动活塞向下运动,带动销轴使变量头绕钢球中心旋转,改变变量头的倾斜角(增大),柱塞泵的流量随之增大。反之拉杆向上运动,变量头的倾斜角向相反方向变化,泵的流量也随之变化。当倾斜角度变至零以后,则变量头向负偏角方向变化,液流产生换向,泵的进出油口变换。编 2、变量柱塞泵常见故障 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。(3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零

变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。 3.输出流量波动 输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。 4.输出压力异常 泵的输出压力是由负载决定的,与输入转矩近似成正比。输出压力异常有两种故障。(1)输出压力过低 当泵在自吸状态下,若进油管路漏气或系统中液压缸、单向阀、换向阀等有较大的泄漏,均会使压力升不上去。这需要找出漏气处,紧固、更换密封件,即可提高压力。溢流阀有故障或调整压力低,系统压力也上不去,应重新调整压力或检修溢流阀。如果液压泵的缸体与配流盘产生偏差造成大量泄漏,严重时,缸体可能破裂,则应重新研磨配合面或更换液压泵; (2)输出压力过高若回路负载持续上升,泵的压力也持续上升,当属正常。若负载一定,泵的压力超过负载所需压力值,则应检查泵以外的液压元

液压习题

例1如图所示,液压泵从油箱吸油,吸油管直径为6cm,流量q=150L/min液压泵入口处的真空度为0.02MPa,油的运动粘度为30*10-6m2/s,密度为900kg/m3,弯头处的局部阻力系数为0.2,管道入口处的局部阻力系数为0.5。求:(1)沿程损失忽略不计时的吸油高度是多少?;(2)若考虑沿程损失,吸油高度又是多少? 解:取1-1, 2-2截面列伯努利方程:

例2.某泵排量v = 50cm3/r, 总泄漏量Δq=,29*10-5cm3/Pa.min泵以1450r/min的转速转动,分别计算p=0、10MPa时泵的实际流量和容积效率。如泵的摩擦损失转矩为2Nm,试计算上述几种压力下的总效率?所需电机功率是多少? 解:泵的实际流量 例3、图示的两个系统中,各溢流阀的调整压力分别为P A=4MPa, P B=3MPa, P C=2MPa,如系统的外负载趋于无限大,泵的工作压力各为多少?流量是如何分配的? 解:图1是三个溢流阀串联,因此泵的工作压力P = P A+P B+P C 图2是三个溢流阀并联,因此泵的工作压力P取其中的最小值,即P = P C = 2MPa 图1泵输出的流量经三个溢流阀流回油箱。 图2泵输出的流量主要经溢流阀A流回油箱,小部分控制油液经溢流阀B、 溢流阀C流回油箱。

1.说明溢流阀、减压阀、顺序阀的异同和特点。 2.液压传动有哪些优缺点? 3.写出雷诺数的表达式,并说明其作用。 4.动力粘度的物理意义是什么? 5.什么是换向阀的位和通? 6.管路的压力损失有哪几种?各受哪些因素的影响? 7.什么是泵的排量和泵的容积效率? 8.什么是换向阀的中位机能,并举例说明。 9. 简述液压系统是由哪些部分组成的,并说明其作用。 10. 什么是开式回路?什么是闭式回路? 11. 节流阀的最小稳定流量有什么意义?影响其值的因素主要有哪些? 12. 简述容积调速回路的工作原理及特点? 13. 20号机械油的含义是什么? 14.简述液压系统是由哪些部分组成的,并说明其作用? 15.理想液体的特点是什么? 16.压力和温度对粘度有何影响? 17.如果液压泵的出口减小,流量是否减少? 当出口压力升高时,流量是否减少? 20. 什么是动力粘度、运动粘度和相对粘度? 18.节流阀为什么能改变流量? 19.调速回路应满足哪些基本要求? 20.换向阀的“O”、型“H”型中位机能是什么? 21.液体层流和紊流的定义是什么? 22.液压泵的工作压力取决于什么? 23.简述容积式泵和马达的工作原理? 26. 什么是大气压力、相对压力、绝对压力和真空度?它们之间有什么关系?液压系统中的 压力指的是什么压力? 24.用什么来判断液体的流动状态?什么是层流和紊流? 25.液压传动中常用的液压泵分为哪些类型? 26.用溢流节流阀的节流调速回路中,为何溢流节流阀只能安装在进油路上? 27.什么是流体的体积弹性系数?它表示了流体的哪一方面的性质? 28.什么是液控单向、其工作原理如何? 有何用途? 29.溢流阀的用途有哪几种、试画出回路原理加以说明? 30.液压缸的作用是什么?有哪些类型? 31.压系统中的压力是怎样形成的? 32.什么是液压油的粘性? 33.什么是进口节流调速回路?有何特点?应用在什么场合?

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

液压与气压传动习题库及参考答案

五、计算题 1、某泵输出油压为10MPa,转速为1450r/min,排量为200mL/r,泵的容积效率为Vp=,总效率为p=。求泵的输出液压功率及驱动该泵的电机所需功率(不计泵的入口油压)。 解:泵的输出功率为: 电机所需功率为: 2、已知某液压泵的转速为950r/min,排量为V P=168mL/r,在额定压力和同样转速下,测得的实际流量为150L/min,额定工况下的总效率为,求: (1)液压泵的理论流量q t; (2)液压泵的容积效率ηv; (3)液压泵的机械效率ηm; (4)在额定工况下,驱动液压泵的电动机功率P i; (5)驱动泵的转矩T。 解:(1)q t=V n=950×168÷1000=159.6L/min (2)ηv=q/q t =150/=; (3)ηm== (4) P i=pq/(60×=; (5) T i=9550P/n=9550×950=852Nm 3、已知某液压泵的输出压力为5MPa,排量为10mL/r,机械效率为,容积效率为,转速为1200r/min,求:(1)液压泵的总效率; (2)液压泵输出功率; (3)电动机驱动功率。 解:(1)η=ηVηm=×= (2)P=pqηv/60=5×10×1200×(60×1000)= (3)P i=P/η=×= 4、如图,已知液压泵的输出压力p p=10MPa,泵的排量V P=10mL/r,泵的转速n P=1450r/min,容积效率

ηPV=,机械效率ηPm=;液压马达的排量V M=10mL/r,容积效率ηMV=,机械效率ηMm=,泵出口和马达进油管路间的压力损失为,其它损失不计,试求: (1)泵的输出功率; (2)驱动泵的电机功率; (3)马达的输出转矩; (4)马达的输出转速; 解:(1)P po=p p q p=p p V p n pηPV=10×10×10?3×1450×60= (2)P Pi=P Po/ηp= P Po/(ηPVηMm)= P M=P P?ΔP=10?= (3)T M=p M V MηVM/2π=×10×2π= (4)n M=-n p V pηPVηMV/V M=1450×10××10=min 5、如图所示,由一直径为d,重量为G的活塞浸在液体中,并在力F的作用下处于静止状态。若液体的密度为ρ,活塞浸入深度为h,试确定液体在测压管内的上升高度x。 解:设柱塞侵入深度h处为等压面,即有 (F+G)/(πd2/4)=ρg(h+x) 导出:x=4(F+G)/(ρgπd2)?h 6、已知液压马达的排量V M=250mL/r;入口压力为;出口压力为;此时的总效率ηM=;容积效率ηVM=;当输入流量为22L/min时,试求: (1)液压马达的输出转矩(Nm); (2)液压马达的输出功率(kW); (3)液压马达的转速(r/min)。 解:(1)液压马达的输出转矩 T M=1/2π·Δp M·V M·ηMm=1/2π×-×250×=·m (2)液压马达的输出功率 P MO=Δp M·q M·ηM/612=-×22×60= (3)液压马达的转速

相关文档
相关文档 最新文档