文档库 最新最全的文档下载
当前位置:文档库 › 2014西南大学网络学院《高数选讲》(上、下、线性代数)第五次作业

2014西南大学网络学院《高数选讲》(上、下、线性代数)第五次作业

2014西南大学网络学院《高数选讲》(上、下、线性代数)第五次作业
2014西南大学网络学院《高数选讲》(上、下、线性代数)第五次作业

高等数学选讲

第五次作业

单项选择题

1.下列函数中,是奇函数的为( B )

A 、x x cos sin +

B 、3cos x

x C 、2x x + D 、x e e x x sin )(-- 2.设函数?????=≠-=000,1)(2x x x e x f x ,

,则下列说法中正确的是 ( C )

A 、)(x f 有1个间断点

B 、)(x f 有2个间断点

C 、 )(x f 有3个间断点

D 、)(x f 无间断点

3.342x x y -=在定义域内有( B )

A 、两个极值点

B 、一个极值点

C 、三个极值点

D 、无极值

4.函数在原点具有连续的二阶导数,且(1)、,2)0(,1)0(,0)0(-=''='=f f f 则

=-→2

0)(lim x x x f x ( A ) A 、- 1 B 、0 C 、 - 2 D 、不存在

5.下列函数中,在区间 [-1, 5] 上是严格单调增加的是( C )

A 、)1ln(2x y +=

B 、x y sin =

C 、x x y +=sin

D 、x x y -=arctan

6.设ln y z x =,则z x

?=?( C ) A 、y x B 、2y x - C 、1x - D 、2

x y

- 7.设积分区域D 是由曲线1,0,1,0y y x x ====围成的区域,则

D dxdy =??( C ) A 、14 B 、2 C 、1 D 、12

8.级数1(2)!

n

n x n ∞=∑的收敛半径是( A )

A 、∞

B 、

12

C 、0

D 、2 9.0

n n x ∞=∑在(1,1)-内的和函数为( B )

A 、1

1x + B 、1

1x - C 、21

1x - D 、21

1x +

10.微分方程3

2220d y dy x dx dx ??

++= ???的阶数是( B )

A 、3

B 、2

C 、1

D 、0

11.行列式 0

0000000

0g f e d

c b a 的值为( D )

A. abcdefg

B. aceg

C. acef

D. acef -

12.设A 为n 阶方阵,3||=A ,=|3|A ( B )

A. n 3

B. 13+n

C. 9

D. 27

13.下列矩阵有逆矩阵的是( A )

A. ???

??4231 B. ???

??6231 C. ???

??1111 D. ??? ??4263

14.设A 、 B 、 C 均为n 阶方阵,下列各式不成立的是( D )

A. C AB BC A )()(=

B. B C A C B A ++=++)()(

C. BC AC C B A +=+)(

D. T T T T C B A ABC =)(

15.矩阵???

? ??--831021123

201的秩为( B )

A. 1

B. 2

C. 3

D. 4

16.设A 、 B 、 C 表示三个事件,则A 、 B 、C 都发生可表示为( C ) A. C B A B. ABC C. ABC D. C B A

17.设A 、 B 、 C 、D 表示四个事件,则D C AB 表示( C )

A. A 、 B 、 C 、D 中有一个不发生

B.A 、 B 、 C 、D 中有一个发生

C. A 、 B 、 D 都发生,而C 不发生

D.A 、 B 、 C 、D 中至多有三个发生

18.设随机变量ξ的密度函数???≤≤=其它,当,01

0)(2x Ax x p ,则常数=A ( C ) A. 31

B. 21

C. 3

D. 1

19.设随机变量ξ的密度函数、分布函数分别为)(x p 、)(x F ,则事件}32{≤<-ξ的概率为( D

A. )2()3(F F +

B. dx x F )(3

2?- C. )2()3(--p p D. dx x p )(32?-

20.设二维随机向量),(ηξ的联合密度函数为??

?≤≤≤≤=其它,,当,01010),(y x Axy y x p , 则常数=A ( D ) A. 41 B. 21 C. 2 D. 4

最新大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

线性代数 李建平版本 复旦大学出版社 答案

线性代数(低分数版) 习题一 1.2.3(答案略) 4. (1) ∵ (奇数) ∴为偶数 故所求为 (2) ∵(奇数) ∴所求为397281564 5.(1)∵ (偶数) ∴项前的符号位(正号) (2)∵ ∴项前的符号位(负号) 6. (1) (2) (3)原式= 7.8(答案略) 9. ∵ ∴ 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 (2)按第一列展开: (3) 习题二 1.2.3.4.5(答案略) 6. 设为与可交换的矩阵,则有 即 解之得 7. (1),记为 ,记为

(2)即 8(答案略) 9. 10.(1) (2) = 11. ∵ ∴ 反之若 , 则 ,即 12. (1) 设∵∴ 又∵∴ 又 当时,有 ∴ (2)设,则 ∵∴ 当时,有 故即 13.(1) ∵∴为对称矩阵 同理也为对称矩阵 (2)∵ ∴为对称矩阵 又∵ ∴为反对称矩阵 (3)∵ 由(2)知,为对称矩阵,为反对称矩阵 故可表示成一个对称矩阵与一个反对称矩阵的和。 14. (1)必要性:∵ ∴ 充分性:∵ ∴ (2) 必要性:∵ ∴ 充分性:∵ ∴ (3) 必要性:∵ ∴ 即 充分性:∵ ∴ 15(答案略) 16. ∵ ∴可逆。

且 17. ∵ ∴可逆,且 18.(答案略) 19. ∵,若可逆,则 ∴故可逆,且 20.设,∵是对称矩阵∴记,则 ,即为对称矩阵,又∵ , ∴为对称矩阵。 21.(1)设,则 (2)∵∴ 又∵ ∴ 于是即 (3)∵∴ 于是 (4) (注意加条件:可逆) ∵可逆∴ ∴ 22. ∵∴ 23. 24.(答案略) 25. ∵∴ ∴可逆,且 26. ∵∴ 又∵, , ∴ 27(答案略) 28. ∵∴ 又∵∴ 故 29. ∵∴ ∴ 30.(答案略) 31.(1) (2) 32. 33. (1) ∵ ∴ (2) ∵

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

2013春西南大学《线性代数》第三次作业答案

《线性代数》模拟试题八 一、填空题(每小题3分,共15分) 1.设矩阵A = ??? ? ? ??100012021,B = ??? ? ? ??310120001,则A + 2B = .2.设向量????? ??=1111α,????? ??=0112α,????? ??=0013α,??? ? ? ??=110β,则β由α1,α2,α3线性表出的表示式为 ( ). 3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一 个解,则k 1+k 2 = ( ). 4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ??? ? ? ??a a a 000103为正定矩阵,则a 的取值应满足( ). 二、单选题(每小题3分,共15分) 1.设行列式 2 2 11b a b a = 1, 2 2 11c a c a = 2,则 2 22 111c b a c b a ++ = ( D ). (A) -3 (B) -1 (C) 1 (D) 3 2.设A 为2阶可逆矩阵,且已知(2A )-1 =??? ? ??4321,则A = ( D ). (A) 2???? ??4321 (B) 21 4321-???? ?? (C) ??? ? ??432121 (D) 1 432121-??? ? ?? 3.设向量组α1,α2,…,αs 线性相关,则必可推出( C ). (A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例 (C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合

线性代数(复旦大学出版社周勇)课后习题集规范标准答案

第一章课后答案 一、 1. 5)1(122211 2=-?-?=-; 2. 1)1)(1(1 1123222 2 --=-++-=++-x x x x x x x x x x ; 3. b a ab b a b a 222 2 -= 4.5361582732559841 31 11=---++= 5.比例)第一行与第三行对应成(,00 000 0=d c b a 6.1866627811 32213 3 21=---++=。 二.求逆序数 1. 55 1243 1 2 2 =↓↓↓↓↓ τ即 2. 52 134 2 3 =↓↓↓↓τ即 3. 2 ) 1(12)2()1(1 2)1(0 1 ) 2() 1(-= +++-+-=-↓↓-↓-↓n n n n n n n n ΛΛ τ即 4. 2 )1(* 2]12)2()1[()]1(21[2 4)22()2()12(310 1 2 1 1 1 -=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛ Λ τ 三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值

1. 071 108517002 02145 9001577 1 1 202150202142701047 110 0251020214214 43412321=++------r r r r r r r r 2. 310 0100001 0111130 11110111101111130 1131013110311130 1111011110111104 321-=---?=? =+++c c c c 3.abcdef adfbce ef cf bf de cd bd ae ac ab 4111 111 1 11=---=--- 4. d c d c b a d c b a 10 10 1110 11 110 1 10011001--------按第一行展开 ad cd ab d c d a d c ab +++=-+ ---=)1)(1(11 1111 5. b a c c b c a b a a c b a c c b c a b a a b b a c c c b c a b b a a a b a c c c b c a b b a a c b a --------------=------202022202022222222222222 其中

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

2013年春-西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理) 第一次作业 【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。 【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1 【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11 【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1 【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5 【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1 【单选题】6. 6.排列3721456的逆序数是:C:8 【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29 【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15 【论述题】行列式部分主观题 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式25 1 122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02325 4 3 --中元素-2的代数余子式是 —11 。

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

第一章 3.如果排列n x x x 2 1是奇排列,则排列1 1 x x x n n 的奇偶 性如何? 解:排列 1 1x x x n n 可以通过对排列 n x x x 21经过 (1)(1)(2)212 n n n n L 次邻换得到,每一次邻换都 改变排列的奇偶性,故当2)1( n n 为偶数时,排列 1 1x x x n n 为奇排列,当2)1( n n 为奇数时,排列1 1 x x x n n 为 偶排列。 4. 写出4阶行列式的展开式中含元素13 a 且带负 号的项. 解:含元素13a 的乘积项共有13223144 (1)t a a a a ,13223441 (1)t a a a a , 13213244 (1)t a a a a ,13213442 (1)t a a a a ,13243241 (1)t a a a a ,13243142 (1)t a a a a 六项, 各项列标排列的逆序数分别为(3214)3t , (3241)4t , (3124)2 t , (3142)3 t , (3421)5t ,(3412)4 t , 故所求为13223144 1a a a a , 132134421a a a a , 13243241 1a a a a 。 5.按照行列式的定义,求行列式 n n 0 000100200100 的

值. 解:根据行列式的定义,非零的乘积项只有 1,12,21,1(1)t n n n nn a a a a L , 其中(1)(2) [(1)(2)21]2 n n t n n n L ,故行列式的值等于: (1)(2) 2 (1) ! n n n 6. 根据行列式定义,分别写出行列式x x x x x 1 11 1231112 1 2 的 展开式中含4 x 的项和含3 x 的项. 解:展开式含4 x 的乘积项为 4 11223344 (1)(1)22t a a a a x x x x x 含3 x 的乘积项为13 12213344 (1)(1)1t a a a a x x x x 8. 利用行列式的性质计算下列行列式: 解 : (1) 41 131123421 1234 1111 1 1 1 1 410234123410121 10310 ()341234120121 2412341230321 r r r r r r r r r r r

西南交通大学《运筹学IA》考试题

班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

三判断对错(在括号内打×或√,在横线上说明错误原因,每题3分, 共18分,不说明错误原因不得分。) 1.线性规划模型如果有最优解,则只能在可行域D极点上达到。 (×)如果存在多重解,其它点也能使目标函数达到最优。 2.把线性规划模型加入松弛变量或多余变量,目的是为了确定基本可行解 而构造单位矩阵。(×) 目的是把约束条件方程的不等式变换为等式。 3.原问题最优解也可以从对偶问题的最优单纯形表中读出来。(√) 4.用单纯形法求解时,检验数为零的变量一定是基变量。(×) 如果模型存在多重最优解时,也存在非基变量的检验数为零。 5.运输问题的解可能会有唯一解、多重解、无界解、不可行解。(×) 运输问题必定有最优解,有可能是唯一最优解,也有可能出现多重解。 6.对整数规划模型的非整数解用凑整方法处理后得到的解一定也是模型 的最优解(×) 凑整得到的解有时不是可行解,有时既使是可行解但不一定是最优解。四简答题(共12分) 1.线性规划模型中所谓的“线性”主要指的是?(4分) 答:(1)目标函数是线性的函数形式,有可能是求最大值,如追求利润 最大,也有可能是求最小值,如追求成本最低。(2分) (2)约束条件方程组由线性的等式或线性的不等式组成,有≤、=、≥ 三种形式。(2分) 2.线性规划模型的c j灵敏度分析中,如果c j在允许的范围内变动时,目 标函数值是否也会发生改变?为什么?(8分) 答:(1)当c j 对应的变量x j 为非基变量时,最优解不会改变,目标函数值也不会改变, 因为尽管c j 发生了变动,但作为非基变量x j 的取值为0,所以目标函数中c j x j 项的取值仍然为0。(4分) (2)当c j 对应的变量x j 为基变量时,最优解不会改变,但目标函数值可能会发生

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

西南交通大学管理运筹学929 2018年试题和解析

机密★启用前 西南交通大学2018年硕士研究生 招生入学考试试卷 试题代码:929 试题名称:管理运筹学一 考试时间:2017年12月 考生注意: 1.本试题共三大题,共3页,满分150分,请认真检查; 2.答题时,请直接将答题内容写在考场提供的答题纸上,答在试卷上的内容无效; 3.请在答题纸上按要求填写试题代码和试题名称; 4.试卷不得拆开,否则遗失后果自负。 一、 问答题(60分,共10小题,每小题6分)(答在试卷上的内容无效) 1、线性规划模型中,何谓自由变量?自由变量和决策变量是什么关系? 解答: 用设定的未知数来表示线性规划问题问题中的未知量,这个设定的未知量就叫做决策变量,决策变量没有非负约束即为自由变量;自由变量一定是决策变量,但决策变量不一定是自由变量。 2、 请分别解释无可行解、无界解、最优解的概念。 解答: 无可行解:约束方程组没有公共解,造成线性规划模型无解的解。 无界解:没有任何一个可行解能使得目标函数达到最优,即目标函数没有上界或下界。 最优解:在线性规划模型的所有可行解中,使得目标函数达到最优的解。 3、 说明下面的数学模型不符合线性规划模型的什么特点? 1233 1223 21312643230 18 ..3()249,0 z x x x x x x x x s t x x x x =+++≠??+≥?+≤?≥? 解答: (1) 此模型不符合线性规划模型目标函数应该是线性函数的特点;

(2) 此模型不符合线性规划模型目标函数求最大值最小值的特点; (3) 此模型不符合线性规划模型约束条件方程组由线性的等式或线性的不等 式的特点。 4、 以目标函数Min 型为例,从基本可行解、求检验数以及基本可行解改进三个方面说明单纯形法和表上作业法的区别。 解答: (1) 基本可行解:单纯形法是通过构造单位矩阵来确定初始基本可行解,而表 上作业法是通过另外的西北角法、最小元素法或差值法来确定初始基本可行解。 (2) 检验数:单纯形法是算出机会费用j z 以后,直接计算检验数的代数式 j j c z -,而表上作业法是通过另外的闭回路法或者位势法来计算检验数。 (3) 基本可行解改进:单纯形法和表上作业法均是在当0j j c z -≤的情况下进 一步改进基本可行解,即若基本可行解不是最小值,那么需要迭代调整。二者在确定换入变量和换出变量的原则是一样的,但是方法不同,表上作业法是通过闭回路的方法来确定换入变量和换出变量;单纯形法通过行运算进行迭代。 5、 用表上作业法求运输问题的检验数的方法有闭回路法和位势法,位势法的思路是针对基变量ij x 给定系数i u 和j v ,建立方程i j ij u v c +=。请利用闭回路法的思路及以下图形的回路,证明位势法求非基变量检验数的公式ij ij i j c u v λ=--。 非基变量 基变量 基变量 基变量 证明: 因为'''',,ij i j i j x x x 是基变量,由已知条件有以下方程: '''''''',,i j j ij i j i j i i j u v c u v c u v c +=+=+= 根据闭回路法,非基变量的检验数为''''''''()()ij ij ij i j ij i j ij i j i j c c c c c c c c λ=+-+=-+- 即:''''ij ij i j ij i j j i j i c u v u v u v c u v λ=--++--=-- 故证得ij ij i j c u v λ=--。 6、 针对整数规划的分枝定界法: (1) 先使用什么方法求出不考虑整数约束的最优解?(3分) (2) 在整数规划模型中,设定决策变量k x 取值为整数,但用分支定界算法

中山大学《线性代数》期中考试卷答案

珠海校区2009年度第一学期《线性代数》期中考试卷 姓名:专业:学号:成绩: 一,填空题(每题3分,共24分) 1.在5 阶行列式中,含有a13a34a51且带有负号的项是________________ 2.设A是3阶方阵,| A |= 1/3 ,则|(3A)-1 + 2A*| = 1 1 0 0 1 1 1 1 3. 5 2 0 0 = : 4 . x c b a = ; 0 0 3 6 x2c2b2a2 0 0 1 4 x3c3b3a3 5 . 已知矩阵 A = 1 1 , B = 1 0 , 则AB – BA T = ; 0 -1 1 1 1 0 2 6. 已知矩阵 A = 1 k 0 的秩为 2 ,则k = ; 1 1 1 2 1 1 1 7. 1 2 1 1 = ; 8. 若A = diag( 1 ,2 ,3 ,4 ) , 则A-1= ; 1 1 2 1 1 1 1 2 二. 判断题(每题2分,共10分) 1. 任一n 阶对角阵必可与同阶的方阵交换。() 2. n 阶行列式中副对角线上元素的乘积a n1a n-1,2…a1n总是带负号的() 3. 若A为n 阶方阵,则(A*)T = ( A T )* () 4. 设A , B 为n 阶方阵,则有(AB)3= A3B3() 5. 设A与B 为同型矩阵,则 A ~ B的充要条件是R(A)=R ( B ) ( ) 三,计算下列行列式( 每题8 分,共16 分) -2 -1 1 -1 0 1 0 …0 0 D4 = -2 2 4 8 1 0 1 …0 0 -2 1 1 1 D n = 0 1 0 …0 0 -2 -2 4 8 . . . . . 0 0 0 …0 1 0 0 0 … 1 0 -1 -1 0 四. 已知 A = -1 0 1 且AB = A – 2B , 求 B . 2 2 1

线性代数习题及答案复旦版

线性代数习题及答案(复旦版)[] 线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659;(2) 987654321; (3) n(n?1)…321;(4) 13…(2n?1)(2n)(2n?2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n(n?1)…32221)= 0+1+2 +…+(n?1)=; (4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式的展开式中包含和的项. 解:设,其中分别为不同列中对应元素的行下标,则展开式中含项有 展开式中含项有 . 5. 用定义计算下列各行列式. (1);(2). 【解】(1) D=(?1)τ(2314)4!=24; (2) D=12. 6. 计算下列各行列式. (1);(2) ; (3);(4) . 【解】(1) ; (2) ; 7. 证明下列各式. (1) ; (2) ; (3) (4) ; (5) . 【证明】(1) (2) (3) 首先考虑4阶范德蒙行列式:

从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为 但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故 (4) 对D2n按第一行展开,得 据此递推下去,可得 (5) 对行列式的阶数n用数学归纳法. 当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立. 按Dn的最后一列,把Dn拆成两个n阶行列式相加: 但由归纳假设 从而有 8. 计算下列n阶行列式. (1) (2) ; (3). (4)其中; (5). 【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得 将第一行乘(?1)后分别加到其余各行,得 (2) 按第二行展开 (3) 行列式按第一列展开后,得 (4)由题意,知 . (5) . 即有 由得 . 9. 计算n阶行列式. 【解】各列都加到第一列,再从第一列提出,得 将第一行乘(?1)后加到其余各行,得

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

西南大学线性代数次网上作业

一、填空题(每小题3分,共15分) 1.设矩阵A = ??? ? ? ??100012021,B = ??? ?? ??310120001,则A + 2B =???? ? ??. 2.设向量? ??? ? ??=1111α,????? ??=0112α,????? ??=0013α,????? ??=110β,则β由α1,α2,α3线性表出的表 示式为( ). 3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一个解,则k 1+k 2 = ( ). 4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ??? ? ? ??a a a 000103为正定矩阵,则a 的取值应满足( ). 二、单选题(每小题3分,共15分) 1.设行列式 22 11 b a b a = 1,22 11c a c a = 2,则2 22 1 11c b a c b a ++ = ( ). (A) -3 (B) -1 (C) 1 (D) 3 2.设A 为2阶可逆矩阵,且已知(2A )-1 =??? ? ??4321,则A = ( ). (A) 2???? ??4321 (B) 21 4321-???? ?? (C) ??? ? ??432121 (D) 1 432121-??? ? ?? 3.设向量组α1,α2,…,αs 线性相关,则必可推出( ). (A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例 (C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合 4.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|B -1| = ( ). (A) 121 (B) 7 1

基于矩阵分析的公共交通网络最优路径算法

第42卷 第3期 2007年6月 西 南 交 通 大 学 学 报J OURNAL OF SOUTHW EST JI A OTONG UN I VERSI T Y V o.l 42 N o .3 Jun .2007收稿日期:2005 05 31 作者简介:何迪(1980-),女,博士研究生,主要研究方向为城市交通,电话:028 ********,E m a i :l hel u cy_1980@yeah .net 通讯作者:严余松(1963-),男,教授,博士,电话:028 ********,E m ai:l yanyu s ong @https://www.wendangku.net/doc/bc10003425.html, 文章编号:0258 2724(2007)03 0315 05 基于矩阵分析的公共交通 网络最优路径算法 何 迪1 , 严余松1 , 郭守儆2 , 郝 光 1 (1.西南交通大学交通运输学院,四川成都610031;2.西南交通大学土木工程学院,四川成都610031)摘 要:为了更符合实际情况,即充分考虑换乘次数是乘客选择公共交通网络的决定因素,运行时间是其重要因素,分析了乘客心理特征,用G IS 技术建立了公共交通网络模型,构建了适合公共交通分析的直达矩阵和最小换乘矩阵.在此基础上,结合路段、节点运行时间,提出了公共交通网络最优路径算法,并用一个简单的算例对算法进行了说明. 关键词:公共交通网络;地理信息系统;最佳路径中图分类号:U 491 文献标识码:A Opti m al R outi ng A l gorith m for Public Traffic N et work Based onM atrix Anal ysis HE D i 1 , Y AN Yusong 1 , GUO Shoujing 2 , HAO Guang 1 (1.Schoo l o f T raffi c and T ransportation ,South w est Ji aotong U niversity ,Chengdu 610031,Ch i na ;2.Schoo l o f C i v il Eng .,South w est Jiao tong U niversity ,Chengdu 610031,Chi na) Abst ract :In order to ta ll y w ith the actua l sit u ation further ,.i e .,transfer ti m es are a deter m i n i n g facto r and travel ti m e is an i m portant facto r i n passengers cho ice o f a route in a pub lic tra ffic net w or k,the psycho log ical characteristics of passengers w ere ana l y zed ,a public traffic ne t w ork m ode l based on GIS (geog raph i c al i n f o r m ation syste m )w as established ,and the pa t h p lann i n g m atri x and the least transfer m atrix used to the ana l y sis of public traffic w ere constructed .On the basis o f t h e above w orks ,an opti m al routi n g a l g orith m fo r public traffic net w orks w as proposed by consi d er i n g the link travel ti m e and the ti m e at bus stops .Fina ll y ,a si m ple exa mp le w as g iven to sho w th is a l g orit h m.K ey w ords :public tra ffi c net w ork ;G I S (geog raphical i n for m ation syste m );opti m al rou te 目前应用较广泛的公路网络最短路径算法有D ij k stra 算法、Floyd 算法和M oo re Pape 算法.由于城市公交线网的特殊性,公交网络与公路网络最优出行路径算法有很大不同,文献[1]中就指出了公路网络的最优算法应用到公交网络的不足.常见的公交网络最短路径算法是采取对初始和终止站点线路集合向外扩展,逐渐逼近的搜索算法 [2] ,该模式以换乘次数最少为目标,需要进行集合的逐步扩展、排序、求交等, 具有搜索速度慢和目标单一的缺点. 笔者在分析乘客心理和对公交网络G I S (geog raph ical infor m ati o n syste m )描述的基础上,引入特殊矩阵,并将时间因素引入到模型的计算当中,得到最优出行路径.该算法较以往将出行距离作为权重的算法更符合乘客选择出行路径的实际情况,同时结合G I S 技术和特殊矩阵的应用,避免了大量的重复计算,一方面提高了搜索速度,另一方面也简化了算法.

相关文档
相关文档 最新文档