文档库 最新最全的文档下载
当前位置:文档库 › 稀土有机发光材料的现状与前景_马宏革

稀土有机发光材料的现状与前景_马宏革

稀土有机发光材料的现状与前景_马宏革
稀土有机发光材料的现状与前景_马宏革

稀土有机发光材料的现状与前景

马宏革,卢尚工

(包头轻工职业技术学院,内蒙古包头 014010)

摘 要:本文对稀土有机发光材料的发光原理进行了阐述,并分析了有机配体影响发光性能的若干因素,对有机配体的种类、结构等行了综述,最后稀土有机发光材料的应用前景进行了展望。

关键词:稀土有机发光材料;发光原理;有机配体

中图分类号:TB381 文献标识码:A 文章编号:1006—7981(2014)04—0048—02

稀土发光材料在人类生产和生活中有着广泛的应用。稀土发光材料分为无机和有机两种。将稀土元素与有机配体合成稀土有机配合物并掺杂或键合到高分子基质中制成的稀土有机高分子发光材料由于具有稳定性好、易于加工成型等特点而特别受到研究人员的青睐。

稀土有机发光材料的研究始于20世纪40年代初。1942年,Weissman研究了稀土有机配合物的发光现象,并发现了有机配合物发光的能量传递现象,为进一步研究稀土有机发光材料奠定了基础。1963年,Wolff和Pressley以聚甲基丙烯酸甲酯为基质制得稀土荧光材料,发现铕与α噻吩甲酰三氟丙酮(TTA)的配合物在高分子基质中发生从配体TTA到Eu3+的能量转移,从而使Eu3+荧光增强,从而开创了稀土高分子发光材料研究新领域。80年代,Y.Okamoto等人对稀土有机高分子聚合物的发光性能进行了一系列的研究,使之逐渐成为人们研究的热点。90年代至今,人们合成了大量种类繁多的配体,以寻求高效发光性能的化合物。

1 稀土有机配合物的光致发光原理

稀土元素是指镧系元素加上钪Sc和钇Y,共17种元素。稀土离子的4f亚层电子吸收紫外或可见光能量后由基态能级跃迁至激发态能级,当再次返回基态能级时能量就以光的形式释放出来。但是由于稀土离子吸光能力较小,发光效率低。当稀土离子与有机配体形成稀土有机配合物后,由于有机配体具有较强的吸光性,并且能够通过天线(An-tenna)效应把能量有效的转移给稀土离子,从而使稀土离子原有的荧光增强[1]。

2 有机配体对稀土离子发光性能的影响

从稀土有机配合物的光致发光机理来看,影响发光性能的因素主要有两个方面:一是稀土离子的发光效率。在稀土离子中,发光较强的有Sm3+(4f5)、Eu3+(4f6)、Tb3+(4f8)、Dy3+(4f9)四种,对它们的研究最为活跃。二是有机配体的影响[1]。其中,有机配体的合理选择是当前研究的主要方向。研究表明,配体对稀土离子发光性能的影响主要有以下几个方面:[2]

2.1 配体的最低激发三重态能级高于稀土离子的激发态能级,而且存在最佳匹配值

这是一条重要原则。例如,由于TTA(α—噻吩甲酰三氟丙酮)最低激发三重态能级低于Dy3+的激发态能级,因而二者组成的配合物不能发光。

2.2 配体在紫外光区有较高的吸光系数

有机配体的电子跃迁类型有σ—σ*、n—π*、π—π*跃迁几种。σ—σ*跃迁能高(150nm左右)在真空紫外区,n—π*跃迁吸光系数小(小于100),π—π*跃迁能量适中(250—400nm),吸光系数大于104。因此,选用含有共轭结构以及稠环结构的配体可以提高稀土离子的发光强度。

2.3 配合物体系共轭平面、结构的刚性程度越大,配合物的发光效率越高

共轭平面、刚性结构可以大大减少能量传递过程中的损失,从而提高发光效率。例如以下面的有机物作配体,配合物的发光效率:蒽〉萘〉苯。

2.4 配体取代基对稀土离子发光效率有明显影响[3]

配体取代基不同,稀土中心离子的发光效率也不同。以β—二酮类配体为例:当R1基团为强给电子基、R2基团为—CF3时,稀土离子发光效率明显提高。但当取代基选取不当时可导致荧光猝灭。笔者曾以二茂铁作为取代基合成了一系列β—二酮

4内蒙古石油化工 2014年第4期 * 收稿日期:2013-12-30

产品,均出现荧光猝灭现象。经计算发现,二茂铁基的引入使配体最低三重态能级低于稀土离子的激发态能级。

2.5 第二配体的引入是提高配合物发光效率的重要途径

第二配体可以满足中心离子的配位数。实验证明,增加金属离子的配位数可以增加稀土配合物的发光强度;第二配体参与配合物分子内能量的吸收与传递;适宜的第二配体可以增加配合物体系的共轭平面,(例如邻菲罗啉)还可以取代某些溶液反应中与稀土离子配位的水分子,减少能量的非辐射损失。

2.6 非荧光稀土离子对稀土配合物的发光有增强效应

非荧光稀土离子对稀土配合物发光增强效应的原因可能与形成异核配合物后分子内能量传递有关。[1]利用这一特点我们可以用廉价的非荧光稀土离子如La3+部分取代价格昂贵的Eu3+、Tb3+等,从而降低发光材料的制备成本。

3 有机配体的应用情况综述

有机配体种类繁多,大致分为β—二酮类配体、羧酸类配体和超分子大环类配体。

3.1 β—二酮类配体

此类配体最为常用,具有较高的荧光强度。例如赵莹[5]等用Eu3+、TTA(α—噻吩甲酰三氟丙酮)和三苯基氧膦的配合物与甲基丙烯酸甲脂聚合;安保礼[6]等用Eu3+、苯甲酰丙酮、邻菲罗啉配合物与丙烯酸聚合均制备出发红色荧光的材料;李建宇等[7]合成了1-苯基2-烯丙基-1,3-丁二酮及其Eu(Ш)配合物,证明具有较强的荧光性能。

3.2 羧酸类配体

主要指芳香羧酸,如苯甲酸、水杨酸等。例如李勇[8]等以苯甲酸及其氯代衍生物或苯甲酰水杨酸为第一配体,邻菲罗啉或联吡啶为第二配体,合成一系列Eu3+、Tb3+配合物,实验结果显示这些配合物可以发出很强的荧光。

3.3 大环类配体

大环类配合物是指把与金属离子配位的多个配体用适当的方式连接起来,形成环状,稀土离子被围在中央。如果是由多个环围在一起,则形成穴状或笼状结构,这样既可以防止稀土离子逃逸,配体也不易离解或被取代,从而大大增强了配合物的光和热的稳定性。

4 稀土有机发光材料的应用前景展望

稀土有机发光材料由于具有发光性好、色彩丰富、易于加工成型等优点而使其发展迅速。例如,植物对不同的色光有固定的选择吸收性,利用稀土有机发光材料制成农用光功能转换塑料薄膜可发出利于作物生长的色光,应用于农业生产使农田增产15%。利用稀土有机发光材料制成夜光纤维,进而制成工艺品、服装装饰、玩具等,为夜色下人们的生活增添了一线光彩[9]。随着对有机发光材料发光机制、发光性能、合成手段的进一步研究,性能优良的发光材料将会不断出现,并将很快进入人们的生活。今后我国稀土有机发光材料的研究方向将主要集中以下几个方面:①寻找各种高效的发色基团,合成可以发出从蓝到红范围各种色光的稀土有机发光材料;②寻找合适的稀土元素及其相应的配体,使得稀土发光材料的发光效率进一步提高;③寻找新型的制备方法合成发光强度高、稳定性好、加工容易且成本低廉的稀土高分子发光材料。[10]

[参考文献]

[1] 李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.

[2] 张秀菊,叶晓光,陈鸣才.稀土高分子荧光材料的研究[J].广州化学,2003,(1):34~40.[3] 李文连.稀土有机螯合物发光研究新进展[J].化学通报,1991,(8).

[4] Y.Ueba,E.Banks,and Y.Okamoto,Investigation on the Synthesis and Charac-

terization of Rare Earth Metal Containing

polymers II.Tluorescence Properties of En3

+—Polymers Complexes Containingβ—

Diketone Ligand[J].Appl Polym Sci.1980

,25:2007~2017.

[5] 赵莹,杨丽敏.含三价铕荧光络合物与聚甲基丙烯酸的发光材料[J].高分子学报,2004,

(4).

[6] 安保礼,刘晓岚,叶剑清.铕(III)与苯甲酰丙酮、邻菲罗啉和丙烯酸四元配合物及其SiO

2复合材料的制备和光致发光性能[J].中山大

学学报(自然科学版),2001,40.

[7] 李建宇.1-苯基2-烯丙基-1,3-丁二酮的合成及其Eu(Ш)配合物的荧光性质[J].化学

试剂,2005,27(7):387~388.

[8] 李勇,等.苯甲酸氯代衍生物稀土配合物的荧光表征[J].物理化学学报,2002,18.

[9] 程醉.稀土夜光纤维:攻城略地尚需时日[J].中国纤检,2011,21.

[10] 潘远凤,胡福增,郑安呐,等.高分子发光材料研究进展[J].材料导报,2003,(9).

 2014年第4期 马宏革等 稀土有机发光材料的现状与前景

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

荧光材料文献综述

一、荧光材料的种类与特性 总的说来,荧光材料分有机荧光材料和无机荧光材料。 有机荧光材料又有有机小分子发光材料和有机高分子光学材料之分。有机小分子荧光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。 有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。目前所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,目前研究得也比较多。 常见的无机荧光材料有硫化物系荧光材料、铝酸盐系荧光材料、氧化

物系荧光材料及稀土荧光材料等。 碱土金属硫化物体系是一类用途广泛的发光基质材料[8211 ] 。二价铕掺杂的CaS 及SrS 可以被蓝光有效激发而发射出红光,因而可用作蓝光L ED 晶片的白光L ED 的红色成分,可制造较低色温的白光L ED ,其显色性明显得到改善,目前使用的红粉硫化物体系主要是(Ca1-X ,SrX ) S : Eu2+ 体系,在蓝区宽带激发,红区宽带发射。通过改变Ca2+ 的掺杂量,可使发射峰在609~647 nm 间移动。共掺杂Er3 + , Tb3 + ,Ce3 +等可增强红光发射。 铝酸盐系荧光材料中SrAl2O4, CaAl2O4, BaAl2O4为常用的发光基质。例如,Sr3A12O6 是一种新型红色荧光粉,它的激发峰位于460~470nm 范围内,是与主峰为465nm 的蓝光L ED 晶片相匹配的红色荧光材料。刘阁等[31 ] 利用水热沉淀法合成了Sr3A12O6 。通过对其纯相粉末的荧光性质的研究,发现该荧光粉样品的最大激发峰位于459nm 波长处且在415nm 波长处有一小的激发峰。而样品的发射带落在615~683nm 的波长范围内, 其中最大发射峰的波长位于655nm 处, 表明在459nm 波长的光激发下,样品能够发出红色光。 氧化物荧光材料在荧光粉中的应用较多。如,以ZnO 作为基质合成的红色荧光材料稳定性很好。红色荧光材料ZnO : Eu ,Li 和ZnO :Li + 的最大激发峰范围都在340~370nm 范围内,与365~370nm 紫光L ED 晶片的发射峰大部分相交,因而适用于三基色白光L ED 制造。 稀土离子因其具有特殊的电子结构和成键特征,故能表现出独特的荧光性质,而通过与配体的作用,又可以在很大程度上增强它的荧光强度,因此稀土配合物的研究为荧光材料分子的设计提供了广阔的前景。近些年

镁基储氢合金的最新研究进展

第16卷 第5期2009年10月 金属功能材料Metallic Functional Materials Vol 116, No 15 October , 2009 镁基储氢合金的最新研究进展 童燕青,欧阳柳章 (华南理工大学材料科学与工程学院,广州 510640) 摘 要:镁基合金是一类重要的储氢材料。本文综述了Mg 2Ni 系合金、稀土2镁2镍、镁2稀土等3类含镁储氢合金的最新研究进展,探讨了合金化机理,即合金化元素、原子半径、相结构对含镁基储氢合金性能的影响规律。关键词:储氢合金;镁基合金;合金化 中图分类号:T G 13917 文献标识码:A 文章编号:1005-8192(2009)05-0038-04 Latest Progress on H ydrogen Storage Alloys Containing Magnesium TON G Yan 2qing ,OU YAN G Liu 2zhang (College of Materials Science and Engineering ,South China University of Technology , Guangzhou 510640,Guangdong ,China ) Abstract :Magnesium based alloy is an important type of hydrogen storage materials.This paper reviews the latest progress of the alloys containing magnesium ,such as Mg 2Ni based alloys ,earth 2magnesium 2nickel alloys and mag 2nesium 2rare earth alloys.The alloying mechanism is discussed ,namely the effect of the alloying elements ,the atom 2ic radius and phase structure on the hydrogen storage properties of magnesium based alloys is reviewed.K ey w ords :hydrogen storage alloys ;magnesium 2based alloy ;alloying 基金项目:863资助项目(2006AA05Z133) 作者简介:童燕青,男,博士研究生。E 2mail :tongyq @https://www.wendangku.net/doc/bf10034837.html, 1 引 言 开发和利用氢能作为二次能源及其相关的能源新技术和新材料已被许多国家列为重点研究内容。高性能和高容量储氢材料的研发对氢能的大规模应用和“氢经济”的实现具有非常关键的作用[1~3]。如对于车用储氢系统,国际能源署(IEA )提出的目标是质量储氢密度大于5%、体积储氢密度大于50kg H 2/m 3,并且放氢温度低于423K ,循环寿命超 过1000次;而美国能源部(DO E )提出的目标是到2010年不低于615%和62kg H 2/m 3,车用储氢系 统的实际储氢能力大于311kg (相当于小汽车行驶500km 所需的燃料)[2]。与高压压缩、液氢和物理吸附等储氢技术相比,利用储氢材料进行固态储氢具有体积储氢密度高和安全性好的优势,但仍需要 进一步提高质量储氢密度和动力学性能。 镁作为一种高容量(716wt %)的储氢材料,兼具储量丰富、低成本和环境友好的特性,因此一直受到研究人员的特别关注。为了克服其脱氢温度高(>573K )和动力学缓慢的缺点,研究人员采用了纳米化、添加催化剂、制备纳米复合材料、表面改性和合金化等多种手段[4,5],这些方法对改善镁的动力学性能效果显著,但Mg H 2的脱氢温度一直受到高形成焓(-74kJ /mol ?H 2)的限制。通过调整储氢合金的成分和结构,合金化有可能降低Mg H 2的形成焓和改善其动力学性能。本文介绍一些镁基储氢合金的最新研究进展,重点在于讨论合金元素、合金相结构对储氢性能的影响规律。

稀土储氢合金及其应用的发展状况

稀土储氢合金及其应用的发展状况 稀土与过度元素的合金是一种在较低温度下也可吸放氢气,通常将这种合金称为储氢合金。在已开发的一系列储氢材料中,稀土系储氢材料性能最佳,应用也最为广泛。其应用领域已扩大到能源、化工、电子、宇航、军事及民用各个方面。 1969年荷兰菲利浦公司发现典型的稀土储氢合金LaNi5,从而引发了人们对稀土系储氢材料的研究热潮。从上世纪九十年代开始在镍氢二次电池中得到大量应用。石油和煤炭是人类两大主要能源燃料,但由于它们储量有限,使用过程中产生环境污染等问题,因此解决能源短缺和环境污染成为当今研究的重点之一。氢是一种完全无污染的理想能源材料,具有单位质量热量高于汽油两倍以上的高能量密度,可从水中提取。氢能源开发应用的关键在于能否经济地生产和高密度安全制取和贮运氢。稀土储氢合金可以常温低压高密度贮存氢,是一种理想的储氢介质,在未来的氢能时代具有很大的应用潜力。 一、稀土储氢合金在镍氢二次电池中的应用 1. Ni-MH电池的现状与发展方向 镍氢电池于1988年进入实用化阶段,1990年在日本开始规模生产,此后产量成倍增加。2000年日本镍氢电池产量达到7亿只左右,中国的产量不足1亿只。近年由于在手机、笔记本电脑和数码相机等领域受到锂离子电池强有力的竞争和中国同行的崛起,日本镍氢电池产量下降到5亿只左右,中国企业的产量也上升到5亿只左右,90%以上的镍氢电池产自中国和日本。 镍氢电池为了应对锂离子电池的挤压,近年来致力于体积比能量的提高,功率特性和高低温性能的改善。提高材料性能和增加电池内填充密度,镍氢电池体积能量密度从1990年的180W h/L增长到400Wh/L以上,AA电池的容量从1000mAh提升到2300mAh,三洋公司报道已开发出容量达2500mAh的AA型镍氢电池。镍氢电池的能量比的提高使其在通讯和便携家电等领域内仍具有一定的竞争力。 近年来,人们对城市空气质量及地球石油资源危机等问题日趋重视,保护环境,节约能源的呼声日益高涨,促使人们高度重视电动车及其相关技术的发展,美国、法国、中国的上海市等均相继通过立法限制燃油车,大力发展电动车。受国情影响,欧美等发达国家如美国、德国、法国、日本等国家开发的电动车以电动汽车为主,发展中国家尤其是中国内地以及中国的台湾、香港地区,近期的电动车市场主要为电动摩托车和电动自行车。据统计,国内已有200家公司、企业着手小型电动车的开发、生产和应用。十五“863”计划将电动汽车列为重大专项,组织由各大汽车制造集团牵头研发团体致力于电动汽车的开发,其中混合动力汽车要在十五期间实现产业化。 根据美国USABC和日本公司对各种电动车用电池的性能以及发展潜力比较论证,综合考虑电池的可靠性、安全性、电池材料的资源与环境问题以及电池性能的发展趋势,确定镍氢电池是近期和中期电动车用首选动力电池。目前,美国Ovonic公司已与通用公司、日本松下已与丰田公司合作计划实现电动车用Ni-MH 动力电池的产业化。在“863”计划的牵

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土_镁_镍系储氢电极材料的研究进展

稀土-镁-镍系储氢电极材料的研究进展 Ξ 闫慧忠,孔繁清,韩 莉,熊 玮,孙晓华 (包头稀土研究院,内蒙古 包头 014010) 摘 要:介绍了国内外对各种多元及多相稀土-镁-镍系储氢电极材料的研究进展,主要包括材料的组成、制备方法、组织结构以及吸放氢动力学行为和电化学性能方面的研究。 关键词:稀土-镁-镍系;贮氢合金;复合贮氢材料;储氢电极材料 中图分类号:O 614133;T G 139+17 文献标识码:A 文章编号:100420277(2005)0120060207 贮氢合金是20世纪60年代末发现的一类具有高储氢密度的功能材料,从组成上大致可分为四类:稀土系如L aN i 5;镁系如M g 2N i 、M gN i 、L a 2M g 17;钛系如T i N i 、T iFe ;锆系如ZrN i 2。L aN i 5型贮氢合金已实现了产业化,主要用于制作M H N i 电池的负极材料,其理论容量为370mA ?h ?g -1,实际开发的最大容量为320mA ? h ?g -1。由于容量限制,M H N i 电池的应用范围及市场竞争力受到挑战。镁及某些镁基贮氢合金如M g 2N i 、M gN i 、L a 2M g 17等, 由于其储氢量大、重量轻、资源丰富、价格便宜,在开发新型高容量储氢电极材料的过程中引起了广泛的关注,成为该领域的研究热点[1],纯镁及几种镁基贮氢合金与L aN i 5的理论电化学容量如图1所示。 图1 几种贮氢合金理论电化学容量的比较 F ig 11 Co m par ison of idea l electroche m istry capac ities of hydrogen storage a lloys 镁基贮氢合金作为电极材料应用时存在的主要问题是动力学性能较差以及充放电循环中容量衰减快。通过添加改性元素(多元合金体系)、改进制备工艺、表面处理、热处理、机械球磨改性等措施,可在一定程度上解决这些问题。此外,大量的研究表明,通过适当的制备工艺与动力学性能良好的贮氢合金如L aN i 5复合,可明显改善镁基储氢材料的动力学性能,由此获得一类新型稀土-镁-镍系高容量复合储氢电极材料。 1 稀土-镁-镍系多元合金体系 111 三元体系 对三元系合金L a 2M gN i 9,L a 5M g 2N i 23,L a 3M gN i 14储氢特性的研究结果表明,L a 5M g 2N i 23合金负极的放电容量高达410mA ?h ?g -1,比AB 5型合金大113倍。这些三元系合金主要是由超点阵结构中叠层的AB 5和AB 2结构亚单位构成[2]。 速凝M g 2N i 2R E (R E =Y 或富Ce ,富L a 的混合稀土金属M m )合金淬火后呈非晶态或纳米晶 非晶态,即平均尺寸3nm 的纳米晶置于大量非晶相中,M g 76N i 19Y 5和M g 78N i 18Y 4合金与M g 75N i 20M m 5比较,M m 比Y 对储氢容量产生更有利的影响,这些合金的结晶化经过亚稳态的面心立方M g 6N i 相转变成纳米晶材料[3]。T anaka 等[4]测定了速凝法制备的非晶态和纳米晶结构的晶态M g 2N i 2R E (R E = 第26卷第1期2005年2月 稀 土Ch inese R are Earth s V o l .26,N o.1 Feb ruary 2005 Ξ收稿日期:2004204208 基金项目:国家自然科学基金资助项目(20363001);内蒙古自然科学基金资助项目(200308020215) 作者简介:闫慧忠(19622),男,内蒙古乌拉特前旗人,在读博士,高级工程师,研究方向为储氢材料的制备和研究。

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.wendangku.net/doc/bf10034837.html,/Periodical_ydysg201201028.aspx

储氢材料研究进展

储氢材料研究进展 摘要:随着传统能源的日渐枯竭,以及生态环境恶化的双重压力,致使人类面临着能源和环境危机的严峻挑战。而氢能作为一种高效﹑清洁﹑无污染的能源,日益受到人们的瞩目。本文重点介绍储氢材料的分类,以及氢能的应用,并给出一些建议。 关键词:氢能源储氢材料应用领域 Progress in hydrogen storage material Abstract:Along with the traditional energy exhaustion, dual pressure and the deterioration of the ecological environment, resulting in serious challenge that the mankind faces a crisis of energy and environment. While hydrogen as a kind of high efficient, clean, no pollution energy, increasing people's attention. This paper introduces the classification of hydrogen storage materials, and the application of hydrogen energy, and puts forward some suggestions. Key words: Hydrogen energy Hydrogen storage material Application field 随着人们环保意识的增强和低碳经济概念的提出,氢能日益受到关注。氢能具有许多优势:(1)氢释能后的产物是水,属于清洁能源;(2)既可通过太阳能、风能、核能等分解水来获得,也可以利用石油重整、甲醇蒸汽转化、炼焦和煤炭气化等方式制取,是可再生能源;(3)氢具有较高的热值;(4)在化工与炼油等领域副产大量氢气,资源丰富。此外,通过改造微生物基因以实现高效生物制氢也是当前世界范围内的研究热点。现有的工业技术已能实现氢的大规模生产。从长远来看,它的发展可能带来能源结构的重大改变。如果能被有效地开发利用,作为一种能源替代物将会有广阔的应用前景,氢能体系主要包括氢的生产、储存与运输、应用 3 个环节,其中氢的储存是关键, 也是目前氢能应用的技术瓶颈。 储氢材料分类

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

储氢合金的分类与性能

储氢合金的分类与基本性能 储氢合金按组成元素的主要种类分为: 稀土系、钛系、锆系、镁系四大类,按主要组成元素的原子比分为:AB5 型、AB2 型、AB 型、A2B 型, 另外也可按晶态与非晶态, 粉末与薄膜进行分类。 储氢合金基本特征:二元储氢合金(或金属间化合物) 基本上是在1970 年前后相继被发现的. 这些二元储氢合金可分为AB5 型(稀土系合金,如形成LaNi5H6 )、AB2 型(Laves 相合金,如形成ZrV2H4.8 ) 、AB 型(钛系合金,如形成TiFeH1.9) 和A2B 型(镁基合金,如形成Mg2NiH4) .其中A 为氢化物稳定性元素(发热型金属) ,B 为氢化物不稳定性元素(吸热型金属) ,A 原子半径大于B 原子半径. 氢在金属和合金中比液态氢的密度高,氢能够在相对温和的条件下可逆吸放,并且伴随热的释放与吸收. 实验检测和模拟计算证明,氢主要以原子形式存在,部分带有负电荷。 1稀土系储氢合金 稀土系储氢合金以LaNi5 为代表, 可用通式AB5 表示, 具有CaCu5 型六方结构。 性能: 较高的吸氢能力(储氢量高达1.37 重量% ) ,较易活化,对杂质不敏感以及吸脱氢不需高温高压(当释放温度高于40℃时放氢就很迅速) 等优良特性。 应用领域: 是热泵、电池、空调器等应用中的理想候选材料,有很大的应用潜力。 影响元素、改进性能的研究方法: 合金吸氢后晶胞体积膨胀较大, 易粉化, 比表面随之增大, 从而增大合金氧化的机会, 使合金过早失去吸放氢能力。这就使氢镍电池中储氢容量衰减快, 而且价格昂贵。由于纯稀土金属价格昂贵不能满足工业生产的大量需求, 为了降低成本, 人们利用混合稀土(Mm: La、Ce、Nd、Pr)、Ca、Ti 等置换LaNi5 中的部分La, 以Co、A l、M n、Fe、Cr、Cu、Si、Sn 等置换Ni 以改善性能, 开发出多元混合稀土储氢合金。混合稀土储氢合金材料有富铈的和富镧的, 其优点是资源丰富, 成本较低。在混合稀土材料中通常都加入M n, 这样可以扩大储氢材料晶格的吸氢能力, 提高初始容量, 但M n 也比较容易偏析, 生成锰的氧化物, 从而使合金的性质和晶格发生变化,降低吸放氢能力, 缩短寿命。因此, 为了制约M n 的偏析, 以提高储氢合金的性能和寿命, 在混合稀土材料中往往还要添加Co和Al。 2钛系储氢合金

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

稀土发光材料研究进展

稀土发光材料 来源:本站原创日期:2009-01-16 加入收藏 1 稀土发光材料发展年表 稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。30多年来,我国稀土发光及材料科学技术的研发在各级领导和部门关心下从起步和跟踪走向自主发展;稀土荧光体(粉)生产从零开始,已形成一个新的产业。 20世纪60年代是稀土离子发光及其发光材料基础研究和应用发展的划时代和转折点。三价稀土离子发光的光学光谱学、晶体场理论等基础研究日益深入和完善。1964年,高效YVO4∶Eu和Y2O3∶Eu红色荧光粉和1968年Y2O2S∶Eu红色荧光粉的发明,并很快被应用于彩色电视显象管(CRT)中。步入70年代,无论是基础研究,还是新材料研制及其开发应用进入迅速发展时期。 在20世纪70年代以前,我国稀土发光及材料科学和技术并没有形成,仅中科院物理所对CaS和SrS体系中掺Eu、Sm、Ce离子的红外磷光体的光致发光性能,以及在ZnS∶Cu或Mn的电致发光材料中某些稀土离子作为掺杂剂对性能影响进行少量的研究。所用稀土材料全部进口,价格比黄金还贵。 20世纪70年代中科院长春物理所抓住机遇,将这一时期国际上大量的新科研成果引入翻译出版向全国介绍,起"催化剂"作用;同时有一批从事稀土分离的化学科技工作者也纷纷转入从事稀土发光及材料科研和开发工作,加之彩电荧光粉会战,使这一新兴学科在我国正式起步并不断发展。 20世纪60和70年代国际稀土发光材料发展和我国稀土冶炼及分离工业崛起,许多单位跟踪国际上已有成效的工作,纷纷开展稀土离子发光性能研究,以及许多不同用途、不同体系的稀土发光功能材料的研发工作,这里特别应指出的彩电荧光粉成为全国会战任务。 根据当时国内外发展,1973年国家计委下达彩电荧光粉全国会战任务,由中科院长春物理所任组长单位,组织北京大学、北京有色金属研究总院、南京华东电子管厂、北京化工

相关文档