文档库 最新最全的文档下载
当前位置:文档库 › 变压器的连接组别(附各种判别方法)

变压器的连接组别(附各种判别方法)

变压器的连接组别(附各种判别方法)
变压器的连接组别(附各种判别方法)

变压器的连接组别

变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系

同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”。

变压器联结组别用时钟表示法表示

规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“èAX”,简记为“èA”,低压绕组电势从a指向x,简记为“èa”。

时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。

确定三相变压器联结组别的步骤是:

①根据三相变压器绕组联结方式(Y或y、D或d)画出高、低压绕组接线图(绕组按A、B、C相序自左向右排列);

②在接线图上标出相电势和线电势的假定正方向

③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画);

④根据高、低压绕组线电势相位差,确定联结组别的标号。

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数

Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数

为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

标准组别的应用

Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;

YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;

YNy0组别的三相电力变压器用于原边需接地的系统中;

Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。

在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。

变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,

y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题。变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握。而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记

牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组,更显示出它的优越性。下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法。

1用相电压矢量图画出Y/△接法的接线图

首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组。

如图1所示,Y/△-11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢

量,此a相相电压矢量在原边A相与B相反方向-B的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和

引出线就不会弄错。因此根据原次边相电压矢量便可画出Y/△-11组接线图,如图2所示。

2用相电压矢量图来识别Y/Y/ΔΔ接法的联接组别

如要识别图3所示的Y/△接法的联接组别,首先画出原边相电压矢量A、B、C,根据

图3的接线图可以看出,次边a相绕组的尾连接C相绕组的头作为次边a相的输出线,由于次边a与原边A同相位,我们把次边a相相电压矢量画在原边相电压C和-A的中间,以

原边A相为基准,顺时针旋转次边a相,它们之间的夹角为210°,由此这个接线图是Y/△-7组,见图4。

3用相电压矢量图画出△/Y接法的接线图

首先画出次边a、b、c三相相电压矢量图,以次边a相相电压矢量为基准,逆时针旋转到所要求联接组,再根据此矢量图画出该组别的接线图。

如图5所示,先画出△/Y-5组的矢量图,再逆时针旋转150°,画出原边A相相电压矢量,此A相相电压矢量上,因此根据此矢量图便可画出△/Y-5组的接线图可知,次边a、b、

c三个头作为a、b、c三相的输出端,原边A的尾C的头,B的尾接A的头,C的尾接B 的头分别作为A、B、C三相的输出端,见图6。

4用相电压矢量图,识别△/Y接法的联接组别

首先画出以次边a、b、c三相电压为基准的矢量图,再根据原边绕组的接法,只要将A相画在次边矢量上,以原边A相顺时针旋转到次边a相之间的夹角是多少,就知道该△/Y 的接线图它属于第几组。

如图7所示,识别图中△/Y的接线图它属于几组,根据上面的方法,画出次边a、b、

c三相相电压矢量图,从接线图中可以看出原边A相绕组的头连接B相绕组的尾作为原边A 相引出线,因此我们把原边相电压矢量A画到次边矢量a和-b中间,而次边C相绕组的头

作为次边a相输出,因此我们把次边矢量C当成是矢量a调相来使用,然后以原边A相顺时旋转到次边a相,它们的夹角为270°,因此这个接线图为△/Y-9联接组,见图8。

图7△/Y接线图图8△/Y接线图的相电压矢量图

由此可见,用相电压矢量图来对三相变压器各种联接组别进行接线和识别的方法

简单易学,却在现场实践过程中具有很高的实用价值。

(整理)快速判断三相变压器连接组别的方法

快速判断三相变压器连接组别的方法

A B C . . . 一次线圈 a b c 二次线圈. . . 一、以Y/Y-12变压器为基准,可快速判断其他Y/Y 型变压器的连接组别。 c a b 二次线圈 . . .A C 1、以Y/Y-12连接组别为参考,一次相序不动,二次相序顺时针转120°(a 到b 、 b 到 c 、c 到a ),视为把ab 也顺时针转120°,即ab 滞后AB 有120°,120/3=4,则该变压器的连接组别为Y/Y-4;同理,再顺时针转120°,ab 滞后AB 有240°,240/3=8,则该变压器的连接组别为Y/Y-8。 (Y/Y-12) (Y/Y-4) b c a 二次线圈 . . . A C B (Y/Y-8) 2、将Y/Y-12的二次极性设置为反极性,即一次相序和极性不变,二次相序不变,但极性相反,得到ab 与AB 反相,180/3=6,即为Y/Y-6连接组别。 A B C 一次线圈 a b c 二次线圈 . . . (Y/Y-6) . . . A C B A C B . . .

3、以Y/Y-6以连接组别为参考,一次相序不动,二次相序顺时针转120°(a 到b 、b 到C 、C 到a ),视为把ab 也顺时针转120°,即ab 滞后AB 有 180°+120°=300°,300/3=10,则该变压器的连接组别为Y/Y-10;同理,再顺时针转120°,ab 滞后AB 有300°+120°=420°(即滞后420°-360°=60°),60/3=2,则该变压器的连接组别为Y/Y-2。 c a b 二次线圈 (Y/Y-10) A C B b c a 二次线圈 (Y/Y-2) A C B . . . . . . 小结:以Y/Y -12为基准(看作0),顺时针转120°,加4,即为Y/Y -4;再转120°,再加4,即为Y/Y -8;反极性后,以Y/Y -6为基准,顺时针转120°,加4,即为Y/Y -10;再转120°,再加4,为14,也就是Y/Y -2。 二、以Y/△-11变压器为基准,可快速判断其他Y/△型变 压器的连接组别。 A B C 一次线圈 a b c 二次线圈 . . . (Y/△-11) . . . C A B 1、以Y/△-11连接组别为参考,一次相序不动,二次相序顺时针转120°(a 到b 、b 到c 、c 到a ),视为把ab 也顺时针转120°,即ab 滞后AB 有330°+120°=450°(即滞后450°-360°=90°),90/3=3,则该变压器的连接组别为Y/△-3;同理,再顺时针转120°,ab 滞后AB 有90°+120°=210°,210/3=7,则该变压器的连接组别为Y/△-7。

三相变压器绕组的联结组别

三相变压器绕组的联结组别 1.变压器联接组别标号的常用确定方法 确定变压器联接组别标号通常采用国际上规定的时钟表示法,即规定原绕组线电动势向量EAB当作钟表的指针固定指“12”位置,副绕组电动势向量Eab当作时针指向钟表的那个数字,该数字就是三相变压器联接组别的标号。下面以Yy0为例,阐述确定联接组标号的具体步骤。分别画出原绕组和副绕组接线图(见图1(a))。注意画图时同一芯柱的绕组上下对齐,找同一芯柱上的绕组感应电动势的同极性端。 图1 Yy0连接组 按照原边接线画出原边绕组的电势向量图。按照副边接线画出把A和a(见图1(b))看成等电位点的副边绕组电势向量图。 在原、副绕组电动势向量图中找出对应的线电动势相位差。即Eab当作钟表的分针固定在“12”位置,Eab当作时针所指数字就是该变压器联接组别标号(图1中Eab指“12”,通常用“0”表示)。 联接组组成:原边接线、副边接线组别号。由此得图1的联接组为Yy0。 应用此法,对应每一个联接组别都要画出对应原边接线和副边接线的电势向量图,步骤繁琐,也容易出错,掌握起来有一定的难度,尤其对从事变电站运行的职工更是如此。笔者将所有的联接组别进行全面的分析,反复推敲,找出了它们之间的相互联系及变化规律,总结出了不用画向量图的简易确定联接组标号的方法。 2 变压器中各电动势向量的相位变化规律 用国际上规定的方法确定三相变压器的联接组别,较关键的步骤是画原、副绕组电动势向量图,找原、副边绕组对应的线电动势相位

差。由于三相变压器结构的特点,三相变压器原、副绕组电动势向量的相位变化及相位差也有一定的规律可循。 三相变压器同一侧(原边或副边)各相电动势相位互等120°。 同一铁芯柱上原、副绕组相电动势要么同相,相位差为0°,要么反相,相位差为+180°(如图1 Yy0)。 不论怎样联接,电势向量组成的三角形为等边三角形。高压绕组线电势EAB和对应的低压绕相线电势Eab之间的相位差总是30°的整倍数。 3 变压器联接组的变化规律 三相变压器的基本接线有星形联接(原边用符号“Y”表示,副边用符号“y”表示)和三角形联接(原边用符号“D”表示,副边用符 号“d”表示)。原、副边的接线组合有Yy、Yd、Dy和Dd四种。每一种组合又有6个组别号,共有24种联接组,其变化规律如下。 第一,当原、副绕组接线方式相同时,联接组标号为偶数(如图1所示),当原副绕组接线方式不同时,联接线别标号为奇数(如图2所示)。 图2 Yd11连接组第二,当原、副边接线相同、标记相同、极性也相同时,原、副绕组相对应线电势相位差为0。联接组别的标号为“0”,如Yy0。当原、副边接线相同,标记相同,极性相反时,原、副绕组对应电势相位差为180°,联接组别的标号应为“6”(Yy6)。 第三,当原边接线、标记、极性固定时,副边绕组三相出线标记按相序移位一次,相当于副边相电动势顺时针转动了120°,联接组别在原来的标号上加“4”,如“0+4”时,标号为“4”;再移位一次副边相电动势,又顺转了120°,相当于“4+4”,标号为“8”(Yy8)。

简述变压器连接组别的两种判断方法

简述变压器连接组别的两种判断方法 两台或多台变压器并联运行时,除了要知道原、副绕组的连接方法外,还需知道原、副绕组对应的线电势(或线电压)之间的相位关系,以便确定各台变压器能否并联运行。变压器的连接组就是用来表征上述相位差的一种标志。实践和理论证明,对于三相绕组,无论采用什么连接法,原、副绕组线电势的相位差总是30°的倍数。如何迅速、准确地判别三相变压器的连接组别呢?多年来人们一直沿用时钟表示法,即把原绕组的电势矢量看成时钟的长针,副绕组的电势矢量看成短针,把长针指到12时,看短针指在哪一个数字上,就把这个数字作为连接组的组号。如短针指在 4时位置,从矢量逆时针方向来看,短针落后长针120°,它表明三相变压器副绕组线电压滞后对的原绕组线电压120°。若其原、副绕组为Y/△或△/Y接线,则称为奇数连接组,若原、副绕组均为△/△或Y/Y接法,则称为偶数连接组,因而三相变压器的连接组别就出现了12个时钟数的24种连接法。该方法确实给人们带来了较大的方便,既可以反映原、副绕组所对应线电压的相位关系,也能反映它们数值的大小关系。
 1、 简易判别方法的工作原理
    三相变压器的连接组是用副方线电势与原方对应的线电势的相位差 来决定的,它不仅与绕组的绕法和三相线圈的连接法有关,还与绕组的首末端标志有关。该简易判别方法类似于将不同的模拟量转化为数字量,即将上述三者分别用3个简单的阿拉伯数字代表,三个数的代数和就决定了该三相变压器的连接组别。其逆应用,可由连接组来确定三相变压器的连接组别图。具体操作如下:
    (1)根据连接组别图确定原、副绕组的接线形式。
    (2)同一铁心柱上原、副绕组同名端相同时,取数字"12"或"0";若相反,取数字"6"。即同名端相同时,同一铁心柱上原、副绕组线电压同相,时钟的短针与长针重合;相反时,时钟的短针与长针方向相反。
    (3)副级相电压端子符号移位是根据三相电源电压三相对称,每相邻两相之间互差120°顺相序连接时,每向后移1位(即一个铁心柱)为120°,按时钟的钟点数正好为"4"(120°/30°=4),即副级相电压端子符号后移1个铁心柱用"4"(4x30°=120°)表示,向后移两个铁心柱用"8"(8x30°=240°)表示。
    (4)原级厶逆相序连接时,表示副级对应线电压滞后30',或者说原级线电压超前副级线电压30°,故修正数字取"+1,顺相序连接时用"-1"表示。而副级的取数与原级相反。顺相序连接是指三相绕组按U-V-W相序排列,逆相序连接是指三相绕组按  U-W-V相序排列。
    (5)上述三者的代数和就确定了该三相变压器  的连接组别。当其代数和大于12而小于24时,将该  代数和减去12后,其结果即为连接组别数。
    (6)方法的逆应用:①原级相电压端子符号均按U-V-W相序由左向右排列。②确定原、副级绕组的同名端。只有同相和反相两种可能,即"12"和"6"两个数字。③决定副级相电压端子符号是否移位,每右移1位增"4",故有数字"0","4","8"三种情况。  ④确定△型绕组的相序。原级△接法取"-1"时则为顺相序连接,取"+1"时则为逆相序连接,副级绕组则相反。若原、副级接线形式相同,则第3个数字取"0"。⑤使上述三者的代数和刚好为已知钟点数。对于偶数连接组,若满足不了已知钟点数,则第一个 数②取另一个可能数字。对于奇数连接组,则可能出现两种连接方式,但不影响连接的正确性,可根据实际情况选定。
   

三相变压器联结组别判断方法

三相变压器联结组别(标号)的判定方法 一、联结组别(标号)概念 三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。 图1-1 二、影响联结组别的因素 三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。 (一)联结方法的影响 变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax绕组的x端可以和b连接,也可以与c连接。按照ax-by-cz-ax顺序接线的称为顺接,按照ax-cz -by-ax 顺序接线的称为逆接;星形接法用Y表示;三角形接法用D表示,如图1-2所示。 图1-2 (a)星形联结(b)三角形联结(顺联)(c)三角形联结(逆联) 在三相变压器里,一次绕组的首端用A、B、C表示;末端用X 、Y、Z;二次绕组的首端用a、b、c表示,末端用x、y、z表示。星形接法中点可以引出中线,也可以不引出。这样,一、二绕组的接法就有各组合:(1)Y,y或YN,y或Y,yn;(2)Y,d或YN,d;(3)D,y或D,yn;(4)D,d。其中大

写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n是星形接法的中心点引出标志。 (二)绕组电动势相位的影响 在变压器的接线图中,一次绕组按A、B、C相序排列,相位保持不变;二次绕组按a、b、c相序排列,相位可有改变(abc、bca、cab)。同一铁心柱上的绕组属于同一相,相位相同;错开一个铁心柱相位滞后1200,钟点数按顺时针方向增加4h,错开两个铁心柱,相位滞后2400,钟点数按顺时针方向增加8h,如图1-3(a)、(b)所示。 图1-3(a) 图1-3(b) (三)同名端标志的影响 所谓变压器的同名端,就是在两个绕组中分别通以交流电(或者直流电产生静止磁场),当磁通方向迭加(同方向)时,两个绕组的电流流入端就是它们的同名端,两个绕组的电流流出端是它们的另一组同名端。简单判断方法如下:将变压器的两个绕组并联,再与一个灯泡串接在交流电源上.这个交流电源的频率要与变压器磁芯相适应,铁芯变压器用工频,开关变压器用开关电源供电,调换其中任一绕组的两个头,并好后与灯泡相串通电。比较两种接法时,会发现亮度不同,亮度较暗的那一种接法,变压器相并的端子即是同名端,如图1-4所示。 图1-4 在变压器的接线图中,一、二次绕组同名端标志相同的不影响变压器联结组别的钟点数,标志为异名端的将使联结组别的钟点数按顺时针方

变压器连接组别Dyn11与Yyn0的区别

变压器连接组别Dyn11与Yyn0的区别-聊城市阳光电力变压器有限公司 变压器连接组别Dyn11与Yyn0的区别 简介: 1、变压器连接组别Dyn11与Yyn0的区别 2) Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。这种情况对于低压侧- 9*3为单相供电的照明负载不会产生影响。若低压侧为三相供电的动力负载,一般均配置缺相保护故此不会造成动力负载因缺相运行而烧毁。 2、插入熔断器与后备熔断器的作用?插入熔断器是油浸式、插入型熔断器,在二次侧发生短路故障、过负荷及油温过高时熔断。 1、变压器连接组别Dyn11与Yyn0的区别 2) Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。若低压侧为三相供电的动力负载,一般均配置缺相保护故此不会造成动力负载因缺相运行而烧毁。 2、插入熔断器与后备熔断器的作用? 插入熔断器是油浸式、插入型熔断器,在二次侧发生短路故障、过负荷及油温过高时熔断。熔断器熔断后,可在箱变带负荷情况下更换熔丝;后备保护熔断器是油浸式限流熔断器,安装在箱体内部,只在箱变内部发生故障时动作,用于保护高压线路。 4、干式变压器中有载调压与与无载调压分接范围干式变压器 有载调压:±3×2.5%或±4×2.5% 无载调压:±2×2.5%或±5% 5、进线电流小于等于200A配肘型电缆接头,可带避雷器、带电指示器、故障指示器。带避雷器时为双通套管,不带避雷器时为单通套管。适用于YJV(YJLV)-35mm2~120 mm2,电缆进线电流小于等于600A配T型电缆接头,可带避雷器、带电指示器、故障指示器,适用于 YJV(YJLV)-50mm2~240 mm2电缆。 3、 25#油与高燃点油区别美式箱变内可充两种绝缘油,一种为普通矿物油,即25#克拉马依油;另一种是高燃点油,高燃点油是一种防火型碳氢化合物油,其燃点高达312℃,经美国认证试验室(UL)认证为难燃油。高燃点油可用于户内,户外和水下,具有优良的电、热特性,绝缘强度高,润滑性好,熄弧能力强,并且无毒,可以进行生物分解,因此最大程度的减小了对环境和人员健康的危害。充高燃点油变压器的运行实践表明,高燃点油不会像传统矿物油那样形成沉淀物,其性能优越、持久。 1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。

相变压器联结组别判断方法

三相变压器联结组别(标号)的判定方法一、联结组别(标号)概念 三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。 .-U B .12..

....U..U A-u AB U b AB....u ab.u39ab....uu ca.... .UU.CB u6b 图1-1 二、影响联结组别的因素 三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。 (一)联结方法的影响 变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。常见的有星形和三角形接法,而三角形接连接。c也可以与连接,b端可以和x绕组的ax即,法又有逆接和顺接两种 按照ax-by-cz-ax顺序接线的称为顺接,按照ax-cz -by-ax 顺序接线的称为逆接;星形接法用Y表示;三角形接法用D 表示,如图1-2所示。 abc cba......... .

....uu UU u U CBAca b...uuu cba xzy YXZzyx 图1-2 (a)星形联结(b)三角形联结(顺联)(c)三角形联结(逆联) 在三相变压器里,一次绕组的首端用A、B、C表示;末端用X 、Y、Z;二次绕组的首端用a、b、c表示,末端用x、y、z表示。星形接法中点可以引出中线,也可以不引出。这样,一、二绕组的接法就有各组合:(1)Y,y或YN,y或 Y,yn;(2)Y,d或YN,d;(3)D,y或D,yn;(4)D,d。其中大写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接法的中心点引出标志。 (二)绕组电动势相位的影响 在变压器的接线图中,一次绕组按A、B、C相序排列,相位保持不变;二次绕组按a、b、c相序排列,相位可有改变(abc、bca、cab)。同一铁心柱上的绕组属于同一相,相位相同;错开一个铁心柱相位滞后00,钟,错开两个铁心柱,相位滞后240120,钟点数按顺时针方向增加4h ()(,如图点数按顺时针方向增加8h1-3a、b)所示。 BAC...

变压器的连接组别介绍

变压器的连接组别介绍 本文来自: https://www.wendangku.net/doc/bd10053579.html, 原文网址:https://www.wendangku.net/doc/bd10053579.html,/articlescn/basic/71103.htm 变压器三相绕组有星型联结、三角形联结与曲折联结等三种联结法。在绕组联结中常用大写字母A、B、C表示高压绕组首端,用X、Y、Z表示其末端;用小写字母a、b、c表示低压绕组首端,x、y、z表示其末端,用o表示中性点。 新标准对星型、三角形和曲折形联结,对高压绕组分别用符号Y、D、Z表示;对中压和低压绕组分别用y、d、z表示。有中性点引出时分别用YN、ZN和yn、zn表示。自藕变压器有公共部分的两绕组中额定电压低的一个用符号a表示。变压器按高压、中压和低压绕组联结的顺序组合起来就是绕组的联结组。例如:高压为Y,低压为yn联结,那么绕组联结组为Yyn。加上时钟法表示高低压侧相量关系就是联结组别。 常用的三种联结组别有不同的特征: 1 Y联结:绕组电流等于线电流,绕组电压等于线电压的1/√3,且可以做成分级绝缘;另外,中性点引出接地,也可以用来实现四线制供电。这种联结的主要缺点是没有三次谐波电流的循环回路。 2 D联结:D联结的特征与Y联结的特征正好相反。 3 Z联结:Z联结具有Y联结的优点,匝数要比Y形联结多15.5%。成本较大。 据GB/T6451-1999《三相油浸式电力变压器技术参数和要求》和GB/T10228-1997《干式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。而我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。现在国际上大多数国家的配电变压器均采用Dyn11联结,主要是由于采用Dyn11联结较之采用Yyn0联结有优点:3.1 D联结对抑制高次谐波的恶劣影响有很大作用3.1.1在D联结绕组中的三次谐波环流能够在变压器中产生三次谐波磁动势,它与低压绕组的三次谐波磁动势平衡抵消;3.1.2高压相绕组的三次谐波电动势在D联结回路中环流,三次谐波电流可在D联结的一次绕组内形成环流,使之不致注入公共的高压电网中去。 3.2 Dyn11联结变压器的零序阻抗比Yyn0联结变压器小得多,有利于低压单相接地短路故障的切除。 3.3 Dyn11联结变压器允许中性线电流达到相电流的75%以上。因此,其承受不平衡负载的能力远比Yyn0联结变压器大。 3.4当高压侧一相熔丝熔断时,Dyn11联结变压器另二相负载仍可运行,而Yyn0却不行。因此,在变压器联结组别选择中,选择Dyn11联结变压器很有必要。由于Yyn0联结变压器高压绕组的绝缘强度要求较之Dyn11联结变压器稍低,所以,不宜将Yyn0联结变压器改为Dyn11联结。 变压器接线组别Yn d11是什么意思 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

变压器接线组别

在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 楼主提供的“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表 1、测定极性 (1) 测定相间极性 被测变压器选用三相心式变压器DJ12,用其中高压和低压两组绕组,额定容量PN=152/152W,UN=220/55V,IN=0.4/1.6A,Y/Y接法。测得阻值大的为高压绕组,用A、B、C、X、Y、Z标记。低压绕组标记用a、b、c、x、y、z。 1) 按图3-8接线。A、X接电源的U、V两端子,Y、Z短接。 2) 接通交流电源,在绕组A、X间施加约50%UN的电压。 3) 用电压表测出电压UBY、UCZ、UBC,若UBC=│UBY-UCZ│,则首末端标记正确;若UBC=│UBY+UCZ│,则标记不对。须将B、C两相任一相绕组的首末端标记对调。 4) 用同样方法,将B、C两相中的任一相施加电压,另外两相末端相联,定出每相首、末端正确的标记。 3-8 测定相间极性接线图 (2) 测定原、副方极性

三相变压器联结组别判断方法

三相变压器联结组别 判断方法

三相变压器联结组别(标号)的判定方法 一、联结组别(标号)概念 三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。 B . 12 6 3 9 图1-1 二、影响联结组别的因素 三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。 (一)联结方法的影响 变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z 形)接法。常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax 绕组的x 端可以和b 连接,也可以与c

连接。按照ax-by-cz-ax 顺序接线的称为顺接,按照ax-cz -by-ax 顺序接线的称为逆接;星形接法用Y 表示;三角形接法用D 表示,如图1-2所示。 C z c a b . c c a b 图1-2 (a )星形联结 (b )三角形联结(顺联) (c )三角形联结(逆联) 在三相变压器里 ,一次绕组的首端用A 、B 、C 表示 ;末端用X 、Y 、Z ;二次绕组的首端用a 、b 、c 表示,末端用x 、y 、z 表 示。星形接法中点可以引出中线,也可以不引出。这样,一、二绕组的接法就有各组合:(1)Y,y 或YN,y 或Y,yn;(2)Y,d 或YN,d;(3)D,y 或D,yn;(4)D,d 。其中大写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接法的中心点引出标志。 (二)绕组电动势相位的影响 在变压器的接线图中 ,一次绕组按A 、B 、C 相序排列,相位保持不变 ;二次绕组按a 、b 、c 相序排列,相位可有改变(abc 、bca 、cab )。同一铁心柱上的绕组属于同一相,相位相同 ;错开一个铁心柱相位滞后1200 ,钟点数按顺时针方向增加4h ,错开两个铁心柱,相位滞后2400 ,钟点数按顺时针方向增加8h ,如图1-3(a )、(b )所示。

变压器连接组别

变压器的连接组别 变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系 同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”。 变压器联结组别用时钟表示法表示 规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“èAX”,简记为“èA”,低压绕组电势从a指向x,简记为“èa”。 时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。 确定三相变压器联结组别的步骤是: ①根据三相变压器绕组联结方式(Y或y、D或d)画出高、低压绕组接线图(绕 组按A、B、C相序自左向右排列); ②在接线图上标出相电势和线电势的假定正方向 ③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画); ④根据高、低压绕组线电势相位差,确定联结组别的标号。 Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别, 标号为偶数 Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别, 标号为奇数 为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0 和Yy0五种。 标准组别的应用 Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的 混合负载; Yd11组别的三相电力变压器用于低压高于0.4kV的线路中; YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中; YNy0组别的三相电力变压器用于原边需接地的系统中; Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量 作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压

变压器连接组别

1.极性测定的依据 高、低压线圈之间的相电压相位决定于两个线圈的标号及其绕向,如图5-1示。若高、低压线圈的标号和绕向都相同(或都相反,图略),则高、低压侧的相电压 同相,这时我们说两点同极性。若只有标号(或绕向,图略)反了,如图5-2,则相电压的相位相反,这时我们说两点不同极性。 2.三相绕组的联接方法 把三个单相绕组联成三相绕组将有好几种联法,其中最基本的形式有星形(或形)接法和三角形(D或形)接法两种。

图5-3 三相绕组联接的基本形式 (1)形联接法(2)△形联接法(3)形联接法 图 5-4 △联接和联接的左行接法

在图5-4中画出了三角形接法和曲折形接法的另一种联接次序。我们把图5-3称右行接法,图5-4就称左行接法。由于联接次序不同,它们的线电压相位关系就不相同,这一点在下面的联结组别中应注意区别。 一般情况下三角形联接和曲折形联接只采用右行联接,以后不加说明的三角形联接和曲折形联接都是指右行联接。 3.三相变压器的联结组 三相变压器高、低压侧线电压之间的相位关系,不但与标号和绕向有关,还与三相线圈的联接方式有关。根据电机学理论,习惯上用“时钟法”来表示高、低压两侧间线电压的相位关系。时钟法是把高压侧线电压的相量作为时钟的分针,且其指向定在12点,低压侧对应的线电压的相量作为钟表的时针,时针和分针指向的角 度差别就是高低压侧间的线电压的相位差。例如联结组标号为,而国家标准GB1094-85现规定用“”,则说明高低压侧的联接分别为星形和三角形接法,而两者对应的线电压的相位关系是:高压侧线电压相量超前低压侧线电压相量 (又称时钟序数为)。 三相电力变压器常用的联结组标号是(1) (即);(2) (即 );(3) (即);(4) (即)。它们对应的相量图及其联接方法如图5-5所示。图中标号采用了国家标准中的有关规定,其内容是: 三相变压器的线圈联接成星形、三角形或曲折形时,对高压绕组分别以字母或表示,对中压或低压绕组分别以字母或表示。如果星形联接或曲折形联接的中 性点是引出的,则分别以或及或表示。和属高压侧,和属低压侧。

变压器组别不同并列运行

连接组别不同变压器的并列运行 张建国李仲明宁夏电力公司(750001) 1 概述 电力系统中,变压器有三种常见的连接组别,即Y0d-11、Yd-11、Y0y-12。其中分子是高压侧绕组的连接图,分母是低压侧绕组的连接图,后面的数字表示高、低压侧绕组的线电压(或高、低压侧线电流)的相位差,也就是变压器的连接组别。 变压器的并列运行固然具有很多优点,然而并非所有的变压器均能并列运行,变压器并列运行应同时满足下列条件:一是变压器的接线组别相同;二是变压器的变比相同(允许有±0.5%的差值),这两个条件保证了变压器空载时绕组内不会有环流;三是变压器的短路电压相等(允许有±10%的差值),保证负荷分配与容量成正比。同时,考虑到容量不同的变压器短路电压值不相同,容量小的变压器短路电压小,因此,对于并列运行变压器的容量比一般不宜超过3:1的要求。 图1 连接组别不同时变压器并列运行向量图 当并列运行变压器的变比和短路电压相同,而接线组别不同时,变压器并列运行的回路中会产生环流。以两台分别为Y0y-12和Yd-11接线组别的变压器为例说明:这两台变压器的一次侧接在同一母线上,相对应的一次线电压是同相位的,其二次侧相对应的线电压则有30°的相位差,如图1所示。由于两台变压 -Δ 器的二次线电压大小相等,所以变压器二次回路的合成电压Δ=Δ 1ab ,是两个对应线电压的向量差。从图1可以求得合成电压的数值: 2ab ΔU=2U2ab sin15°=0.52U2ab 其它两相情况也类侧,由此可见,在ΔU的作用下,并列运行的变压器的二次绕组内虽然没有接负载,但在回路中也会出现几倍于额定电流的环流。这个环流会烧坏变压器,因此接线组别不同的变压器绝对不能并列运行。 2 奇数连接组别不同的变压器的并列运行

变压器接线组别详细介绍

变压器接线组别详细介绍 - 全文 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感效应,变换电压,电流和阻抗的器件。 变压器接线组别 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 下面是变压器接线组别的向量图及原、副边绕组的接线示意图。 六种单数组

变压器的连接组别方式

同名端与异名端: 变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通 交变时,在高、低压绕组中感应的电势之间存在一定的极性关系。 在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个 绕组间同极性的一端称为同名端,记作“˙”,反之则为异名端,记作“-”。 Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数 Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数 为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。 标准组别的应用: Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载; Yd11组别的三相电力变压器用于低压高于0.4kV的线路中; YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中; YNy0组别的三相电力变压器用于原边需接地的系统中; Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n 表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab 滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。 三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联 接组别的接线问题。变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同, 使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。通常是采用 线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不 易掌握。而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法 具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组, 更显示出它的优越性。下面以实例来说明用相电压矢量图对三相变压器的联接组别的接 线和识别的方法。

三相变压器的连接组

一、三相绕组的连接方法 常见的连接方法有星形和三角形两种。 以高压绕组为例,星形连接是将三相绕组的末端连接在一起结为中性点,把三相绕组的首端分别引出,画接线图时,应将三相绕组竖直平行画出,相序是从左向右,电势的正方向是由末端指向首端,电压方向则相反。画相量图时,应将B相电势竖直画出,其它两相分别与其相差120°按顺时针排列,三相电势方向由末端指向首端,线电势也是由末端指向首端。 三角形连接是将三相绕组的首、末端顺次连接成闭合回路,把三个接点顺次引出,三角形连接又有顺接、倒接两种接法。画接线图时,三相绕组应竖直平行排列,相序是由左向右,顺接是上一相绕组的首端与下一相绕组的末端顺次连接。倒接是将上一相绕组的末端与下一相绕组的首端顺次连接。画相量图时,仍将B相竖直向上画出,三相接点顺次按顺时针排列,构成一个闭合的等边三角形,顺接时三角形指向右侧,倒接时三角形指向左侧,每相电势与电压方向与星形接线相同。 也就是说,相量图是按三相绕组的连接情况画出的,是一种位形图。其等电位点在图上重合为一点,任意两点之间的有向线段就表示两面三刀点间电势的相量,方向均由末端指向首端。 连接三相绕组时,必须严格按绕组端头标志和接线图进行,不得将一相绕组的首、末端互换,否则会造成三相电压不对称,三相电流不平衡,甚至损坏变压器。 二、单相绕组的极性 三相变压器的任一相的原、副绕组被同一主磁通所交链,在同一瞬间,当原绕组的某一端头为正时,副绕组必然有一个电位为正的对应端头,这两个相对应的端头就称为同极性端或同名端,通常以圆点标注。 变压器原、副绕组之间的极性关系取决于绕组的绕向和线端的标志。当变压器原、副绕组的绕向相同,位置相对应的线端标志相同(即同为首端或同为末端),在电源接通的时候,根据椤次定律,可以确定标志相同的端应同为高电位或同为低电位,其电势的相量是同相的。如果仅将原绕组的标志颠倒,则原、副绕组标志相同的线端就为反极性,其电势的相向即为反相。 当原、副绕组绕向相反时,位置相同的线端标志相同,则两绕组的首端为反极性。两绕组的感应电势反相。如果改变原绕组线端标志,则两绕组首端为同极性,两绕组的感应电势同相。 三、连接组标号的含义和表示方法 连接组标号是表示变压器绕组的连接方法以及原、副边对应线电势相位关系的符号。 连接组标号由字符和数字两部分组成,前面的字符自左向事依次表示高压、低压绕组的连接方法,后面的数字可以是0——11之间的整数,它代表低压绕组线电势对高压绕组线电势相位移的大小,该数字乘以30°即为低压边线电势滞后于高压边红电势相位移的角度数。这种相位关系通常用“时钟表示法”加以说明,即以原边线电势相量做为时钟的分针,并

浅析配电变压器的联结组别

浅析配电变压器的联结组别组别似乎仍存在某些问题,本文仅从国家设计规范的角度,浅析为什么配电变压器宜选用Dynl 1联结组别的问题。 在解放前,我国配电变压器采用的联结组别基本上是Dynl 1系统,大陆解放后,学习苏联,引进苏联的技术和设备,因而沿用了原苏联的配电系统及其YynO的联结组别。直到改革开放后,欧美日发达国家的技术及设备纷纷涌人中闰大陆,国际上普遍采用的Dynl 1也逐渐成为配电变压器的联结方式的主流:然而, 几十年来的习惯势力 仍然很大:设计院设计的图例符号常采用Y-Y ”;国家相关标准及制造厂样本上之配电变压器联结组别 也多表述为 YynO或Dynll "(把YynO "置于前列位置),使得配电变压器的联结组别仍有不少写成 Yyno (实际上井非工程设计所要求。 首先,看看国家有关的设计规范。国标GB5OO 5 2 — 9 5《供配电系统设计规范》第六章低压配电中 第6.O.7条明确阐述:在TN及TT "系统接地型式的低压电网中,宜选用Dynl l结线组别的三相变 压器作为配电变压器 为什么配电变压器宜选用Dynl 1联结呢?在编写该设计规范时,主编院(原机械部二院)已作了该规范的条文说明”。在此结合笔者的浅识,作简要的分析。

1有利于抑制高次谐波电流 对YynO结线的二相变压器,原边星形连接而无中线,故三次谐波电流不能流通。原边激磁电流波形为正弦波时,则铁芯中磁通为平顶波,副边感应电势波形所含高次谐波分量大;激磁电流中以三次谐波为主的高次谐波电流在原边接成三角形条件下,可在原边形成环流,与原边接成星形相比,有利于抑制高次谐波电流,在当前电网中接用电力电子元件、气体放电灯等日益广泛、其功率越来越大的情况下,会使得电流波形畸变。即使三相负荷平衡,中性线中也流过以三次谐波为主的高次谐波电流,配电变压器的原边(常为1 OkV 侧)采用三角形结线就抑制了此类高次谐波电流,这样就能保证供电波形的质量。 2有利于单相接地短路故障的切除 原边(高压)接成三角形(D接),绕组内可通过零序循环电流(感应产生),因而可与低压绕组零序电流互相平衡、去磁,因此,畐V边(低压侧)零序阻抗很小;若原边(高压侧)星接(Y接),绕组不能流过零序电流,低压侧激磁时,其零序电流在变压器铁芯中产生零序磁通,但其磁路不能在铁芯内形成闭合,要走铁芯外面的空气,其磁阻很大,变压器的零序阻抗较大。若发生单相短路,其短路电流值就会相对地减小,致使在很多情况下,其单相接地短路电流几乎不能使低压断路器快速动作或使熔断器迅速熔断。通常,在相同的条件下,Dynl 1结线的变压器配电系统的单相短路电流为YynO结线时的3倍以上。因此,Dynl 1结线有利于单相接地短路故障的切除。 当低压回路采用低压断路时,可考虑由三相过电流保护兼单相接地保护,而不必单独设置单相接地保护。 3肩岂充分利用变压器的设备能力

相关文档
相关文档 最新文档