文档库 最新最全的文档下载
当前位置:文档库 › 励磁涌流抑制原理与涌流抑制器的应用

励磁涌流抑制原理与涌流抑制器的应用

励磁涌流抑制原理与涌流抑制器的应用
励磁涌流抑制原理与涌流抑制器的应用

励磁涌流抑制原理及涌流抑制器的应用

叶念国

(深圳市智能设备开发有限公司. 广东省深圳市. 518033)

[摘要] 变压器励磁涌流对电力系统安全运行的威胁众所周知,由其引发的电网电压骤降、谐波污染、操作过电压、和应涌流、保护误动等,一直是人们极为关注的问题。但是由于更多地使用“识别”涌流的对策,均因涌流形式的多变性,使得“识别”正确率难以提高。如果变“识别”为“抑制”则是解决问题的根本出路,采取变压器在外施电压骤增时控制磁路不饱和能有效地抑制甚至消除励磁涌流,这是本文阐述的主题。

[关键词]励磁涌流磁路饱和剩磁偏磁

0 引言

变压器是一个由若干经磁路耦合的绕组的集合体,每个绕组本质上是一个电感,其电感值受磁路铁心饱和程度影响,当磁路饱和时电感值大幅下降,电感值下降就意味着电抗下降,励磁电流随之增加。当变压器任一绕组感受到外施电压突增时,基于磁链守恒定律,该绕组将立既产生一个抵御外加磁通“突袭”的反磁通,如果这一称之为“偏磁”的反磁通和原来磁路中的剩磁极性相同,则可能导致磁路饱和,进而产生很大的励磁涌流。如偏磁和剩磁极性相反,则磁路不会饱和,励磁涌流将不会出现,也就是说被抑制了。

理论证明变压器磁路极性和数值与断开电源时的分闸相位角有关,偏磁的极性和数值则与施加电源时的合闸相位角有关。因此,通过获取分闸角的数值来决定下次合闸时合闸角的方法,就完全可以做到电压骤增时励磁涌流的极性和数值可控,既可以让它很大,也可以让它消失。

多年来人们采用数学和物理方法来识别励磁涌流与故障电流的特征差异,以减少励磁涌流产生继电保护装置误动的概率,但一直无法彻底解决问题,甚至以延长保护动作时间、降低保护灵敏度及牺牲可靠性为代价。显然,在理论上人们不可能对千变万化的励磁涌流都正确识别,也就是说“识别”并不是万全之策。采取消除励磁涌流的方法可称得上是“上策”。

1 励磁涌流的成因

1.1 偏磁的成因

磁链守恒定律(楞次定律)是任何电感线圈都要遵循的定律,即变压器任一侧绕组感受电压骤增(如空投充电、出线故障切除等)瞬间,磁路中的磁链将维持不变。如图1-1,设N1、N2为初次级绕组的匝数、Φ为与初级绕组交链的总磁通(包括主磁通和漏磁通)、U1为初级电压、i1为初级电流,次级开路。可写出初级绕组的电压方程

U 1=i 1R 1+N 1dt

d Φ

R 1为初级绕组的电阻

电压U 1为正弦函数,其表达式为 )(1αω+=t UmSin U α为 t=0时U 1的初相角

如忽略电阻R 1,则U 1的表达式改写为

dt

d N t UmSin Φ

=+1)(αω

求解微分方程得到磁通Φ的表达式为

)]t (Cos Cos [m α+ω-αΦ=Φ (1.1)

式中1

N Um

m ω=

Φ 为磁通的幅值 式(1.1)给出了无损变压器磁路中的磁通与合闸角(或电压骤增时的电压相位角)α的关系,可得出在t=0时,电压初相角α与磁通Φ的关系如下:

(1)当2

π

α=时 t mSin ωΦ=Φ

即电源投入瞬间变压器磁路中的磁通Φ立即进入与电源电压相同正弦波形的稳态值;

(2)当α=0时 t mCos m ωΦ-Φ=Φ

即电源投入瞬间变压器磁路中的磁通除了含有余弦波形的稳态值-Φm Cos ωt 磁通外,还 有一个数值为稳态磁通幅值Φm 的偏磁Φp 。图1-2给出了此时磁路中各磁通的变化曲线,图中Φsat 是变压器的设计饱和磁通,Φsat 在设计时应大于Φm 。对无损变压器其偏磁Φp 是不会

图 1-2 变压器磁路中各磁通分量关系图

-Ф-Ф-ФФФФsat Ф

图1-1 变压器示意图

衰减的,有损(R 1>0)变压器则会按绕组的时间常数1

1

R L =

τ衰减,L 1为初级绕组的电感。图中还标出了剩磁ΦR es ,ΦR es 的大小与极性与变压器断电时的分闸角有关。

1.2 如何测定剩磁

任何铁磁材料在去掉外施的磁势后都会留有剩磁,剩磁的数值及极性取决于切断磁势瞬间的磁通数值及极性。当然,剩磁的大小还与铁磁材料的特性有关。图1-3是铁磁材料的磁滞回线,从曲线中不仅看到磁路的饱和特性,还可以发现当磁势H 为零时,磁通密度B 并不为零,而是还有一个值B r ,这就是剩磁。要去除剩磁B r (或-B r )必须在反向施加磁势达-Hc(或Hc)时才能使B 为零。我们不难看到,当给变压器绕组施加交流电压时,由于电压极性正负交变,因此,磁路中的磁通极性也是在磁滞回线上来回变化。如果在1、2象限时去除磁势,则剩磁为正或零,在3、4象限时则剩磁为负或为零。所以通过掌握断开交流电源的相位角即可确

定剩磁的极性和大致的数值。

1.3 产生励磁涌流的条件

前已述及当磁路进入饱和状态时由于变压器绕组的电抗急剧下降,进而产生很大的励磁涌流。因此,在铁心中的各种磁通合成值超过磁路的饱和磁通就是产生励磁涌流的条件。这些磁通是指稳态磁通、偏磁和剩磁。饱和磁通是设计变压器时确定的,它取决于铁心材料的磁导率、磁路截面及磁路长度等因素。稳态磁通的数值和电源电压有关,偏磁的大小和极性取决于给变压器施加电压瞬间的电源电压相位角,即合闸角,剩磁的大小和极性则取决于切断变压器电源时的相位角,即分闸角。如果根据前次的分闸角选择合适的合闸角,使偏磁与剩磁极性相反,铁心不饱和就没有励磁涌流,如铁心轻度饱和,则励磁涌流很小,当然,如果选择合闸角不当,使偏磁与剩磁叠加导致铁心饱和,则将产生很大的励磁涌流。

所以,人们在不使用任何手段对变压器进行空投操作时是否会产生励磁涌流?涌流是大是小?是正是负?完全取决于合闸角与分闸角的配合,这就靠“运气”了,“运气”不好,偏磁与剩磁相加,涌流就出来了。“运气”好,偏磁抵消剩磁,涌流就没有。因此,现在对变压器保护的检验使用连续空投五次看是否会误动作标准,这显然是片面的,因为这在很大程度上决定于“运气”。有些发电厂或变电站的工作人员说他们单位变压器的涌流不大,这也是不科学的,涌流不大不是他们的变压器特别好,而是他们在空投操作的时候“运气”好,但又如何能保证次次都运气好呢?彻底解决问题的出路就是用科学的方法抑制励磁涌流。

图 1-3 铁磁材料的磁滞回线

2 励磁涌流抑制原理

无损变压器的磁通表达式是

)]([αωα+-Φ=Φt Cos Cos m =)(αωα+Φ-Φt Cos m mCos

式中偏磁 αmCos p Φ=Φ

图2-1 Ф、Ф

、Ф与初相位角α

关系图

α是变压器绕组外施电压U 1的初相角,图2-1画出了各磁通与U 1初相角α的关系曲线,

从图中可以看到总磁通Φ滞后电压U 12π

,这就可以找到Φp 和α的关系,即在α为0或π时,

Φp 达到+Φm 或-Φm 。α为2

π

或23π时,Φp 为0。图2-1中还看到了剩磁ΦR es 与磁路总磁通

Φ是同相的,只是ΦR es 的幅值较Φ的为小。此外图2-1中还标出了变压器的饱和磁通Φsat 。为了更直观的描述励磁涌流的产生机理,将剩磁ΦR es 及偏磁Φp 与切除角或合闸角α的关系列于表2-1中。

表2-1中α对于剩磁ΦR es 为切除角,对于偏磁Φp 则为合闸角。从表中不难看到正确地

在已知切除角的前提下选择合闸角,完全可以做到在电压突增时产生的偏磁Φp 恰好去抵消或削弱剩磁ΦR es ,再加上与稳态磁通Φ的配合完全可以控制磁路的合成磁通不超过饱和磁通 Φsat ,于是产生励磁涌流的土壤被铲除,当然就不会有励磁涌流了。

表2-1给人们明确的提示:变压器在某个相位角α时磁势被切断,下次就在α时合闸,使偏磁完全抵消剩磁。

人们担心在变压器停电后剩磁会慢慢衰减,进而影响对励磁涌流的抑制,事实上,变压器的剩磁除了加温、猛力撞击或是在磁路旁不断有导磁体或导线运动是会被削弱,但我们关心的不是剩磁的大小,而是它的极性,而剩磁的极性是不会改变的。所以即使出现剩磁衰减也不会影响对励磁涌流的抑制效果。其实如剩磁为零才是消除励磁涌流的最佳条件,因此时即使偏磁达到最大值Φm 也不致使磁路过度饱和。

3 涌流抑制器的结构

SID-3YL 型涌流抑制器主要用于抑制电力变压器及电力电容器空投时的涌流,因此,其主要功能是控制断路器合闸操作,其原理框图如图3-1。输入信号有:电源则TV 、TA 、断路器辅助接点,此外还有合控制命令输入,该命令可来自上位机的开关量或RS-485总线的通讯。抑制器的输出送到断路器的合闸控制回路,断路器的分闸命令无需由抑制器控制,但抑制器在长期带电运行时不断在监视并记录变压器电源切除的切除角。

SID-3YL 型涌流抑制器能同时支持三相分相分时操作及三相同时操作的断路器。抑制器可单独安装在开关柜或保护屏上,也可溶于断路器操作箱内。

4 涌流抑制器的应用举例

4.1 空投变压器和电容器 图1为通过三相断路器控制变压

器空投的原理框图,涌流抑制器接收到合闸令后,根据前次记录的分闸角及预先设置的三相断路器合闸时间,通过电压互感器获得的电压采样测值,第一时间发出合断路器命令。断路器辅助接点是作为向涌流抑制器

提供测量断路器分、合闸时间的信

号。考虑到辅助接点与主触头的动作

有时差,涌流抑制器专门配有

SID-3YL-M 型测量装置,在断路器脱

离一次回路电源时测量这一时差的功能,作为修正断路器分、合闸时间之用。

4.2 大量变压器同时空投

在配电线路上常常挂接为数甚多的配电变压器,如图3-2。在空投电源进线断路器B 时各配电变压器都同时产生励磁涌流,合成电流I 可能很大。在断路器B 上安装如图3-1所示的涌流抑制器即可,此时可将N 台配电变压器等值为一台变压器,它们的特点是断路器B 控制所

C 电源

U A B 图3-1 控制原理框图

有变压器同时分闸或合闸。

图3-2 配电线路变压器连接示意图

4.3 变压器出线短路故障切除

图3-3描述了变压器出线L 1短路故障被保护切除过程中母线电压U 1的变化过程。t=0时线路L 1在K 点发生短路,母线电压下降,t=t 1时保护断开B 2切除故障,母线电压很快恢复到额定电压Ue 。变压器Ⅱ侧在感受到这一电压骤增后将诱发励磁涌流,进而使变压器保护误动而切除断路器B 1、 B 5、B 9,导致变压器各侧全部线路停电。如果采用图3-4的线路保护跳闸控制逻辑,将保护的故障跳闸令发给涌流抑制器,涌流抑制器在最先到来的最佳电压相位时实现跳闸,此时因故障切除产生的电压骤增不会诱发励磁涌流,也就是励磁涌流被抑制,变压器保护因此不会误动。涌流抑制器增加的跳闸延时平均值为10ms ,这一延时可通过减少线路保护跳闸延时来弥补。

5 结论

本文介绍的涌流抑制原理已获得两项发明专利,应该说它不是使用新的算法,而是用了与常理不同的思路。人们在遇到挫折的时候,自然地会向更高的理论深度进军,寄希望在那里找到答案,这样的思维方法既合理也合情,但这并不是唯一的,有时甚至是死胡同。作者循着磁链守恒这个众所周知的定律思索,轻松跨出了多年来对涌流采取“识别”的泥沼,多少给电力技术进步贡献了些微力量。

作者简介:

叶念国 男 (1935—) 教授

长期从事电力系统自动化的教学研究工作 深圳市政府科技顾问,武汉大学电气工程学院兼职教授,深圳市智能设备开发有限公司董事长。

图3-3 变压器出线故障切除电压突增示意图

图3-4 通过涌流抑制器抑制

电压突增引起涌流的示意图

变压器励磁涌流产生机理及抑制措施探讨论文范本

变压器励磁涌流产生机理及抑制措施探讨论文范本 1、变压器励磁涌流及特点 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变 换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的 指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励 磁涌流。 总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含 有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着 时间推移,某一相二次谐波含量可能超过基波分量的一半以上。第二,励磁涌流幅值与变 压器空载投入的电压初相角直接相关。对于单相变压器来说,当电压过零点投入时,励磁 涌流幅值最大。由于三相变压器各相间有120度相位差,所以涌流也不尽相同。第三,在 最初几个波形中,涌流将出现间断角。第四,涌流衰减的时间常数与变压器阻抗、容量和 铁心材料等都相关。 2、励磁涌流产生机理 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率 很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 下面以单相变压器空载合闸为例分析励磁涌流产生机理。设变压器在时间t=0时合闸,则施加于变压器上的电压为: 1 又,变压器电压与磁通间的关系为: 2 故: 3 式3中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。 计及成本和工艺,现代常用的`电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。因此,变压器稳态正常运行时,磁通不会超过饱和 磁通,铁心也不会饱和。但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行 磁通就有可能大于饱和磁通,从而造成变压器饱和。例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。 3、抑制措施

什么是励磁涌流(1)

什么是励磁涌流? 变压器励磁涌流是:变压器全电压充电时在其绕组中产生的暂态电流。变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,因此产生极大的涌流,其中最大峰值可达到变压器额定电流的6-8倍。励磁涌流随变压器投入时系统电压的相角,变压器铁芯的剩余磁通和电源系统地阻抗等因素而变化,最大涌流出现在变压器投入时电压经过零点瞬间(该时磁通为峰值)。变压器涌流中含有直流分量和高次谐波分量,随时间衰减,其衰减时间取决于回路电阻和电抗,一般大容量变压器约为5-10秒,小容量变压器约为0.2秒左右。 1 概述 变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。 2 励磁涌流的特点 当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下: 1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。 2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。 3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。 4)励磁涌流的数值很大,最大可达额定电流的8~10倍。当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。 3 励磁涌流的大小 3.1 合闸瞬间电压为最大值时的磁通变化

变压器励磁涌流抑制技术研究

变压器励磁涌流抑制技术研究 发表时间:2018-10-17T14:36:31.510Z 来源:《电力设备》2018年第19期作者:李鹏飞薛彬张家瑛 [导读] 摘要:空载运行时,变压器的工作电流基本上用以励磁,其数值往往不大,与额定电流相比,仅仅为0.35%一10%,但空载合闸时,会伴随很大的电流,经一段时间后才会达至稳态,与额定电流相比,其最大值可达至6-8倍,称之为励磁涌流。 (国网山西省电力公司检修分公司山西省 030032) 摘要:空载运行时,变压器的工作电流基本上用以励磁,其数值往往不大,与额定电流相比,仅仅为0.35%一10%,但空载合闸时,会伴随很大的电流,经一段时间后才会达至稳态,与额定电流相比,其最大值可达至6-8倍,称之为励磁涌流。励磁涌流严重影响着电气设备、电网等,造成的破坏不容忽视,抑制励磁涌流成为当下研究的主流。 关键词:变压器;励磁涌流;抑制技术 1励磁涌流的分析 1.1励磁涌流的特点 励磁涌流特点鲜明,与短路电流有很大的区别,总结其特点可更好地认识励磁涌流。运用MATLAB这一仿真工具,与磁通表达式相互配合,模拟单相变压器空载合间时励磁涌流的相关情况,通过观察并分析其电流波形,总结励磁涌流的特点。励磁涌流的特点:(1)与额定电流相比,其幅值可达至6-8倍,数值与短路电流差不多。(2)波形呈现尖顶状,谐波和非周期分量含量很高,较其它谐波,二次谐波大且偏离时间轴。(3)波形有间断角,其大小与电压初相角、剩磁、饱和磁通均有关联。在实际应用中,电流互感器的饱和可能使间断角由有到无,影响励磁涌流的判别,监测励磁涌流应选择一定裕度的监测工具。(4)波形呈指数衰减,衰减常数与变压器的类型有关。小型衰减较快,而大型较慢。理论上来说,励磁涌流的衰减时间常数与暂态磁通的衰减时间常数相同。 1.2励磁涌流的危害 (1)数值很大,一般会超出继保装置的整定值,造成装置误动,使得变压器无法正常投入运行。 (2)从相同的母线引出的几个电站,当某一电站发生这一状况时,因为存在“和应涌流”,容易引起鄉近电站运行的变压器发生误跳间,造成整个片区停电。 (3)电动力与励磁涌流的数值有关,过高的电动力容易引起绕组及断路器受损。 (4)合闽时存在操作过电压,危害设备。 (5)造成互感器产生饱和现象,使检测精度进一步下降,提升了保护装置的误动率。 (6)大量谐波和非周期分量严重污染电网。 总体而言,励磁涌流的存在影响电气设备的正常工作,影响电力系统的安全,严重时会损坏电气设备,造成电力系统的崩溃,带来安全隐患和经济损失。 2励磁涌流的抑制技术 2.1内部采取抑制措施 内部措施从变压器结构入手,需要重新配置变压器,甚至重新设计变压器。大量更换变压器比较繁复、极不经济,励磁涌流抑制技术在外部采取进行是很好的选择。 2.2外部采取抑制措施 外部措施从变压器线路入手,有内插电阻法、合闸回路串电阻法、低压侧并联电容器法、软后动法、预充磁绕狙法和选相合间技术等。 2.2.1内插电阻法 内插电阻法主要用于带中性点的三相变压器,将电阻串接在中性点处。因励磁涌流一般无法达到平衡,此电阻起到衰减的作用。接地电阻接于中性点,在合间结束后可用旁路断路器予以切除。此电阻除了承受不平衡电流,还减小电压,防止铁也发生饱和。用此方案时,断路器可选用规格较低的或者不用。三相同时合间时,励磁涌流基本平衡,内插电阻法所起的作用很小,但当先合一相,而后合另外两相时,励磁涌流均会发生很大程度的衰减,抑制效果明显。 2.2.2合闸回路串电阻法 合闸回路串电阻法主要改变合闽回路的电阻,在变压器空载合间时投入电阻,抑制磁通的幅值,增加衰减速度。合闸回路串电阻法可以减小磁通幅值、低压侧并联电容器法可以去磁,将两种方法配合使用具有很好地效果。改进的合闸回路串电阻法就是在串联电阻的基础上串联电容,从而减弱磁通幅值、减小励磁电感。 2.2.3软启动法 软启动法通过软启动器调整一次侧电压,尽可能减小合闸时的电压,依据设定曲线逐渐将电压提升至额定电压。软启动器的实现可依据可控硅相角触发技术,预先设定的曲线针对具体的变压器,具有单一性。 2.2.4预充磁绕组法 预充磁绕组法是在给变压器增加充磁绕组,用以改变变压器的磁通,让变压器合闸时的工作点处于膝点以下。具体实施时利用充磁绕组改变剩磁,以减弱合成磁通。预充磁绕组法额外增加充磁绕组,其实现比较麻烦,剩磁也难以控制精确,造成磁通的弱化具有一定的随机性。预充磁绕组法要与其他方法相互结合才能够真正有效地减小励磁涌流。 2.2.5选相合闸技术 选相合闸技术按照磁通变化情况及合闸时剩磁大小,合理控制电压投入时的初相角,在直流偏磁和剩磁极性不一致时准确投运。针对单相变压器,一般选择偏磁为零的电压角进行合闸,即峰值点90o或270o。针对三相变压器,具体有三种合闸策略:一是快速合闸策略,二是延时合闸策略,三是同步合闸策略。快速合闸是指一相先合闸,其余两相在其磁通与剩磁抵消时合闸,三相在一个周期内完成合闸。延时合闸策略是指一相选择直流偏磁与剩磁相互抵消时先合闸,经过铁心磁通的平衡效应,大约2-3个周期后,剩余两相同时合闸,合闸时刻为首合闸相的电压过零点。目前延迟合闸策略与中性点串电阻法、合闸回路串电阻法配合使用,抑制效果有了进一步提升。快速合闸策略和延迟合闸策略均对剩磁要求苛刻,快速合闸策略要预先检测所有剩磁且要求剩余两相合闸时剩磁相互抵消,延迟合闸策略要预先检测首

(完整版)励磁涌流产生的原因及应对策略

励磁涌流产生的原因及应对策略 随着经济的发展,电业因其无污染等特点被广泛应用到社会的各方面,变压器作为交流电力系统重要的电气设备,其正常运行直接关系着人民生命财产的安全。本文从变压器励磁涌流释义开始、随后就变压器励磁涌流产生原因进行了分析研究,最后就变压器励磁涌流的应对策略提出了很好的意见。 变压器的励磁电流是只流入变压器接通电源一侧绕组的,对纵差保护回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。因此,它必然给纵差保护的正确工作带来影响。下面笔者结合工作实际谈一下励磁涌流产生的原理及应对策略。 变压器励磁涌流释义 1.1励磁涌流的定义 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。 1.2变压器励磁涌流的特点 1.2.1涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。 1.2.2励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。

1.2.3一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。 1.2.4励磁涌流的数值很大,最大可达额定电流的8~10倍。当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。 变压器励磁涌流产生原因 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的3%~6%或更小,故纵差保护回路中的不平衡电流也很小。外部短路时,由于系统电压下降,励磁电流也将减小,因此,在稳态情况下,励磁电流对纵差保护的影响常常可忽略不计。然而在电压突然增加的特殊情况下,就可能产生很大的励磁电流,其数值可达额定电流的6~8倍。这种励磁电流就有可能大于饱和磁通,从而造成变压器饱和。 变压器励磁涌流的应对策略 目前采用速饱和中间变流器;二次谐波制动的方法;间断角鉴别方法等三种方法来防止励磁涌流引起的纵差保护的误动。 3.1采用差动速断保护 由于差动速断保护有固有动作时间,故动作电流无需避开最大电流,此方案灵敏性低,只适用于小型变压器。差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,这种差动保护的核心部分是带短路线圈的饱和中

励磁涌流

:励磁涌流对HTR-PM主变压器差动保护影响分析 摘要:本文重点介绍HTR-PM 220kV主变压器差动保护原理,通过对220kV 倒送电期间主变压器五次空载冲击合闸励磁涌流波形进行深入分析,介绍励磁涌流基本特征,以及励磁涌流对变压器差动保护的影响,并给出我厂变压器所配置差动保护励磁涌流闭锁原理。 关键词:变压器差动保护、变压器空载合闸励磁涌流、励磁涌流闭锁原理 1、前言 主变压器是核电厂与电力系统之间联系的重要设备,机组正常并网运行时,核电机组所发电能通过主变压器变换升压后输送给电力系统(地网和省网),但在核电厂建设和调试期间,需要通过主变压器向核电厂反供电(倒送电)以作为安装调试阶段第二路电源。主变压器发生故障,不仅影响核电机组的安全稳定运行,给核电厂带来重大经济损失,而且影响电力系统的稳定,可能造成大面积停电。因此,必须配置性能良好,功能完善的保护装置。 根据《继电保护及自动装置设计技术规程》(DL400-91)的规定,大型电力变压器应装设反映变压器绕组和引出线多相短路、大电流接地系统侧绕组和引出线的单相接地短路及绕组匝间短路的纵联差动保护作为电量主保护。 但是,变压器在正常运行时由于励磁电流、带负荷调压、两侧差动TA的变比误差等导致存在很大的不平衡电流;由于超高压、大容量变压器接线方式,例如HTR-PM 220kV主变为YnD11接线方式,变压器两侧电流相位相差30,导致出现不平衡电流;空载变压器合闸时可能产生励磁涌流,多次测量表明:空投变压器时的励磁涌流通常为额定电流的2-6倍,最大可达8倍以上,由于励磁涌流只由充电侧流入变压器而不流经其他侧,对变压器纵差保护而言是很大的一项不平衡电流。 2、变压器差动保护原理 变压器纵差保护的构成原理是基于克希荷夫第一定律,即 I=0(2-1) 式中I=0为主变压器高低压侧电流的向量和,主变高低压侧CT为减极性配置,见图1。

变压器励磁涌流抑制外文翻译

变压器励磁涌流的抑制 变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。 引言 变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。 1、励磁涌流的危害性 1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败; 1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电; 1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电; 1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损; 1.5 诱发操作过电压,损坏电气设备; 1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率; 1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。 1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。 数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。 2、励磁涌流的成因 抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电

变压器励磁涌流的抑制

变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。 0、引言 变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。 1、励磁涌流的危害性 1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败;1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电; 1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他

B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电; 1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损; 1.5 诱发操作过电压,损坏电气设备; 1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率; 1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。 1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。 数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。 2、励磁涌流的成因 抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——

励磁涌流的抑制方法

摘要:合空载电力变压器时会产生数值相当大的励磁涌流,易造成变压器差动保护装置的误动作。针对这一问题,介绍了两种削弱励磁涌流的方法:控制三相合闸时间或在变压器低压侧加装电容器。理论分析和实践均证明这两种方法是行之有效的,但利用控制三相合闸时间来削弱励磁涌流在实际应用中更具有潜力。 关键词:励磁涌流;变压器;控制开关;电容 1概述 电力变压器在空载合闸投入电网或外部故障切除后电压恢复时,由于变压器的非线性,会产生数值相当大的励磁涌流,严重情况下其峰值可达额定电流的10到20倍[1],从而导致变压器保护的误动作。为了解决这一问题,目前变压器的差动保护都采用了或门制动方式,即三相电流中有一相制动,则三相全部制动。这样虽解决了涌流时的误动问题,但当变压器有涌流时,如果发生单相或两相内部故障,差动保护因健全相的涌流制动而不动作。大型变压器时间常数都很长,一般涌流过程超过5 s[2],在发生上述故障时,主保护等到振荡消失才能动作,实际就是拒动。理论分析和动模试验都证实了这种现象。为了保证差动保护装置的正确动作,必须要降低励磁涌流的幅值。目前,削弱励磁涌流的方法主要有两种:控制三相开关合闸时间,或在变压器低压侧并联电容器。本文将对这两种方法的原理、效果一一介绍。 2控制三相开关合闸时间以削弱励磁涌流 2.1理论基础 该方法的理论基础是:将变压器看作一个强感性负载,即看作一个非线性电感,当合闸时,变压器上的电压在变压器内部也产生一个磁通,当变压器有剩磁时,合闸后所产生的磁通如果和剩磁极性相同,则变压器内部的总磁通就会随着电压的升高而增加,从而励磁涌流也会随之增加,如果合闸后所产生的磁通和剩磁极性相反,则变压器内部的总磁通就会随着电压的升高而减小,从而削弱了励磁涌流;如果合闸时变压器内无剩磁,则可在合闸角为90°(即电压峰值时)时合闸,这样在变压器内产生的磁通最小,产生的励磁涌流也最小。在单相变压器中,可以很容易地分析出如下结果。假设单相变压器无漏抗,电源为无穷大,如图1所示:

浅谈变压器励磁涌流产生机理(中英文结合)

浅谈变压器励磁涌流产生机理(中英文结合)摘要:变压器作为交流电力系统重要的电气设备,其正常运行直接关系着系统的安全。差动保护作为变压器主保护,励磁涌流是影响其正确动作与否的关键因素之一。文章分析了变压器励磁涌流及其特点,以单相变压器为例,分析了励磁涌流产生的机理,并给出了常见的抑制措施。 Abstract: transformer as an important of communication power system electrical equipment, the normal operation of the system has a close relationship with safety. Differential protection for transformer main protection, excitation inrush current is one of the key factors affecting the correct operation or not. Excitation inrush current of transformer is analyzed and its characteristics of a single-phase transformer as an example, analyzed the mechanism of excitation inrush current, and the inhibition of common measures is given. 关键词:变压器励磁涌流二次谐波间断角 Keywords: transformer excitation inrush current second harmonic discontinuous Angle 1、变压器励磁涌流及特点 1, transformer excitation inrush current and the characteristic 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断路器给变压器充电

变压器励磁涌流特点及控制技术

变压器励磁涌流特点及控制技术 【摘要】本文分析了变压器励磁涌流及其特点,以单相变压器为例,分析了励磁涌流产生的机理,并给出了有效的控制技术。 【关键词】励磁涌流;二次谐波;变压器 1 变压器励磁涌流概念及特点 变压器是交流输电系统中用于电压变换的重要电气设备,是一种依据电磁感应原理制造而成的静止元件。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。 变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。由于三相变压器各相间有120°相位差,所以涌流也不尽相同。第三,在最初几个波形中,涌流将出现间断角。第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。 2 励磁涌流产生原因 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 计及成本和工艺,现代常用的电力变压器饱和磁通一般设为 1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。 3 控制技术 对于现场中常用的三相电力变压器,防止变压器励磁涌流引起差动保护的措施主要有以下几类。 3.1 采用速饱和中间变流器 差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能

励磁涌流

励磁涌流 励磁涌流(inrush current)的发生,很明显是受励磁电压的影响。即只要系统电压一有变动,励磁电压受到影响,就会产生励磁涌流。 在不同的情况下将产生如下所述的初始(initial inrush)、电压复原(recovery inrush)及共振(sympathetic inrush 共感)等不同程度的励磁涌流。其瞬时尖峰值及持续时间,将视下列各因素的综合情况而定,可能会高达变压器额定电流的8--30倍。 变压器在合闸充电时,由于变压器的电感性加上合闸瞬间供电电压的相角不确定性会使充电存在最大7-9倍的涌流(大型变压器)。原因就是电感电流不能突变,合闸前电流为零,根据u=L*di/dt。如果合闸时电压(正玄)最大时则可以平稳过渡。一旦不在此相位,特别在过零位电压时由于电网的能量非常巨大,在短时能,必然产生巨大的电流强迫变压器电流过渡到正玄波形。这就有个涌流过程。彻底防治就需要合闸相角控制,当然是三相分相控制了。简单预防则是开关串电阻。其实也挺麻烦。 目录[隐藏] 1 概述 2 励磁涌流的特点 3 励磁涌流的大小 4 励磁涌流的影响 1 概述 变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。 2 励磁涌流的特点 当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下: 1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),主要是偶次谐波,因此,励磁涌流的变化曲线为尖顶波。

励磁涌流产生的原因及应对策略

编号:SM-ZD-19068 励磁涌流产生的原因及应 对策略 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

励磁涌流产生的原因及应对策略 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 随着经济的发展,电业因其无污染等特点被广泛应用到社会的各方面,变压器作为交流电力系统重要的电气设备,其正常运行直接关系着人民生命财产的安全。本文从变压器励磁涌流释义开始、随后就变压器励磁涌流产生原因进行了分析研究,最后就变压器励磁涌流的应对策略提出了很好的意见。 变压器的励磁电流是只流入变压器接通电源一侧绕组的,对纵差保护回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。因此,它必然给纵差保护的正确工作带来影响。下面笔者结合工作实际谈一下励磁涌流产生的原理及应对策略。 变压器励磁涌流释义 1.1励磁涌流的定义 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断

变压器励磁涌流的危害及抑制策略

变压器励磁涌流的危害及抑制策略 变压器是电力系统中非常重要的电力设备,其工作性能关乎整个系统的安全运行。文章详细分析了变压器励磁涌流及其特点,针对它给电力系统所带来的危害,提出了抑制的对策。 标签:变压器;励磁涌流;危害;抑制策略 1 引言 处在正常工作状态下的变压器,其励磁电流通常只有额定电流3%到8%,容量较大的变压器则不超过1%。图1为稳态状态下磁通与电压之间的关系,励磁回路中的电阻可以忽略,磁通滞后外加电压90°,因此建立了稳定的磁场来抵消外部电源磁场的变化。此时,铁心饱和程度较低,励磁电流很小。然而一旦变压器在空载情况下使用,受到变压器铁心饱和与铁心非线性的影响,励磁涌流将激增,这给变压器与电力系统的运行带来危害。所以,对变压器励磁涌流展开研究具有现实意义。 图1 稳态状态下磁通与电压之间的关系 2 励磁涌流产生机理 变压器是基于电磁感应原理的、适用于静态交流电力系统的一种重要电力设备。变压器在空载状态下合闸充电,能观察到电流表指针出现大幅度摆动,之后极快地恢复正常,指向正常的空载电流值,这个冲击电流一般被称作励磁涌流。 励磁涌流的产生与变压器铁心饱和程度密切相关。变压器处于空载状态进行合闸充电时,受到外加电压的影响,绕组磁场将在一定程度上发生变化。与此同时根据磁链守恒定律,绕组在磁路中将出现单极性偏磁情况。由于变压器铁心材料具有非线性的特征,为了与绕组磁场变化相抵,铁心饱和程度将发生变化。当铁心饱和程度较低时,铁心磁化曲线斜率极大,这时励磁电流极小。当铁心饱和程度较高时,其磁化曲线斜率极小,励磁电流随着磁通的增长而变大,最后变为励磁涌流。若变压器存在剩磁,并且极性绕组偏磁一样,就会减小变压器绕组的励磁电抗,从而出现巨大的励磁涌流。 3 励磁涌流的特点 磁化曲线斜率影响着变压器绕组的励磁电流与磁通之间的关系。铁心饱和程度越高,励磁电流越大产生的磁通也就越大,其磁通密度甚至能达到稳态状态下磁通密度的2倍以上。根据励磁涌流产生机理,可知励磁涌流的特点。 3.1 大量的高次谐波分量存在于励磁涌流中,其中二次与三次谐波占据大部分。根据基尔霍夫定律,励磁电流磁通的感应电压大小需与外部电压相同,目的

变压器励磁涌流引起的保护误动

摘要:电力系统中变压器存在励磁涌流,通过合理的调节补偿装置,防止变压器励磁涌流对差动继电器的影响。 关键词:励磁涌流;引起;保护误动 印江县供电局甘金桥水电站主变进行大修后空载试验,主变低压侧断路器合闸时,出现合闸瞬间就跳闸,经多次操作仍出现此情况。在认真检查变压器后,断路器还出现一合闸即跳闸的现象,后对变压器进行分析,是由于励磁涌流的影响,差动保护的速饱和变流器差动线圈调整不合理,引起保护误动,致使断路器无法合闸,经过处理,故障消除。 1 励滋涌流 对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。 产生励磁涌流的原因是变压器铁芯的严重饱和和励磁阻抗的 大幅度降低。 2 励磁涌流的特点 励磁涌流数值很大,可达额定电流的6~8倍。 励磁涌流中含有大量的直流分量及高次谐波分量,其波形偏向时间轴一侧。 励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。

3 消除励磁涌流影响所采取的补偿措施 励磁涌流的产生会对变压器的差动保护造成误动作,从而使变压器空载合闸无法进行,为了消除励磁涌流对保护的影响,一般可以采用接入速饱和变流器的补偿措施。 3.1 接入速饱和变流器 接入速饱和变流器阻止励磁涌流传递到差动继电器中,如图1。当励磁涌流进入差动回路时,由于速饱和变流器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和变流器的铁芯迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速饱和变流器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。只要合理调节速饱和变流器一二次侧绕组匝数,就可以更好的消除励磁涌流对差动保护的影响。 图1 接入速饱和变流器

变压器励磁涌流

变压器励磁涌流 励磁涌流(inrush current)的发生,很明显是受励磁电压的影响。即只要系统电压一有变动,励磁电压受到影响,就会产生励磁涌流。在不同的情况下将产生如下所述的初始(initial inrush)、电压复原(recovery inrush)及共振(sympathetic inrush 共感)等不同程度的励磁涌流。其瞬时尖峰值及持续时间,将视下列各因素的综合情况而定,可能会高达变压器额定电流的8~30倍。 变压器的容量、变压器安装地点与大电源的电气距离、电力系统容量的大小、由电源至变压器间电力系统的时间常数L/R值、变压器铁心特性及其设计时所用饱和磁通密度值、加压操作前变压器的剩磁值(residual flux残磁值)、加压操作时瞬间电压的相位角度。 1、励磁起始涌流(initial inrush) 当开始加压于变压器的最初瞬间,一瞬态性的励磁涌流,将由电力系统涌入变压器。在此情况下所产生的励磁涌流,称之为励磁起始涌流(initial inrush)。在停用变压器时,即使系统电压已被切断,而变压器的励磁涌流也已降为零,即ie=0时,但其铁心中的磁通并不随之降为零,而是沿着铁心的磁滞特性环(hysteresis loop),回降至某一程度的剩磁值(residual flux残磁值)。该值的大小与系统条件及操作情况均有关联。今假设变压器在上次断电时其剩磁值为ΦR,而当变压器再次操作电压时,其瞬间电压所产生的磁通波形恰与ΦR 连接。且平滑地持续以前的磁通波形继续下去。在此情况下的励磁涌流将无瞬态励磁过程。 假设当再次加电压于变压器的瞬间,其磁通值发生在磁通波形的(负)最大值处(-Φmax)。而此时的剩磁ΦR却为正值,且剩磁不会瞬间立刻消失。是以由加电压操作所新建的磁通波形不会是从其(-Φmax)值开始,而是从ΦR值开始。在此情况下产生的励磁涌流,将有极大的瞬态现象。 但由于断路器的投入时间是无法控制,所以实际上类似上面所说的无瞬态励磁过程几乎是不可能的。典型的励磁电流,其波形在最初数周内衰减甚速,然后逐渐减慢,其衰减速度是与电源系统的时间常数值(L/R)有关。即(L/R)值愈高衰减愈慢。故容量较大的变压器(L值相对较大),或变压器临近电源及发电机(R相对值较小)者,其励磁涌流衰减均较缓慢。事实上系统时间常数的L值并非固定,而是随变压器的饱和程度发生变化。在开始的数周波内饱和程度较高,L 值较小,故衰减较快。由于电阻在系统中起阻尼作用,而降低饱和的程度,L 值较大,故衰减变的缓慢。有时要经数秒甚至几分钟后才会衰减到正常值。 2、电压恢复涌流(recovery inrush) 当变压器外部故障清除后,在电压恢复至正常值的过程中,也会引起励磁涌流的现象。此种励磁涌流称为电压复原涌流(或再生涌流)。因在外部故障时变压器仍是部分加压,故一般的电压复原涌流均不如励磁起始涌流的严重。

变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施 1、变压器励磁涌流及特点 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。 总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。由于三相变压器各相间有120度相位差,所以涌流也不尽相同。第三,在最初几个波形中,涌流将出现间断角。第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。 2、励磁涌流产生机理 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 下面以单相变压器空载合闸为例分析励磁涌流产生机理。设变压器在时间 t=0时合闸,则施加于变压器上的电压为: (1) 又,变压器电压与磁通间的关系为:(2) 故:(3) 式(3)中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。 计及成本和工艺,现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。 3、抑制措施 对于现场中常用的三相电力变压器,防止变压器励磁涌流引起差动保护的措施主要有以下几类。 3.1 采用速饱和中间变流器 差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,如BCH-2型就是一种增强型速饱和中间变流器的差动保护。这种差动保护的核心部分是带短路线圈的饱和中间变流器和差动电流继电器。短路线圈的存在使得在具有非周期分量电流时继电器的动作电流大为增加,从而提高了躲避励磁涌流和外部短路时暂态不平衡电流的性能。采用BCH-2型差动保护要注意短路线圈匝数的确定匝数愈多躲避涌流的性能愈好,但内部短路时继电器的动作延时就长。对中小型变压器,由于励磁涌流倍数大,内部故障时非周期分量衰减快,对保护动作要求又较低,一般选较大的匝数,而对大型变压器,内部涌流倍数小,非周期分量衰减慢,又要求保护动作快,则应

励磁涌流抑制方法

摘要] 变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。 [关键词]励磁涌流磁路饱和涌流抑制器 0、引言 变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。 1、励磁涌流的危害性 1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败; 1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电; 1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电; 1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损; 1.5 诱发操作过电压,损坏电气设备; 1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率; 1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。 1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。 数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。 2、励磁涌流的成因 抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——磁路饱和,实现对励磁涌流的抑制。 长期以来,人们认为无法测量变压器的剩磁极性及数值,因而不得不放弃利用偏磁抵消剩磁的想法。从而在应对励磁涌流的策略上出现了两条并不畅通的道路,一条路是通过控制变压

变压器涌流抑制

抑制变压器励磁涌流的新方法 北极星电力网技术频道作者:佚名2009/5/21 10:02:00 所属频道: 电网关键词: 励磁涌流涌流抑制器变压器[摘要]变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。 [关键词]励磁涌流磁路饱和涌流抑制器 0、引言 变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。 1、励磁涌流的危害性 1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败; 1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电; 1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电; 1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损; 1.5 诱发操作过电压,损坏电气设备; 1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和 继电保护装置的正确动作率; 1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。 1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。 数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。 2、励磁涌流的成因 抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到

相关文档