文档库 最新最全的文档下载
当前位置:文档库 › 液压控制系统

液压控制系统

液压控制系统
液压控制系统

液压控制系统

第一章绪论

1. 液压伺服控制系统:是以液压动力元件作驱动装置所组成的反馈控制系统,在这种系统中,输出量能够自动的、快速而准确的复现输入量的变化规律,对输入信号进行功率放大,是一个功放装置。

2. 液压伺服控制系统的组成:

分法一:

(1)输入元件:给出输入信号加于系统的输入端;

(2)比较元件:给出偏差信号;

(3)放大转换元件(中枢环节):将偏差信号放大、转换成液压信号。

(4)控制元件:伺服阀;

(5)执行元件:液压缸和液压马达;

(6)反反馈测量元件:测量系统中的输出并转换为反馈信号;

(7)其他元件:伺服油源、校正装置、油箱。

分法二:执行元件、动力元件、介质、辅助元件、控制元件(伺服阀)、比较元件、伺服反馈元件。

3. 液压伺服控制系统的分类:

按系统输入信号的变化规律不同分为:定值控制系统、程序控制系统、伺服控制系统。

按被控物理量的名称不同可分为:位置伺服控制系统、速度伺服控制系统、力控制系统、其它物理量的控制系统。

按液压动力元件的控制方式或液压控制元件的形式可分为:节流式控制(阀控式)系统和容积式控制(变量泵控制或变量马达控制)系统两类。

按信号传递介质的形式或信号的能量形式可分为:机械液压伺服系统、电气液压伺服系统、气动液压伺服系统。

4. 泵控与阀控系统的优缺点:

阀控系统的优点是响应速度快、控制精度高、结构简单;缺点是效率低。

泵控系统的优点是效率高;缺点是响应速度慢,结构复杂,操纵变量机构所需的力较大,需要专门的操纵机构。

5. 液压伺服控制的优点:

(1)液压元件的功率—重量比和力矩—惯量比大,可组成结构紧凑、体积小、重量轻、加速性好的伺服系统;

(2)液压动力元件快速性好,系统响应快,由于液压动力元件的力矩—惯量比大,所以加速能力强,能快速启动、制动和反向;

(3)液压伺服系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。

优点:液压伺服系统体积小,重量轻,控制精度高,响应速度快。

(4)此外,液压元件的润滑性好、寿命长;调速范围宽、低速稳定性好;借助油管动力的传输比较方便;借助蓄能器,能量储存比较方便;液压执行元件有直线位移式和旋转式两种,增加它的适应性;过载保护容易;解决系统温升问题比较方便等。

6. 液压伺服控制的缺点:

1)抗污染能力差,对工作油液的清洁度要求高;

2)粘度也随油温变化而变化,油温变化对系统的性能有很大的影响;

3)油液容易外漏,造成环境污染,可能引起火灾;

4)液压元件制造精度要求高,成本高;

5)液压能源的获得和远距离传输不如电气系统方便;

6)伺服油源中要有油污控制与油温控制系统。

7. 液压传动系统与液压控制系统的异同:

1)液压控制技术是在液压传动技术上发展起来的(介质相同,原件大部分相同,遵循的物理规律相同,融合了控制理论);

2)目的不同(前者传递动力,后者对运动量进行精确控制);

3)组成不同(前者5个组成部分,开环,后者7个组成部分,闭环);

4)设计概念不同(前者以静态参数设计为主,后者动静态结合,以动态性能为主);

5)特点不同相同点:无级调速、能动量大

(有的缺点被放大:对污染的敏感度,有的缺点被消除:传动比)

第二章液压放大元件

1.液压放大元件也称液压放大器,是一种以机械运动来控制流体动力的元件。它将输入的机械信号(位移或转角)转换为液压信号(流体或压力)输出。它既是一种能量转换元件,又是一种功率放大元件。

2.作用:小的机械量输入,大的液压量输出。

3.具有结构简单、单位体积输出功率大、工作可靠性和动态稳定性好等优点,得到广泛应用。

4.液压放大元件形式:滑阀、喷嘴挡板阀和射流管阀等。

5.滑阀是靠节流原理工作的,借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制。

圆柱滑阀中最常用的是四边四通阀。

6.按进出阀的通道数划分有:四通阀、三通阀和二通阀。

四通阀有两个控制口,可控制双作用液压缸或液压马达。三通阀只有一个控制口,只控制差动液压缸,须在液压缸活塞侧设置固定偏压。二通阀(单边阀)只有一个可变节流口,必须和一个固定节流孔配合使用,才能控制一腔的压力,用来控制差动液压缸。

按滑阀的工作边数划分有:有四边滑阀、双边滑阀和单边滑阀。

四边滑阀有四个可控的节流口,控制性能最好;双边滑阀有两个可控的节流口,控制性能居中;单边滑阀只有一个可控的节流口,控制性能最差。四边滑阀需保证三个轴向配合尺寸,双边滑阀需保证一个轴向配合尺寸,单边滑阀没有轴向配合尺寸。因此,四边滑阀结构工艺复杂、成本高,单边滑阀比较容易加工成本低。

按滑阀的预开口形式分有:正开口(负重叠)、零开口(零重叠)和负开口(正重叠)

按阀套窗口的形状划分有:矩形、圆形、三角形等多种

按阀芯的凸肩数目划分有:二凸肩的、三凸肩的和四凸肩的滑阀

7.滑阀的静态特性曲线:

流量特性曲线:是指负载压降等于常数时,负数流量与阀芯位移之间的关系

压力特性曲线:是指负载流量等于常数时,负数压力与阀芯位移之间的关系,比流量特性曲线有更好的线性度

阀的压力-流量特性曲线是指阀芯位移Xv一定时,负载流量QL与负载压降PL之间的图形描述。特性曲线族

8.阀的三个系数(并非常数):

流量增益:公式K q= (P L是常数)它是流量特性曲线在某一点的切线斜率。流量增益表示负载压力一定时,阀单位输入位移所引得负载流量变化的大小。其值越大,阀对负载流量的控制就越灵敏。K q大,系统快速性上升,准确性上升,稳定性下降

流量-压力系数为:Kc= (Xv是常数)它是压力-流量曲线的切线斜率冠以负号。对任何结构形式的阀来说都是负的。它表示阀开度一定时,负载压降变化所引起的负载流量变化大小。Kc值小,阀抵抗负载的能力大,即阀的刚度大。K c直接影响系统阻尼

压力增益(压力灵敏度):Kp= =Kq/Kc (Q=0)它是压力特性曲线的切线斜率。它是指QL=0时阀单位输入位移所引起的负载压力变化的大小。此值大,阀对负载压力的控制灵敏度高。影响系统的带载启动能力。

流量增益直接影响系统的开环增益,因而对系统的稳定性、响应特性、稳态误差有直接影响。

流量-压力系数直接阀控执行元件(液压动力元件)的阻尼比和速度刚度。

压力增益表示阀控制执行元件组合起动大惯量或大摩擦力负载的能力。阀的系数值随阀的工作点而变。

最重要的工作点是压力流量曲线的原点(即QL=PL=Xv=0).一个系统能在这一点为稳定工作,则在其他工作点也能稳定工作。在原点处的阀系数称为零位阀系数。

9.压力-流量特性方程的线性化表达式为:

10.滑阀受力:

径向力:重量、液压卡紧力(换向阀)

轴向力:①阀芯质量的惯性力F=ma(Xv),②阀芯所受液动力:a、稳态液动力=弹簧F=KXv,b、瞬态液动力;③阀芯与阀套间的摩擦力:干摩擦力、粘性摩擦力;④对中弹簧力;⑤任意外负载。

11.液动力:液流流经滑阀时,液流速度大小和方向发生变化,其动量变化对阀芯产生一个反作用力,这就是作用在阀芯上的液动力。液动力又分为稳态液动力和瞬态液动力。稳态液动力与阀口开量成正比,瞬态液动力与阀口开口量变化率成正比。

12.零开口四边滑阀的输出功率和效率:

当P L=0时,N L=0,P L=P S时,N L=0.通过dN L/dP L=0,可求得输出功率为最大值时的PL值为PL=2P S/3。

采用变量泵时,不存在供油流量损失;变量泵:轴向柱塞泵,单作用叶片泵(偏心距的改变)。

采用定量泵加溢流阀作液压能源时,阀在最大输出功率时的系统最大效率为38.5%

除了滑阀本身的节流损失外,还包括溢流阀的溢流损失,即供油流量损失,这种系统的效率很低,但由于其结构简单、成本低,维护方便,特别是在中、小功率的系统中,仍然得到广泛的应用。定压源:限压式(恒压式)变量,定量泵+溢流源。

12.单喷嘴挡板阀由固定节流口、喷嘴和挡板组成。双喷嘴挡板阀是由两个结构相同的单喷嘴挡板阀组合在一起按差动原理工作的。双喷挡阀是四通阀,可控制双作用液压缸。

13.喷嘴挡板阀性能特点:

①响应速度快,运动惯量小,频响特别高,适合作先导级;

②功率系数小;

③对清洁度要求高,名义过滤度3~5μ(喷嘴挡阀距离);

④污染的后果很严重,“满舵事故”;

⑤输入功率很小。

常用双喷嘴挡阀尺寸小,结构对称。与单喷嘴挡阀相比,双喷嘴挡阀由于结构对称还有以下优点:因温度和供油压力变化而产生的零漂小,即零位工作点变动小;挡板在零位时所受的液压力与液动力是平衡的。

14.射流管阀组成和原理:

主要由射流管和接收器组成。射流管可以绕支承中心转动。

接受器上有两个圆形的接收孔,二个接收孔分别与液压缸的两腔相连。来自液压能源的恒压力、恒流量的液流通过支承中心引入射流管,经射流管喷嘴向接收器喷射。压力油的液压能通过射流管的喷嘴转换为液流的动能(速度能),液流被接收孔接受后,又将转换为压力能。

15.射流管阀的性能特点:

①较高的响应速度,大于滑阀,小于喷嘴挡板;

②功放系数居中,小于滑阀,大于喷嘴挡板阀;

③用途:主要用于先导级,个别情况下单独直接驱动;

④抗污染能力强,(污染的后果:失效对中);

⑤性能较难预测,(缺点);

⑥易振动;

⑦零泄较大;

⑧受温度影响较大,粘度影响速度。

第三章液压动力元件

1.动力机构=滑阀+执行元件+负载。

2.组成:液压动力元件(或称液压动力机构),是由液压放大元件(液压控制元件)和液压执行元件组成的。

3.液压放大元件可以是:液压控制阀、伺服变量泵。

液压执行元件是:液压缸或液压马达。

可组成四种基本的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。

4.四通阀控制液压缸构成:由零开口四边滑阀和对称液压缸组成的,是最常见的一种液压动力元件。

5. 四通阀控缸原理:

6. 四通阀控缸

对指令输入Xv的传递函数:(

对干扰输入FL的传递函数:(

ωh液压固有频率;ζh液压阻尼比;Vt总压缩容积;βe有效体积弹性模量(包括油液、连接管道和缸体的机械柔度);Ap液压缸活塞有效面积。

ωh=(

m t:活塞及负载折算到活塞上的总重量

ζh=(

Bp:活塞及负载粘性阻尼系数,足够小时…

7.影响阀控缸动力机构动态性能的参数(没有弹性负载 k=0):

①速度放大系数Kq/Ap(速度增益)。它表示阀对液压缸活塞速度控制的灵敏度。

Ap为常数,Kq大,快速性上,稳定性下,准确性上

速度放大系数直接影响系统的稳定性、响应速度和精度。提高速度放大系数可以提高系统的速度和精度,但使系统的稳定性变坏,速度放大系数随阀的流量增益变化而变化。

②液压固有频率。

ωh=(

βe越大、mt、vt越小、Ap;ωh越大

液压固有频率表示液压动力元件的响应速度,在液压伺服系统中,液压固有频率往往是整个系统中最低的频率,它限制了系统的响应时间,为了提高系统的响应速度,应提高液压固有频率。方法:1、增大液压缸活塞面积Ap。2、减小总压缩容积Vt,主要是减小液压缸的无效容积和连接管道的容积。3、减小折算到活塞上的总质量mt。4、提高油液的有效体积弹性模量。

③液压阻尼比ζh。表示系统的相对稳定性,为获得满意的性能,液压阻尼比应具有适当的值。一般液压伺服系统是低阻尼的,因此提高液压阻尼比对改善系统性能是十分重要的。方法有:①设置旁路泄漏通道②采用正开口阀③增加负载的粘性阻尼

ζh(Kc 大——ωh大;Bp大——ωh大)Kce=Kc+Ctp,Kc为主

8.阀控马达

液压马达轴的转角对阀芯位移的传递函数为:

液压马达轴的转角对外负载力矩的传递函数为:

ζh =

ωh =

9.阀控缸与阀控马达的异同:

同:控制元件相同,传递函数形式相同;

异:一个直线运动一个回转运动,执行元件不同。

10..泵控马达:

由变量泵和定量马达组成。

变量泵以恒定的转速ωp旋转,通过改变变量泵的排量来控制液压马达的转速和旋转方向。

补油系统是一个小流量的恒压源,溢流阀是调节背压的,通过单向阀向低压端补油,补偿系统泄漏,保证低压管道有恒定压力值,防止气穴现象和空气渗入系统,冷却、沉淀。

液压马达轴的转角对变量泵摆角的传递函数为:

液压马达轴的转角对任意外负载力矩的传递函数为

ζh =

ωh =

Ct=Ctp+Ctm不变

11.泵控与阀控横向对比:

只要控制元件相同,就具有相同的动态性能;

只有控制元件不同,输入参量不同,动态性能有差异。

结论:①只要控制元件相同,则动力机构具有相同的动态特性;②泵控固有频率低于阀控;③泵控阻尼比小于阀控,阀控较稳定,泵控易于估计;④泵控的开环增益基本恒定;

⑤泵控的效率(80%~90%)远高于阀控(最多60%~70%);⑥适用场合:阀控用于功率小响应速度很高的场合,泵控用于功率大(因为效率高),响应速度要求不高的场合。

第五章电液伺服阀

1.电液伺服阀既是电液转换元件,又是功率放大元件。

功能:将输入的微小电器信号转换为大功率的液压信号输出。

特性:控制精度高,响应速度快,是一种高性能的电液控制元件,得到广泛应用。

组成:由力矩马达(或力马达)、液压放大器(先导级和功率级)、反馈机构(或平衡机构)三部分组成。

2.电液伺服阀的分类:

①根据输出液压信号的不同:电液流量控制伺服阀,电液压力控制伺服阀。

②按液压放大器的级数分类可分为单级、两级和三级电液伺服阀。

单级伺服阀:此类阀结构简单、价格低廉,但由于力矩马达或力马达输出力矩或力小。定位刚度低,使阀的输出流量有限,对负载动态变化敏感,阀的稳定性在很大程度上取决于负载动态,容易产生不稳定状态。只适用于低压、小流量和负载变化不大的场合。

两级伺服阀:此类阀克服了单级伺服阀缺点,是最常用的型式。

三级伺服阀:通常是由一个两级伺服阀做前置级控制第三级功率滑阀,形成闭环控制,通常只用在大流量(200L/min以上)的场合。

③按第一级阀的结构形式分类可分为滑阀、单喷嘴挡板阀、双喷嘴挡板阀、射流管阀和偏转板射流阀。

滑阀放大器:此类阀作为第一级,其优点是流量增益和压力增益高,输出流量大,对油液清洁度要求较低。缺点是结构工艺复杂,阀芯受力较大,阀的分辨率较低、滞环较大,响应慢。

④按反馈形式分:滑阀位置反馈、负载流量反馈和负载压力反馈三种。

滑阀位置反馈:此类阀可分为位置力反馈、直接位置反馈、机械位置反馈、位置点反馈和弹簧对中式。

⑤按力矩马达是否浸泡在油中分类:湿式和干式两种。

3.力矩马达:

在电液伺服阀中力矩马达的作用是将电信号转化为机械运动,因而是一个电气-机械转换器。电气-机械转换器是利用电磁原理工作的,它是永久磁铁或激磁线圈产生极化磁场,电气控制信号通过控制线圈产生磁场,两个磁场之间相互作用产生与控制信号成比例并能反应控制信号极性的力或力矩,从而使其运动部分产直线位移或角位移的机械运动。

4.力反馈两级电液伺服阀:

其第一级液压放大器为双喷嘴挡板阀,由永磁动铁式力矩马达控制,第二级液压放大器为四通滑阀,阀芯位移通过反馈杆与衔铁挡板组件相连,构成滑阀位移力反馈回路。

优点:体积小,响应速度快,功率放大。流量范围:40L~100L性能好。

缺点:拆装不方便,对油污要求很高,成本高。

原理:无电流无液压输出,输入差动电流,衔铁产生旋转力矩,弹簧杆和反馈杆产生变形,挡板偏离中位,挡板左右间隙不等引起左右控制腔产生压差,推动滑阀阀芯运动,同时带动反馈杆端部小球移动,趋于平衡。

反馈杆的作用:①力平衡(阻碍滑阀运动)②力矩平衡(使挡板趋于回正)③连接上下两部分形成反馈。

5.直接反馈两级滑阀式电液伺服阀

结构及工作原理:动圈式直接位置两级滑阀式电液伺服阀由动圈式马达和两级滑阀式液压放大器组成。前置级是带两个固定节流孔的四通阀(双边滑阀),功率级是零开口四边滑阀。功率级阀芯就是前置级的阀套,构成直接位置反馈。

当信号电流输入马达线圈时,线圈上产生的电磁力使前置级阀芯移动,假定阀芯向上移动x。此时上节流口开大,下节流口关小。从而使功率级滑阀上控制腔压力减小,而下控制腔压力增大,功率级阀芯上移。当功率级阀芯位移xv=x时停止移动,功率级滑阀开口量为xv,使阀输出流量。

其性能不如位置-力反馈两级电液伺服阀,体积比位置-力反馈两级电液伺服阀大。其优点:成本低,对油污染承受能力强。

6.力反馈,直接反馈异同:

构成相同;带有反馈通道的闭环控制系统。区别:电机转换元件不同(力反馈→力矩马达,直接反馈→力马达)。直接反馈体积大(主要是电机转换部分大),响应速度不同(因为先导级不同)。

7.电液伺服阀的特性与性能指标

静态特性有:

①负载流量特性(P-Q特性):完全描述了伺服阀的静态特性。

②空载流量特性:是输出流量与输入电流呈回环状的函数曲线,它是在给定的伺服阀压降和负载压降为零的条件下,使输入电流在正负额定电流值之间以阀的动态特性不产生影响的循环速度作一完整的循环所描绘出来的连续曲线。

曲线中点的轨迹称为名义流量曲线,曲线上某点或某段的斜率就是阀在该点的或该段的流量增益。

流量曲线不仅给出阀的极性、额定空载流量、名义流量增益,而且从中还可以得到阀的线性度、对称度、滞环、分辨率,并揭示了阀的零区特性。(滞环越小越好)

③压力特性:是输出流量为零(两个负载油口关闭)时,负载压降与输入电流呈回环状的函数曲线。

④内泄漏特性:内泄漏流量是负载流量为零时,从回油口流出的总流量。

⑤零漂:工作条件或环境变化所导致的零偏变化,以其对额定电流的百分比表示。包括供油压力零漂、回油压力、温度、零值电流。

动态特性:可以用频率响应或瞬态响应来表示,一般用频率响应。频率响应是输入电流在某一频率范围内作等幅变频正弦变化时空载流量与输入电流的复数比。

(±100%In时)输入幅值大时,频宽较小,曲线靠里;输入幅值小时,频宽较大,曲线靠外。

(±25%In时)频率越大越容易跟随幅值小的信号。

第六章电液伺服系统

1.电液伺服系统根据输入信号的形式不同可以分为模拟伺服系统和数字伺服系统。

2.模拟伺服系统:

在模拟伺服系统中,全部信号都是连续的模拟量,其重复精度高,但分辨能力较低(绝对精度低)。该系统中微小信号容易受到噪声和零漂的影响。

3.数字伺服系统:

在数字伺服系统中,全部信号或部分信号是离散参量。数字检测装置有很高的分辨能力,该系统的输入信号是很强的脉冲电压,受模拟量的噪声和零漂的影响很小。从经济性、可靠性方面来看,简单的伺服系统仍以采用模拟型控制为宜。

第七章液压伺服系统设计

1.液压伺服系统的设计步骤:

①明确设计要求;

②拟定控制方案,画出系统原理图;

③静态计算:确定动力元件参数,选择系统的组成元件;

④动态计算:确定系统组成元件的动态特性,画出系统的方块图,计算系统的稳定性、响应特性和静态精度;

⑤校验系统的动、静态品质,需要时对系统进行校正;

⑥选择液压能源。

2.伺服油源与普通油源的区别:

①构成:(伺服油源采用定压源):定量泵+溢流阀,恒压式定量泵;

②清洁度控制:伺服:3~5μm;

③油温的控制:伺服:±3°~±5°C,热惯性,有主副油箱。

止回阀技术说明

止回阀技术说明 止回阀的工作原理和特性:止回阀的功能是控制管道内介质单向流向的阀门,用来防止管路中的介质倒流。靠管路中介质本身的流动产生的力而自动开启和关闭的,属于一种自动阀门。用于管路系统,其主要作用是防止介质倒流、防止泵及其驱动电机机反转,以及容器内介质的泄放。止回阀属于自动阀类,启闭件靠流动介质的力量自行开启或关闭。止回阀只用于介质单向流动的管路上,阻止介质回流,以防发生事故。主要用于石油、化工、制药、化肥、电力等管路上。 旋启式止回阀的阀瓣绕转轴作旋转运动。其流体阻力一般小于升降式止回阀,它适用于较大口径的场合。旋启式止回阀根据阀瓣的数目可分为单瓣旋启式、双瓣旋启式及多瓣旋启式三种。单瓣旋启式止回阀一般适用于中等口径的场合。大口径管路选用单瓣旋启式止回阀时,为减少水锤压力,最好采用能减小水锤压力的缓闭止回阀。双瓣旋启式止回阀适用于大中口径管路。对夹双瓣旋启式止回阀结构小、重量轻,是一种发展较快的止回阀;多瓣旋启式止回阀适用于大口径管路。采用内装摇臂旋启式结构,阀门的所有启闭件都装于阀体内部,不穿透阀体,除了中法兰部位用密封垫片或密封环密封外,整体没有外漏点,杜绝了阀门外泄的可能。旋启式止回阀摇臂和阀瓣连接处采用球面连接的结构,使得阀瓣在360℃范围内有一定的自由度,有适当的微量位置补偿。旋启式止回阀密封副的密封面堆焊合金钢(13Cr)或硬质合金Stellite6,即使用在有细颗粒的介质中并不会因冲蚀而很快磨损。 性能特点及工作原理: 性能特点 该产品应用于石油、化工、电力、冶金、制药、城建等行业管道上,用来接通或截断管路中介质。 工作原理 2.1本阀由阀体、阀盖、阀瓣、摇杆、销轴、螺栓、螺母、垫片等组成。 2.2止回阀的阀瓣在流体压力作用下开启,流体从进口侧流向出口侧,当进口侧压力低于出口侧时,阀瓣在流体压差、本身重力等因素作用下自动关闭以防止流体倒流。 结构特点 我厂该系列产品采用旋启式结构,具有结构比较简单,制造与维修较方便,铸造工艺性较好,动作可靠,启闭时间短,阀门高度小,密封可靠等优点。阀门密封面堆焊STL 合金,具有耐磨损,抗擦伤,阀门使用寿命长,密封性能好等特点。 技术参数: 磅级:CLASS 150~1500 Lb 口径:NPS 2~48 in 公称压力:1.6Mpa~32.0Mpa 口径:50mm~1200mm 连接方式:法兰连接、承插式、焊接式 工作温度:≤425℃ 适用介质:水、蒸汽、油品等 运行特性: 我厂该系列止回阀能满足用户自然条件、使用工况要求。 制造质量 我厂该系列阀门质量好,外形美观,出厂试验按标准规定严格执行,泄漏量低于标准要求,保压时间高于标准要求2~3倍,达到优级产品水平。 采用标准: BS 1868 《石油、石化及相关工业的钢制止回阀》

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

液压控制系统设计说明

目录 第一章引言..................................................... - 2 - 1.1 虚拟仪器技术............................................ - 2 - 1.2 CAT技术在液压测试系统中的应用.......................... - 3 - 1.3 本课题研究目的和意义.................................... - 3 - 1.4 课题提出及研究方案...................................... - 4 - 第二章电液伺服阀特性........................................... - 5 - 2.1电液伺服阀的组成......................................... - 5 - 2.1.1 电气—机械转换器................................... - 5 - 2.1.2 液压放大器......................................... - 6 - 2.1.3 检测反馈装置....................................... - 6 - 2.1.4 伺服阀的特性及测试原理............................. - 6 - 2.2伺服阀的静态特性......................................... - 6 - 2.2.1负载流量特性曲线................................... - 7 - 2.2.2空载流量特性曲线................................... - 8 - 2.2.3压力特性........................................... - 9 - 2.2.4静耗流量特性(泄特性)............................. - 9 - 2.3本章小结................................................ - 10 - 第三章测试系统硬件设计........................................ - 11 - 3.1传感器.................................................. - 12 - 3.1.1 压力传感器的选型.................................. - 13 - 3.1.2 温度传感器选型.................................... - 15 - 3.1.3 直线位移传感器.................................... - 17 - 3.1.4 线速度传感器...................................... - 18 - 3.2信号放大................................................ - 19 - 3.3流量计.................................................. - 20 - 3.4数据采集设备............................................ - 21 - 3.4.1 数据采集卡的基本性能指标.......................... - 21 - 3.4.2数据采集卡选型.................................... - 22 - 3.5本章小结................................................ - 23 - 第四章基于LabVIEW的伺服阀静态特性测试........................ - 24 - 4.1 面向仪器和测控过程的图形化开发平台-LabVIEW ............. - 24 - 4.1.1 LabVIEW简述...................................... - 24 - 4.1.2 LabVIEW的特点.................................... - 25 - 4.1.3 LabVIEW的仪器驱动程序............................ - 25 - 4.2用LabVIEW进行数据分析和处理............................ - 26 - 4.2.1加窗处理.......................................... - 26 - 4.2.2数字滤波器........................................ - 27 - 4.2.3频域转换.......................................... - 28 - 4.3静态测试系统软件及编程.................................. - 29 - 4.3.1用LabVIEW设计虚拟仪器的方法...................... - 30 - 4.3.2信号激励模块...................................... - 32 -

止回阀技术说明书

止回阀系列 外置油缸蝶式止回HH47X 蝶式微阻缓闭止回阀HH49X

外置油缸微阻缓闭止回阀HH44X 橡胶瓣止回阀HC44X 静音止回阀H42X

静音止回阀H41X 型号编制说明 HH47X外置油缸蝶式止回阀 引述 目前常用的蝶式微阻缓闭止回阀依靠介质通过液压管路推动缓闭油缸活塞,以带动缓闭液压系统工作,这种液压缓闭原理由于介质与活塞及管路系统直接接触,液压系统常受到介质中的杂质的影响,特别是在用于污水处理系统介质的杂质常常阻塞液压管路导致微阻缓闭功能失效。在这种情况下我们开发了一种外油缸式的微阻缓闭蝶式止回阀。依据同样原理我们还研制了一种外油缸式旋启式微阻缓闭止回阀,我们将在下面做详细的介绍。 工作原理 本止回阀主要有阀体、阀板、转轴、摇臂、缓冲液压缸等组成。本阀靠进口介质压力推动阀板开启使介质通过,阀板通过转轴带动摇臂将缓冲液压缸中的活塞杆拉到开启位置。 当介质停止流动是(如泵突然停止运动)由于阀板自重及介质倒流作用,是阀板自动关闭。由于缓冲液压缸的作用,阀板关闭分两个阶段从全开位置(850)到运行了700为快

关段,阻尼装置作用小,700以后阻尼装置作用大,为慢关段,且慢关的时间可通过调节缓冲液压缸的溢流阀进行调整,以消除破坏性水锤(将水锤压力控制在工作压力的 1.2~1.5倍之间,并控制介质倒流时,水泵倒转速度不超过水泵额定转速的1.3倍)。 注:因该阀门主要是在管网正常供水状态下出现断电事故时,起到消除破坏性水锤,保护泵及管道的作用,且能达到零泄漏。故在正常供水、停水(即无倒流介质水锤)状态下(先关出口蝶阀,后停泵),该阀门不关闭。 打开从此注油。(正常情况下越3~4个月补充一次) 特点 1、体积小、重量轻、结构紧凑、维修方便 2、缓闭装置设计新颖,结构紧凑便利,性能稳定可靠,且位于管线之外,避免了污染 介质。 3、运行平稳、无震动、无噪音。 4、采用双偏心结构,其结构参数确定在最佳值,有利于减少流阻和振动,减少水锤影 响。 5、达到完全密封,无泄漏。 6、启闭特性好,阀门开启压力0.08MPa。启闭迅速,关闭阀门采用可调试,快慢两个 阶段关闭方式,可适采用不同工况要求。 7、因其不带“重锤”和外部油管,故避免了伤人及油管受压爆裂而缓闭失效等事故, 且节电、节能效果明显。 公称压力PN 1.0 壳体试验压力PN 1.5 密封试验压力PN 1.1 适用温度℃-20~120 适用介质原水、清水、污水、各种油类 HH47X外置油缸蝶式止回阀结构图

液压传动与控制

液压传动与控制 1.液压传动得工作原理 以液体作为工作介质,并以其压力能进行能量传递得方式,即为液压传动。 2.液压传动得特征 ⑴力(或力矩)得传递就是按照帕斯卡原理(静压传递定律)进行得 ⑵速度或转速得传递按容积变化相等得原则进行。“液压传动”也称“容积式传动”。 3.液压传动装置得组成 ⑴动力元件即各种泵,其功能就是把机械能转化成压力能。 ⑵执行元件即液压缸(直线运动)与马达(旋转运动),其主要功能就是把液体压力能转化成机械能、 ⑶控制元件即各种控制阀,其主要作用就是通过对流体得压力、流量及流动方向得控制,来实现对执行元件得作用力、运动速度及运动方向等得控制;也用于实现过载保护、程序控制等。 ⑷辅助元件上述三个组成部分以外得其她元件,如管道、接头、油箱、过滤器等,它们对保证系统正常工作就是必不可少得。 ⑸工作介质就是用来传递能量得流体,即液压油、 4.液压油得物理性质 ⑴密度 ⑵可压缩性表示液体在温度不变得情况下,压力增加后体积会缩小、密度会增大得特性、 ⑶液体得膨胀性液体在压力不变得情况下,温度升高后其体积会增大、密度会减小得特性。 ⑷粘性液体受外力作用而流动或有流动趋势时,液体内分子间得内聚力要阻止液体分子得相对运动,由此产生一种内摩擦力。液体内部产生摩擦力或切应力得性质,称为液体得粘性。 ①动力粘度(绝对粘度)根据牛顿摩擦定理(见流体力学)而导出得粘度称为动力粘度,通常以μ表示、 ②运动粘度同一温度下动力粘度μ与密度ρ得比值为运动粘度,用v表示。

③相对粘度(条件粘度) 粘压特性在一般情况下压力对粘度得影响比较小,在工程中当压力低于5Mpa时,粘度值得变化很小,可以不考虑。 粘温特性液压油粘度对温度得变化就是十分敏感得,当温度升高时,其分子之间得内聚力减小,粘度就随之降低。 5.液压泵得主要性能参数 ⑴压力 ①工作压力P液压泵实际工作时得输出压力称为工作压力。 ②额定压力Ps液压泵在正常工作条件下,按试验标准规定连续运转得最高压力称为液压泵得额定压力。 ③峰值压力Pmax在超过额定压力得条件下,根据试验标准规定,允许液压泵短暂运行得最高压力值,称为液压泵得峰值压力、 ⑵排量与流量 ①排量V液压泵每转一周,由其密封容积几何尺寸变化计算而得出得排出液体得体积称为液压泵得排量、 ②理论流量qt 在不考虑液压泵泄漏得情况下,在单位时间内所排出得液体体积得平均值称为理论流量。 ③实际流量q液压泵在某一具体工况下单位时间内所排出得液体体积称为实际流量。 ④额定流量qn 液压泵在正常工作条件下,按试验标准规定必须保证得流量,亦即在额定转速与额定压力下泵输出得流量称为额定流量、 ⑶功率与效率 ①液压泵得功率损失 容积损失液压泵流量上得损失 机械损失液压泵在转矩上得损失 ②液压泵得功率 输入功率Pi 作用在液压泵主轴上得机械功率 输出功率Po 液压泵在工作过程中得实际吸、压油口间得压差Δp与输出流量q得

液压传动装置电气控制系统的设计说明

天津渤海职业技术学院 毕业设计说明书 专业电气自动化 课题名称液压传动装置电气控制系统的设计学生蕊蕊 指导老师秦立芳利 电气工程系 2009年3月

容摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动而进行能量传递的一种传动方式。由于液压执行结构尺寸小,反应速度快,调节性能好,传递的力和扭矩较大,操纵、控制、调节比较方便,容易实现功率放大和过载保护,因此被广泛应用于机械制造、冶金、工程机械、农业、汽车、航空、船舶、轻纺等行业。近年来,又被应用于太空跟踪系统,海浪模拟装置,宇航环境模拟火箭发射助飞装置。 在机械加工中,例如组合机床加工长孔,为满足其技术要求并达到相应的自动化水平,加工前,应按工艺工程进行可行性模拟加工试验。本方案即为满足液压试验装置设计电气控制和自动控制。 本课题属于典型的机电技术结合项目,通过对课题的设计,研究和制作过程可达到综合利用自动化专业理论知识,提高专业综合操作技能,提高分析、组织能力,拓展学科领域的目的,并为机械加工生产技术改革提供试验操作平台。 常用词;液压装置、电器控制、PLC可编程控制器 致谢: 在本次毕业设计过程中得到了众多老师的帮助,在此表示忠心的感谢!同时也感谢这三 年来在学习和生活上给予帮助的所有老师!

目录 第1章设计对象及基本要求 (4) 1.1 设计对象 1.2 基本要求 1.3 技术要求 第2章电气线路的设计 (5) 2.1 线路设计的基本原理 2.2 绘制原理图 2.3 元器件的选择 2.4 元器件的分布图 第3章柜体电气线路的安全 (11) 第4章电气控制柜的通电试验 (15) 4.1 通电前的检查 4.2 电气控制柜的调试 第5章按给定实验项目进行的调试 (15) 5.1 用PLC可编程控制项目进行编程设计 第6章使用说明书 (18) 第7章结果分析 (18) 参考文献 (19)

多功能硬密封缓开缓闭止回阀 说明书

多功能硬密封缓开缓闭止回阀说明书 DXH944H-10C -16C 多功能硬密封缓开缓闭止回阀 1. 产品简介 本产品为带动力装置及空程耦合器, 兼有电动/ 手动开阀、关阀、短时节流作用的多功能(缓闭)止

回阀;阀座为倾斜式、全金属密封副、蝶板双偏置、过流元件带导流体并设油压缓闭装置,可分:快/ 慢两阶段关阀;本产品是一种新型多功能防水锤节能型产品。可广泛应用于石化、冶金、电力及城镇给排水等系统,它在水泵起动或正常停泵时,同时可起到“出水阀”和“止回阀”运行功能;水泵突然失电,事故停泵时,可自动、有序(快/ 慢两个阶段)关阀,完全起止回阀作用,防止水体倒流,防止破坏性 水锤发生,确保泵站安全。 2. 性能特点( 参见图1) ①带动力装置及空程耦合器,具有电动/ 手动开阀、关阀、短时节流及自动止回功能。 ②采用全金属密封副,使用寿命长,免维护免更换。 ③阀座为倾斜式,阀门启闭行程短,启闭性能良好。 ④关阀缓闭装置性能可靠,一旦与系统调整、匹配好后,可有效防止破坏性水锤的发生。 ⑤蝶板为双偏置结构,阀门启闭运动合理。 ⑥阀腔过流元件,按流体力学原理设计,流阻特性好,节能效果明显。 ⑦轴系轴承部件采用新型自润滑材料可确保阀门长期使用启闭灵活、不卡滞。 ⑧设弹簧助关机构。 ⑨结构长度按GB12221 规定,结构长度短,重量轻。 ⑩使用中注意事项用警示标牌标出,直接告示一线操作者;使用操作简单方便。 3. 工作原理( 参见图1、图2) ●本产品带有动力装置、减速箱及空程耦合器, 通过减速箱驱动空程耦合器与蝶板/ 阀轴,当两耦合器齿爪结合时,可实现电动/ 手动开阀、关阀、短时节流;当两耦合器齿爪处于空程(最大90°)位置时,蝶板可在12°(蝶板倾斜12°)-90°范围内自由运动,在水泵突然失电,事故停泵时,可自动关阀, 完全起止回阀作用。 ●当应用于离心泵时,一般要求关阀(或小开度)起动水泵,本产品可电动关阀,相关机构压住蝶板,建立封闭压力,之后, 电动开向运行,相关机构不再压制蝶板, 蝶板在动水作用下开启;水泵运行时, 蝶板将稳定在一定开度下平稳工作( 当水泵出口与本产品连接的短管太短、大小头直径比太大时,水 泵出口处的水流,将处于湍流状态——设计上应该尽量避免出现这一状态,因为在这一状态下,流 阻大,能耗高;在此情况下,本产品蝶板可能发生振摆,但不影响正常使用)。 3 设计与制造结构长度连接法兰压力- 温度等级检验与试验 CJ/T154 -2001 JS/T5299-98 GB12221 -89 GB12380 -90 GB9113-88 GB12386 -90 GB/T9131-88 GB/T13927 -92 根据需要,我公司亦可按照API 、AWW A、BS、DIN、JIS 等标准设计制造此类阀门。 5. 型号示例说明 DXH944 H —10 Q (C) 阀体材料代号:Q- 球墨铸铁C- 碳钢 公称压力(MPa)的10倍数值:10—公称压力为1.0 MPa 密封副材料代号:H—不锈钢 结构形式代号:4—蝶形缓冲 连接形式代号:4—法兰连接 传动方式代号:9—电动

组合机床动力滑台液压控制系统设计文献综述

1、前言 毕业设计是在南昌理工学院修完机械设计及其自动化专业的绝大部分课程后,由指导老师据生产实践选题分配给学生进行的一次综合性设计,全面考察我们作为本科教育的知识点的全面性与系统性。 组合机床是一种高效率的专用机床,动力滑台是组合机床用来实现进给运动的一种通用部件,其中液压滑台在生产机械中被广泛采用,液压传动系统易获得很大的力矩,运动传递平稳、均匀,准确可靠,控制方便,易于实现自动化。 液压动力滑台是典型的电液控制装置,它由滑台、滑座和液压缸组成,由于它自身带油泵、油箱等装置,需要单独设置专门的液压站及配套,液压动力滑台由电动机带动中的油泵送出压力油,经电气和液压元件的控制,推动油缸中的活塞来带动工作台。 根据控制工艺要求,液压动力滑台可组成多种工作循环,如一次工进、二次工进、死挡铁停留、跳跃进给、分级进给等。具有一次工进及死挡铁停留的工作循环是组合机床比较常用的工作循环之一。其控制方式可以采用电气控制,部分场合采用PLC控制液压系统中的阀门的线圈来实现系统功能。 根据任务书的要求对此课题的研究中涉及液压系统的分析与设计、液压元件的选择;采用继电-接触器控制系统;采用PLC程序控制方法实现。即在了解以前控制方法上采用目前市场或生产过程中常见的控制方法来实现其控制功能,具有实用价值。 2.文献资料综述 (一)百度文库《组合机床设计1》中对组合机床进行了以下介绍 组合机床是采用模块化原理设计的,以通用部件为基础,配以少量专用部件,对一种或若干种工件按已确定的工序进行加工,广泛应用于汽车、内燃机、电动机、阀门等大批量成产行业的高效专用机床。其功能:能对工件进行多刀、多面、多工位同时加工;完成钻孔、镗孔、扩孔、攻丝、铣削、车端面等切削工序和焊接、热处理、测量、装配、清洗等非切削工序。其运动特点:由机械传动实现刀具的旋转主运动,由机械或液压传

液压传动及控制系统复习题(1)

液压传动及控制复习题 一、单项选择题。在每小题列出的四个备选项中只有一个符合题目要求,请将其代码写在题后的括号。错选、多选或未选均无分。 1.液压缸的运动速度取决于(B) 。 (A) 压力和流量(B) 流量(C) 压力(D)负载 2. 当工作行程较长时.采用(C) 缸较合适。 (A) 单活塞杆(B) 双活塞杆(C) 柱塞 3、常用的电磁换向阀是控制油液的(C) 。 (A) 流量(B) 压力(C) 方向 4.在三位换向阀中,其中位可使液压泵卸荷的有(B) 型。 (A) O (B) H (C) K (D) Y 5. 在液压系统中,(A) 可作背压阀。 (A) 溢流阀(B) 减压阀(C) 液控单向阀 6. 节流阀的节流口应尽量做成(A) 式。 (A) 薄壁孔(B) 短孔(C) 细长孔 7、减压阀利用(A) 压力油与弹簧力相平衡,它使的压力稳定不变。 (A) 出油口(B) 进油口(C) 外泄口 8. 某一系统的压力大于大气压力,则其绝对压力为(A)。 (A) 大气压力加相对压力 (B) 大气压力加真空度 (C) 大气压力减真空度 9. 液压马达是将(A) 。 (A) 液压能转换成机械能(B) 电能转换为液压能 (C) 机械能转换成液压能 10. 对于双作用叶片泵的叶片倾角,应顺着转子的回转方向(B) 。 (A)后倾(B) 前倾(C) 后倾和前倾都可 12. 在测量油液粘度时,直接测量油液的哪个粘度?[ C ] A. 动力粘度 B. 运动粘度 C. 相对粘度 D. 粘性 13. 以下哪种情况下,液体会表现出粘性?[ C ] A. 液体处于静止状态 B. 运动小车上的静止液体 C. 液体流动或有流动趋势时 D. 液压受到外力作用 14. 额定压力为6.3MPa的液压泵,其出口接,则液压泵的出口压力为[ B ] A. 6.3MPa B. 0 C. 6.2MPa D. 不确定 15. 当工作行程较长时,采用以下哪种液压缸较合适?[ D ]

液压系统比例阀控制器

第六章 液壓系統比例閥控制器 6.1 前言 比例控制閥主要用於開迴路控制(open loop control);比例控制閥的輸出量與輸入信號成比例關係,且比例控制閥內電磁線圈所產生的磁力大小與電流成正比。 在傳統型式的液壓控制閥中,只能對液壓進行定值控制,例如:壓力閥在某個設定壓力下作動,流量閥保持通過所設定的流量,方向閥對於液流方向通/斷的切換。因此這些控制閥組成的系統功能都受到一些限制,隨著技術的進步,許多液壓系統要求流量和壓力能連續或按比例地隨控制閥輸入信號的改變而變化(圖6-1.1)。液壓伺服系統雖能滿足其要求,而且精度很高,但對於大部分的工業來說,他們並不要求系統有如此高的品質,而希望在保證一定控制性能的條件下,同時價格低廉,工作可靠,維護簡單,所以比例控制閥就是在這種背景下發展起來的。 比例控制閥可分為壓力控制閥,流量控制及方向控制閥三類(如圖6-1.2所示)。 1.壓力控制閥:用比例電磁閥取代引導式溢流閥的手調裝置便成為 引導式比例溢流閥,其輸出的液壓壓力由輸入信號連續 或按比例控制。 2.流量控制閥:用比例電磁閥取代節流閥或調速閥的手調裝置而以 輸入信號控制節流閥或調速閥之節流口開度,可連續或 按比例地控制其輸出流量。故節流口的開度便可由輸入 信號的電壓大小決定。 3.方向控制閥:比例電磁閥取代方向閥的一般電磁閥構成直動式比 例方向閥,其滑軸不但可以換位,而且換位的行程可以 連續或按比例地變化,因而連通油口間的通油面積也可 以連續或按比例地變化,所以比例方向控制閥不但能控 制執行元件的運動方向外,還能控制其速度。 以上各種比例閥所作動的液壓元件為液壓缸或液壓馬達。

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

止回阀的选型

水泵止回阀水头损失测定及选型比较研究 钟炎辉,邹海明,周强,汪义强、黄晓东 (深圳市深水宝安水务集团有限公司,广东,深圳518101) 摘要:对水厂在用不同止回阀进行了水头损失测试,结果表明,止回阀流道设计合理、活动部件越少则水头损失越小。此外,止回阀的结构、使用场合及操作控制工作方式也是其选型的重要考虑因素。 关键词:止回阀;水头损失;结构分析;比较 止回阀是一类依靠流体介质自身或外部动力自动开启、关闭内部组件,以防止流体倒流的阀门,在泵房使用时必须具备快关、慢闭功能以防止水锤对管道及水泵机组的破坏。止回阀的选型关系到水泵机组运行的安全、节能,对泵房建成后的维护管理也有重要影响。为此,从选型角度,对相关水厂在用的几种止回阀利用现场条件进行了水头损失测定,并从止回阀结构及维护管理等方面进行了比较。 1 止回阀水头损失实测比较 1.1 水头损失测试原理 根据水泵机组出口止回阀前、后测试点的压力差及流速变化,计算出管道内水流能量变化,从而得到水流经过止回阀后的水头损失。不同止回阀水头损失比较必须在相同的流速下进行,通过调节水泵出口蝶阀开度,得到不同流量(流速)下止回阀的一系列水头损失值。

1.2 测试对象及工具 选择了五座水厂共5种不同类止回阀进行了水头损失测定,分别为:液控缓闭蝶阀(NHDA734-100,规格DN800,Cl水厂)—编号A,静音式止回阀(KRVG-0500,规格DN500,XA水厂)—编号B,旋启式微阻缓闭止回阀(德国,VGA SKR,规格DN1000,ZA水厂)—编号C,多功能水泵控制阀(JD745X-10,规格DN800,LX水厂)—编号D,多功能水泵控制阀(JD745X-10,规格DN600,SY水厂)—编号E。 测试工具:压力表2只(瑞士科勒LEO,量程:-1~10bar,精度0.1),电磁流量计,扳手、卷尺等。 1.3 测定结果

液压闸门控制系统概述

550m2烧结机液压闸门控制系统概述 炼铁作业部耿丹 1概述 提高布料质量,对于改善料面的点火状况,降低能耗起着相当大的作用[1]。首钢京唐550m2烧结机利用烧结机圆辊上部安装的液压闸门实现了混合料的精确布料,保证了台车宽度方向上的烧结速度一致。 圆辊液压闸门安装于烧结机混合料仓下部,可实现大闸门(200mm行程)和6个小闸门(50mm行程)开度的自动调节,用来调整混合料的下料量,现场设备如图1所示。大闸门由2个液压执行器控制,同步调节。6个小闸门附着在大闸门上,由6个液压执行器控制,单独调节。液压闸门系统能够实现闸门位置的实时调节、反馈、锁死并能够实现闭环控制。 图1 液压闸门现场设备图 2工作原理 2.1工作原理 液压闸门系统的工作压力为18.0 MPa,由2台90/45-200液压系统(带位移传感器、比例阀组、液压锁、单向节流阀) 和6台50/28-50液压系统(带位移传感器、比例阀组、液压锁、单向节流阀)的位置控制、液压站(含2台电动液压泵(一用一备)、滤油器)、1套PLC 控制柜及系统内相关的管路(连接件)等组成,液压原理图如图2所示。 2.2工作过程

1、手动开启油泵(主、备可选),PLC自动控制液压系统的压力,同时检测系统故障,即时报警。 2、大闸门控制。大闸门由南北两个油缸同步控制,现场有“自动”和“手动”两种选择方式,选择手动时,当任意按下油缸缩按钮,油缸提升打开闸门,当任意按下油缸伸按钮,油缸伸出闸门关闭;选择自动时,两个油缸检测同一个设定开度输入信号实现自动同步,控制大闸门到指定位置。大闸门自动控制时设有同步过程,当两个油缸位置偏差较大时,较慢的油缸加快速度以实现同步,若位置偏差超出一定范围时则停机报警,并输出大闸门故障信号到PLC控制系统。 图2 液压系统原理图 3、小闸门控制。当液压泵站开启后可进行小闸门的控制,小闸门共6个,可分别选择手动或自动控制。选择手动时,按下控制柜上的开按钮,PLC输出开信号到比例调节阀,闸门开启,按下关按钮,闸门关闭;选择自动时,此时PLC接收中控室的设定开度信号,自动输出比例调节阀控制信号,将闸门调整到指定位置。小闸门在一定的时间(20秒)不能调节到位便停止工作并输出小闸门故障信号到PLC控制系统。 3重要组成部分描述

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压传动试卷①(含答案)

液压传动与控制 1图示液压系统,已知各压力阀的调整压力分别为:p Y1=6MPa,p Y2=5MPa,p Y3=2MPa,p Y4=1.5MPa,p J=2.5MPa,图中活塞已顶在工件上。忽略管道和换向阀的压力损失,试问当电磁铁处于不同工况时,A、B点的压力值各为多少?(“+”代表电磁铁带电,“-”代表断电) 2MPa 5MPa

2 图5所示为专用钻镗床的液压系统,能实现“快进→一工进→二工进→快退→原位停止”的工作循环(一工进的运动速度大于二工进速度)。阀1和阀2的调定流量相等,试填写其电磁铁动作顺序表。(以“+”代表电磁铁带电,“-”代表断电) 2 进给 退回

三判断分析题(判断对错,并简述原因。) 1 叶片泵通过改变定子和转子的偏心距来实现变量,而柱塞泵是通过改变斜盘倾角来实现变 量。错。单作用叶片泵和径向柱塞泵通过改变定子和转子的偏心距来实现变量,而斜盘式轴向柱塞泵通过改变斜盘倾角来实现变量。 2 单活塞杆液压缸称为单作用液压缸,双活塞杆液压缸称为双作用液压缸。错。只能输出单方向液压力,靠外力回程的液压缸,称为单作用液压缸;正、反两个方向都可输出液压力的液压缸为双作用液压缸。 3 串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定工作压力。 错。串联了定值减压阀的支路,当系统压力高于减压阀调定值时,才能获得低于系统压力的稳定工作压力。 4 与节流阀相比,调速阀的输出流量几乎不随外负载的变化而变化。对。由于调速阀内的定差减压阀正常工作时,能保证节流阀口的压差基本不变,因此调速阀的输出流量几乎不随外负载的变化而变化。 5 采用双泵供油的液压系统,工作进给时常由高压小流量泵供油,而大泵卸荷,因此其效率比单泵供油系统的效率低得多。错。采用双泵供油的液压系统,快进时两个泵同时给系统供油,执行元件运动速度较快;工作进给时常由高压小流量泵供油,而大流量泵卸荷,执行元件输出力大但速度慢。由于工进时大泵卸荷,因此其效率比单泵供油系统的效率高。 6 定量泵—变量马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至零。错。定量泵—变量液压马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至最小。 四简答题 1 在进口节流调速回路中,溢流阀正常溢流,如果考虑溢流阀的调压偏差,试分析: 1)负载恒定不变时,将节流阀口开度减小,泵的工作压力如何变化? 2)当节流阀开口不变,负载减小,泵的工作压力又如何变化? F

液压系统综述

本科毕业 论文 文献综述 毕业论文题目:1000吨四柱液压机台面及顶出结构 设计 学生姓名: 学号: 系别: 专业班级:机械设计制造及其自动化

液压系统综述 前言作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 1液压传动发展概况 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动 原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 第一个使用液压原理的是1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年他又将工作介质水改为油,进一步得到改善。 我国的液压工业开始于20世纪50年代,液压元件最初应用于机床和锻压设备。60年代获得较大发展,已渗透到各个工业部门,在机床、工程机械、冶金、农业机械、汽车、船舶、航空、石油以及军工等工业中都得到了普遍的应用。当前液压技术正向高压、高速、大功率、高效率、低噪声、低能耗、长寿命、高度集成化等方向发展。同时,新元件的应用、系统计算机辅助设计、计算机仿真和优化、微机控制等工作,也取得了显著成果。目前,我国的液压件已从低压到高压形成系列,并生产出许多新型元件,如插装式锥阀、电液比例阀、电液伺服阀、电业数字控制阀等。我国机械工业在认真消化、推广国外引进的先进液压技术的同时,大力研制、开发国产液压件新产品,加强产品质量可靠性和新技术应用的研究,积极采用国际标准,合理调整产品结构,对一些性能差而且不符合国家标准的液压件产品,采用逐步淘汰的措施。由此可见,随着科学技术的迅速发展,液压技术将获得进一步发展,在各种机械设备上的应用将更加广泛。 2液压传动在机械行业中的应用 机床工业——磨床、铣床、刨床、拉床、压力机、自动机床、组合机床、数控机床、 加工中心等 工程机械——挖掘机、装载机、推土机等

液压传动与控制试卷参考答案

新疆石河子职业技术学院 液压试卷(A)-参考答案 一. 单项选择题(每题 2 分,共30分) 1、液压泵能实现吸油和压油,是由于泵的( C)变化。 a、动能; b、压力能; c、密封容积; d、流动方向 2、用定量泵和变量马达的容积调速方式,又称为(D)调速。 a、开式油路 b、闭式油路 c、恒转矩回路 d、恒功率回路 3、外圆磨床液压系统因为采用了(C)换向回路,从而使工作台运动获得了良好的换向性能,提高了换向精度。 a、压力控制制动; b、时间控制制动; c、行程控制制动; d、电气控制制动 4、液压油( D ),常常是液压系统发生故障的主要原因。 a、温升过高; b、粘度太小; c、粘度太大; d、受到污染。 5、双作用叶片泵从转子( B )平衡考虑,叶片数应选( C )。 a 轴向力、b径向力;c 偶数;d 奇数。 6、(A)叶片泵运转时,存在不平衡的径向力;(B )叶片泵运转时,不平衡径向力相抵消,受力情况较好。 a 单作用; b 双作用。 7、对于斜盘式(直轴式)轴向柱塞泵,其流量脉动程度随柱塞数增加而下降,(C )柱塞数的柱塞泵的流量脉动程度远小于具有相邻(D)柱塞数的柱塞泵的脉动程度。 a 上升;b下降; c奇数;d 偶数。 8、液压泵的理论输入功率(A)它的实际输出功率;液压马达的理论输出功率( B)其输入功率。 a 大于; b 等于; c 小于。 9、溢流阀在执行工作的时候,阀口是( A)的,液压泵的工作压力决定于溢流阀的调整压力且基本保持恒定。 A 常开; b 常闭。 10、为使三位四通阀在中位工作时能使液压缸闭锁,应采用(A)型阀。 a "O" 型阀、 b "P" 型阀、 c "Y"型阀。 11、顺序阀是( B )控制阀。 A、流量 B、压力 C、方向 12、当温度升高时,油液的粘度( A)。 A、下降 B、增加 C、没有变化 13、中位机能是( A )型的换向阀在中位时可实现系统卸荷。 A、M B、P C、O D、Y 14. 粘度指数高的油,表示该油( C )。 A 粘度较大; B 粘度因压力变化而改变较大; C 粘度因温度变化而改变较小; D 粘度因温度变化而改变较大; 15. 外圆磨床液压系统因为采用了(C )换向回路,从而使工作台运动获得了良好的换向性能,提高了换向精度。 A 压力控制制动; B 时间控制制动; C 行程控制制动; D 电气控制制动 二. 填空题(每空 1 分,共10分) 1. 液压传动是以(压力)能来传递和转换能量的。 2. 单作用叶片泵转子每转一周,完成吸、排油各( 1 )次,同一转速的情况下,改变它的(偏心距)可以改变其排量。

HH44R-10缓冲型旋启式止回阀说明书

HC44R-10型 旋启式缓闭防振耐蚀止回阀 使用说明书 铁岭市求精阀门厂 2013年2月

1用途、特点及主要性能规范 1.1 主要用途 本系列止回阀用于在介质为水、油等液体的管道上,安装在泵出口位置,用来防止介质的逆流和破坏性的水锤。 1.2 特点: 1.阀瓣轻、开启角度大、减少流阻,降低能耗。 2.配有调节阻尼油缸为水锤消除机构、设计新颖、结构合理、性能可靠。 3.运动平稳、无震动、无噪音、安全可靠。 4.耐磨损、使用寿命长。 5.适用介质有清水、污水、海水及油品等。 1.2性能规范: 型 号 HC44R-10 公称压力 1.0MPa 适用介质 水、循环水 试 验 压 力 壳 体 1.5MPa 密 封 1.1MPa 工作 压力 P8 1.0MPa 介质温度 (℃) ≤80℃ 其密封渗漏量符合GB/T 13927-2008标准A级(无渗漏)的规定。 2. 主要结构、外形及连接尺寸 2.1.结构说明:本止回阀系法兰连接。 2.2本止回阀具体结构及外形尺寸详见图1、表1。

图1.HC44R-10型缓闭防振耐蚀止回阀 主要结构、外形及连接尺寸图 1.阀体 2.阀盖 3.阀体密封圈 4. 阀杆 5. 摇杆 6.阀瓣 7.阀瓣密封圈 8.缓冲装置 9.重锤杆 10.重锤 表1 DN PN D D1 D2 b f L H B n-d 备 注 700 10 895 840 794 40 5 1448820158024-?31 3工作原理: 3.1阀门工作原理:当管路内介质正向流动时,借助进口压力作用,使阀瓣旋转开启,介质通过。同时油缸内油经单向阀导通,阀瓣通过阀杆和摇杆带动平衡锤旋转,到达开启位置。油缸内液压油产生的阻尼作用可以避免阀瓣开启过快与阀体产生撞击。 当水泵停泵,介质停止流动或逆流时,阀瓣依靠自重、重锤的辅助及逆流的作用,使阀瓣向关阀方向回落,但由于缓冲油缸内单向阀截止,腔内液压油只能通过节流口回油,因此阀瓣的回落速度取决于节流口的流速,调节节流口的过流面积,即可控制止回阀关闭的时间。当止回阀完全到达关闭位置后,重锤可以起到增加关闭力矩的辅助密封作用,保证止回阀在低压状态下的密封效果。 3.2缓冲装置工作原理及调整方法: 3.2.1HY-100型缓冲装置主要结构如图2。(见下页) 3.2.2HY-100型缓冲装置工作原理及调整方法。

相关文档
相关文档 最新文档