文档库 最新最全的文档下载
当前位置:文档库 › 二催化塔顶结盐处理与预防

二催化塔顶结盐处理与预防

二催化塔顶结盐处理与预防
二催化塔顶结盐处理与预防

二催化塔顶结盐处理与预防

一联合运行部王万彪

摘要:催化原料越来越重,重整进料要求汽油干点不大于173,造成了二催化分馏塔顶结盐严重,严重影响安全生产,采取在线洗塔的方式,取得了比较好的效果,并提出下一步的改造措施。

关键词:分馏塔结盐洗塔脱水

华北石化公司二催化为 1996年8月建成投产的60万吨/年高低并列式重油催化裂化装臵,先后进行了几次大的改造,2003年改造为90万吨/年,为适应公司500万吨改扩建工程,2006年8月,二催化按计划停工检修,对分馏塔进行扩能改造,将原来的舌形和浮阀塔盘改造为CTST高效塔盘,部分出口堰高及降液管底隙作出调整,并增加了分馏塔高度,在原来的基础上增加6.3米,增加6层塔盘,提高分馏塔分离精度。改造后的分馏塔为36层CTST塔盘,塔底8层人字挡板。设计加工能力由原来的90万t/年增加到120万t/年.流程为:在反应器中裂解后的高温混合反应油气450-500℃进入分馏塔人字挡板底部,与人字档板顶部回流的循环油浆逆流接触,被冷却洗涤。油气向上通过各层塔盘进行分离。由于各种馏分的沸点不同,经蒸馏得到柴油、油浆。柴油、柴油和油浆作为产品出装臵。塔顶气体冷却后,得到粗汽油和富气,富气经气压机压缩后与粗汽油分别进入吸收解吸系统。稳定汽油为脱二烯烃直进料,脱二烯烃后,一部分作为催化重整,对进料要求比较严格,因此,二催化汽油干点很长时间都控

制质量170±3℃。

改造后,由于由以前的106t/h提高到142T/H,处理量提高后,时常出现,汽柴油重叠,分离不开,顶部压降大,汽油干点高,表现为降液管超负荷,需要降低顶部循环回流来维持操作,操作弹性小,针对这一情况,2011年6月,停工检修期间对二催分馏的塔进行了改造,顶部循环回流塔盘4层由单溢流改为双溢流,底细高度也由以前

70mm,统一调整为150mm,改造后,压降分馏塔压降降到21kp,汽柴油质量也恢复正常。

C201

P203

E205

E204/1-4

E206

P215

P205

E303

D213

D201

P202EC202/1.2

E202

EC201/1-6

富气去气压机

粗气去稳定

P204

E203

E207

E220轻柴出装置

P208

E212

E201ER201

油浆外甩出装置污油回炼

E-31P-58

P-59

P-60

P-61

E6201/2P-75V-3P-81P-82

P-83

E-32

P-87P-88

V-4

P-89

富吸收油

C202/1

C202/2

E-33

E-34

P-94

D203

D202

2C 层

P-96

P-97

文本

18层

22层

22层

25呈层

33层

36层

二催分馏系统简图

2013年以后,长庆油停炼,逐步参炼华北南部油,以及大庆油及进口油,对于整个催化的影响就是轻质油收率降低,反应生焦大,干气产率高,分馏系统,经常发生粗汽油,轻柴油组分重叠,汽油干点高,轻柴油初馏点低,

闪点低,不得已只能降处理量维持生产,严重影响生产稳定。

经过分析判断应该分馏塔顶出现了结盐现象。

二催化装臵进料有常压渣油及脱沥青油,由于渣油中的氯含量高而脱沥青油中的氮含量较高,将导致分馏塔发生严重的结盐现象。另外,当催化裂化装臵分馏塔塔顶操作温度过低会使分馏塔顶部水蒸气凝结成水,水与氨(NH3)和盐酸(HCL)一起形成氯化铵(NH4CL)溶液,从而加速分馏塔结盐。随着分馏塔内盐层的加厚,沉积在塔盘上的盐层会影响传质传热效果致使顶部温度失控而造成冲塔;沉积在降液管底部的盐层致使降液管底部间隙缩短,塔内阻力增加,最终导致淹塔。

那如何避免和应对分馏塔结盐现象的发生呢?

分馏塔结盐原因及现象分析

随着催化裂化原料的重质化,其氯和氮含量将增大。在高温还原气氛的催化裂化反应条件下,有机、无机氯化物和氮化物在提升管反应器中发生反应生成hcl和NH3,其反应机理可用下式表示:

2RN+3H2→(NI和高温) →2R+2NH3

RCL+H2O→(高温) →ROH+HCL

催化裂化生成的气体产物将HCL和NH3从提升管反应器带入分馏塔,在分馏塔内HCL和NH3与混有少量蒸汽的油气在上升过程中温度逐渐降低,当温度达到此环境下水蒸气的露点时,就会有冷凝水产生,这时HCL和NH3溶于水形成NH4CL溶液。NH4CL溶液沸点远高于水的沸点,其随塔内回流液体在下流过程中逐渐提浓,当盐的浓度超过其在此温度下的饱和浓度时,就会结盐析出,沉积在塔盘和降液管底部。

下述现象可作为判断分馏塔是否发生结盐的依据。当然,在发生换热设备(如换203)泄露、塔板吹翻等设备事故时,也有可能伴随出现下述现象。如设备问题已排除,最大的可能便是发生了结盐。

①由于塔顶部凝结水的存在,形成塔内水相回流,致使塔顶温度难以控制,顶部循环泵易抽空,顶部循环回流携带水。

②由于沉积在塔盘上的盐层影响传热效果,在中断回流量、顶部循环回流量发生变化时,塔内中部,顶部温度变化缓慢且严重偏离正常值。

③由于沉积在塔盘上的盐层影响传热效果,导致汽油、轻柴油发生馏程重叠,凝点及汽油终馏点不合格。

④由于结盐析出沉积在分馏塔抽出口,致使轻柴油抽出量明显降低甚至无法抽出。

⑤水样中氯离子或氨离子含量很高.

2,处理措施

分馏塔在线水洗分馏塔结盐后,压降增大到30kpa,塔顶温度难以控制,柴油组分冲至塔顶,汽油和柴油质量无法保证。为了维持生产,一般都采取对分馏塔进行在线水洗的应急措施。重汽油罐脱水阀关死,使重汽油回流带水自顶循环返塔线返回塔内,控制适宜的温度,使塔顶蒸汽凝结成水,,与含硫污水一起形成回流,沿塔盘自上而下流动,油气不凝结,而从塔顶馏出,洗塔水在向下流动过程中溶解塔盘上的铵盐,冲走塔盘上的浮垢,最后自塔的适当位臵排出。洗塔过程中要缓慢加大水量,控制好分馏塔塔顶和中部温度,以防止顶部的水落到塔底造成冲塔,确保柴油质量合格。从污水排放口监测盐含量变化情况,以盐含量不再降低作为洗塔结束,恢复正常操作的判断依据。洗塔流程如图;按照结盐的原理所述,分馏塔结盐为铵盐,极易溶解于水,一般2~4小时即可清除。通过分馏塔顶部回流进行在线水洗不失为一种有效方法,一方面可以比较容易地消除分馏塔结盐,另一方面操作简单,费用少,且不影响生产。

馏程洗塔前

粗汽油改造后

粗汽油

洗塔前

稳定汽油

洗塔后

稳定汽油

改造前

轻柴油

洗塔后

轻柴油

HK53 31 35 35 15165

6

10%馏点

11

5

52 48 53 20

5

213

50%馏点

15

6

10

1

75 87 27

5

268

90%馏点

17

6

15

9

152 149 33

9

345

KK18

3

16

7

180 170 34

9

365

凝点-3 +8

3,分馏塔结盐预防

(1)加强原料脱盐催化原料中的盐类在目前的电脱盐水平下不可能全部脱除,只能尽可能降低原料中的含

盐量。特别是原油中的有机氯通过电脱盐及常减压蒸馏是除不掉的,其中的氮化物也不能彻底清除,这是导致分馏塔结盐的关键因素。多套同类催化裂化装臵的操作经验表面表明,控制原料中的盐含量低于5mg/L时比较安全,基本不会造成分馏塔冲塔。

(2)操作预防措施:

①尽可能减少进入分馏塔的水蒸汽量,并适当加大反应系统的预提升干气量。这样可以降低分馏塔顶部水蒸气分压,使其露点温度降低,减少冷凝水的产生,进而减少NH4CL溶液的产生,提高分馏塔的操作弹性。

②选择合适的塔顶操作温度。根据分馏塔总注气量和塔顶分压计算分馏塔顶水蒸气分压,由此查出对应的水蒸气饱和温度。控制分馏塔顶温度比该温度高5℃以上,从而保证分馏塔内不生成液态水,进而避免分馏塔结盐。

③控制适宜的塔顶循环量、中段循环量及其返塔温度,稳定分馏塔中部及顶部温度,避免因塔内温度波动导致冷凝水产生。

④分馏是塔结盐不断积聚形成的,因此对其预测十分必要。对原料的含盐量及塔顶循环回流中的CL-含量进行定期检验分析,密切注意分馏状况,判断汽油、柴油馏程是否重叠;调整分馏塔各段取热分配量,适当提高塔顶负荷,减少顶部循环量,补充适量冷回流,以增加塔顶气液两相流量,保证较高的温度和油气分压,降低NH4CL析出

结晶的速度。

⑤平稳操作,避免波动。操作大幅度波动是导致分馏塔顶循环泵抽空的主要原因。随着装臵运行时间的延长,分馏塔顶部塔盘结盐越来越多,导致塔顶通透性越来越差。如遇操作大幅度波动将加速塔顶结盐,严重时将直接导致分馏塔冲塔。所以,装臵运行至后期,平稳操作尤为重要。

(3)建议增加塔顶循环油脱水分馏塔顶循环油由泵从分馏塔上部塔盘抽出,经过冷却器进行冷却,进行油水分离后返回顶部塔盘。

①塔外脱水。塔顶循环油塔外脱水工艺流程,如图,其中粗实线所示为新增部分,即在流量调节阀后将塔顶循环油引入脱水罐进行脱水,脱水罐将冷凝下来的水从底部自压返回分馏塔顶油水分离罐。该技术改造比较简单,新增脱水罐时应依据顶循环有油循环量、温度、压力和其中的含水量等因素来确定适宜的油水分离时间,进而确定合适的罐体积。

C201

P203

E205

E204/1-4

E206

P215

D213

D201

P202

EC202/1.2

EC201/1-6

富气去气压机

粗气去稳定

E-31P-58

P-59

P-60

P-61

E6201/2P-87

P-88

V-4

P-101

P-102

P-104P-105

D214

E-36

D208

V-5

V-6

V-7

V-8V-9

P-106P-108

P-109

P-113

P-114

P-115

P-116P-117P-110

V-11

V-10

V-13

V-12

P-122

P-125

P-120

P-119V-14V-15

P-129P-130

P-132

P-134

采取塔顶循环油脱水技术后,实行调节阀自动脱水,水蒸气的露点温度也相应降低,分馏塔顶温度降低,柴油馏程拓宽,柴油产率增加,这也使得分馏塔的取热具有更好的操作弹性,为控制塔顶水蒸气的冷凝提供了良好的条件,从而进一步防止NH4CI析出堵塞塔盘现象的发生。另外,增加,增加塔顶循环油脱水操作后又可以使溶解在水中的NH4CL随该系统离开分馏塔,从而降低了分馏塔的结盐倾向,使装臵平稳运行。

由于在装臵处理量不变的情况下,反应系统经大油气线进入分馏塔热量不变,在增产柴油的情况下,分馏塔上部温度会持续降低,因此可通过计算分馏塔余热,控制合适的换203富吸收油返塔温度,以保持分馏塔操作稳定。

②塔内脱水。对塔顶循环油采取塔内脱水时,需要在分馏塔内安装一个集水箱,箱体内嵌一个自动脱水器,脱水器脱出的水自压返回分馏塔顶油水分离罐中。该脱水方式简单、投资少。同塔外脱水一样,该技术也可以有效防止分馏塔顶部结盐,降低顶温,拓宽柴油馏程,增加柴油收率。

高硫酸盐废水处理方案

营口市近岸海域功能区划

排海标准 海水的主要盐分 (1)盐类组成成分每千克海水中的克数百分比(2)氯化钠 27.2 77.7 (3)氯化镁 3.8 10.9 (4)硫酸镁 1.7 4.9 (5)硫酸钙 1.2 3.6 (6)硫酸钾 0.9 2.5 (7)碳酸钙 0.1 0.3

硫酸盐废水排放执行啥标准? (8)综排标准、污水处理厂排放标准都没有对硫酸根离子进行规定,其实存在高盐度废水的工业很多的,都是对COD等进行适当处理后排放;硫酸根离子对人身的损害小,不过对土地盐碱化的作用比较大,当然海水中的这些离子的浓度很高,不作要求也是有道理的。 (9)但高浓度的SO4-对市政管网及市政污水处理系统有很大的负面影响;所以 (10)CJ343-2010《污水排入城市下水道水质标准》中对硫酸盐的排放浓度有明确的规定,分为ABC三个级别,不能大于 400~600mg/l。 (11)地表水标准在饮用水方面对硫酸盐有规定,为不超过250mg/l。 硫酸盐废水如何处理 (12)硫酸盐废水的处理方法包括物理化学和生物处理两种方法。 物理化学处理的方法主要包括沉淀法、离子交换法、液膜分离等。 化学处理主要是将硫酸盐分离,从一种状态转化成另一种状态,并未彻底去除。化学处理的缺点是耗费大,且容易造成二次污染。 而生物处理方法具有能耗低、剩余污泥少、耐冲击负荷、运行管

理方便等优点,所以含硫酸盐废水一般采用生物处理的方法。(13)矿山废水是我国硫酸盐污染存在的一个主要领域,其主要特征是pH低,有机成分少,硫酸盐浓度相对较高(3000mg/L),含有大量的金属离子。工程上多采用石灰法处理,但这一过程会产生大量的固体废气物,易造成二次污染。利用微生物法处理矿山废水,费用低,实用性强,无二次污染,还可以回收重要的单质硫,是目前最前沿的技术。它利用硫酸盐还原菌(SRB)的代谢作用将SO42-还原为S2-,从而达到去除硫酸盐、提高pH值的目的。 高盐废水处理方法 1、高盐废水常用方法----生化:不行;耐盐菌生化:盐分 高,细菌都盐死了;稀释生化:水费高,排量大,效果差,一个小时一吨的废水需要数十吨的自来水稀释费用更高,行不通; 2 、蒸发高盐废水------传统的蒸发浓缩设备、运行费用高, 需要资源多,需配备冷却锅炉系统; 3 、高盐废水处理技术考察------膜技术除盐:设备价格昂 贵,易堵塞,易污染,且浓液无法处理,不适合(如果你对膜技术的原理和应用做了认真了解,并且明白什么是“废水”,就会真正知道不适合的意义); 4 、电解除盐:含氯化钠的废水电解,无论是离子膜法还是 隔膜法,都因为含有有机物的问题而无法满足电解要求;退一步说,即使可行你能解决极板的问题、安全的问题(你污水站总不

高含盐、氨氮、COD_化工废水处理[1]

江苏莱茵河医药化工材料有限公司 年产200吨4,4-二氨基苯酰替苯胺、200吨N-(乙氧基羰基苯基)-N’-甲基-N’-苯甲脒、150吨3,4’-二氨基二苯醚、300吨双(2, 2, 6, 6-四甲基-4-哌啶基)癸二酸酯、100吨4-叔丁基-4’-甲氧基二苯酰甲烷、50吨3,3’-双(对甲苯磺酰氨基羰基氨基)二苯甲酸-1,5-(3-氧代戊酯)、50吨4,4’-双(对甲苯磺酰氨基羰基氨基)二苯甲烷、100吨4-氨基-N-甲基苯甲酰胺、100吨1,3-双(4-氨基苯氧基)苯、200吨对硝基苯甲酰胺、120吨2-(4-氨基苯基)-5-氨基苯并咪唑技改项目 废水处理工艺 项 目 方 案 及 报 价 书 江苏穆玉耳环境工程有限公司 二○一○年六月

目录 一、公司简介 (1) 二、项目概况 (1) 三、项目基本资料 (1) 四、方案设计 (1) 4.1 工艺选择说明 (2) 4.2 工艺说明 (2) 4.3污水处理设备技术性能参数及说明 (3) 1、高含盐、高含有机物废水收集池(前置格栅井) (3) 2、三效蒸发器 (4) 3、蒸发集水池 (4) 4、铁碳微电解池 (5) 5、水质水量的调节——调节池 (6) 6、混凝沉降器 (6) 7、酸化水解池(上流式兼氧滤池) (7) 8、接触氧化池 (8) 9、斜管沉淀池 (9) 10、清水池 (9) 11、污泥浓缩池 (10) 12、机房 (10) 五、设备配置及报价 (10)

5.1 土建费用概算 (10) 5.2 主要机电设备及器材概算 (11) 5.3 工程总概算 (12) 附表:进水水质及园区污水处理厂水质接受标准 (13)

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

《高盐废水处理》word版

高盐废水处理 高盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。 一、高浓度含盐废水处理的生物流程 高含盐废水生物处理流程的选择:高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。 (1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。 在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。有高浓度含盐废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。 (3)二沉池。二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,尤其是含NaCl废水。处理水量较大时,特别是含CaCL2废水,最好采用周边传动式刮泥机,以适应污泥浓度高、密度大的特点。在采用传统活性污泥法处理高CaCL2废水时,应适当加大污泥回流量,以减少废水波动造成的冲击,提高系统的稳定性。

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法 称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理 化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化 学反应后再转移。

高盐水处理工艺研发

高盐水处理工艺研发调研报告 1.高盐水的来源、特点及处理局势 1.1高盐水的定义及来源 高盐水是指海水、苦咸水和含至少3.5%(质量分数)总溶解固体的废水。高盐水处理主要出现在海水及苦咸水淡化、燃煤电厂脱硫废水,以及化工、印染、食品加工行业高含盐污水等。目前世界范围内海水淡化日产量已超8000万吨,预计到2018年,全球淡化工程总装机容量将达到1.38亿吨/天。我国的海水淡化日产量截至2014年已超过90万吨,目前曹妃甸百万吨海水淡化项目已获批准。海水淡化主流技术为低温多效蒸发、反渗透及电渗析。而脱硫废水以及化工、印染、食品加工行业的高盐废水成分复杂,想实现处理水淡化回用难度更高。 1.2 高盐废水的成分及特点 高盐水中盐类物质多为Na+、Mg2+、Ca2+、K+、Cl-、SO42-、NO3-等,此外废水中通常还含有重金属离子、Fe3+、F-、NO2-等。以达标排放为目的的高盐废水,有机物污染对环境影响至关重要,高含盐量对废水中有机物的微生物降解非常不利,只有极少数的嗜盐菌能够在高盐环境中生存;现有的物化处理工艺投资大、运行成本高,且难以达到预期净化效果。当进行海水淡化或高盐废水处理以“脱盐回用”为目的时,除盐便成为了高盐水处理的关键。 1.3高盐水处理局势 近年来,我国工业规模不断增大,高盐工业废水量也不断增多,给当前废水处理回收技术带来巨大挑战。对于高盐废水,缺乏技术、经济上的可行性与可靠性,大多采取稀释外排的方法,造成淡水资源的极大浪费,同时陆上高盐废水排放势必造成淡水资源矿化与土壤盐碱化。与国外高盐废水“零排放”与“近零排放”相比,我国仍有较大差距。 “十二五”期间,国家大力发展海水淡化工程,目前我国的海水淡化工程装机规模以30%的年增长率增长。在一些沿海缺水城市以及一些岛屿,海水淡化作为一种能够提供饮用水的可行性措施被广泛采用,尤其是膜技术的发展,使海水淡化的能耗大大降低。

浅谈关于高盐废水处理

1、高盐一般是指高于1%的盐度,即盐度大于10g/L. 当水中含盐量在3%时候,微生物的增长会明显受到抑制。 一般控制Cl离子在1200mg/L以下,最好低于400~600mg/L。 2、对于活性污泥法和生物膜法,如果不考虑培养专性的嗜盐菌,盐对生物繁殖的抑止浓度是多少?耐冲击范围又大概在多少? 含盐污水的生物处理按照微生物的来源可以分两种处理技术,一种就是采用淡水微生物进行盐度驯化,另一种是接种筛选嗜盐微生物。盐对传统淡水微生物的抑制程度是不同的,换句话说就是不同功能的微生物的耐盐范围是不同的。现在研究的结果很有限,尤其对氮磷去除的研究少之又少。安全的范围对于有机物降解的异氧菌盐度应该低于15g/L.除磷盐度不能超过6g/L,脱氮盐度应该低于15g/l.但是强调一点这些盐度的范围以处理工艺、水质不同有很大不同。对好氧异氧菌的盐度冲击范围适盐度驯化系统的不同而不同。未驯化淡水处理系统大于在0~20g/L之间。具体见我在《中国给水排水》发的文章。 2、嗜盐菌(不知是否有)的嗜盐机理能否赐教? 一般有光能质子泵原理和吸钾排钠原理。 3、工艺 高含盐废水生物处理流程的选择高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。(1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。

废水处理工艺及流程说明

福建晶安光电有限公司1300吨/天生产废水处理 工艺流程和设计说明 一、处理对象和来源 本项目废水为生产废水。由外缘切割机、晶棒掏取机、滚切机、各道磨工序的磨床、切片机、倒角机、研磨机、铜抛机、粗抛机和细抛机等工序后的清洗环节产生废水。此外,还有废气处理装臵的外排水、车间地面清洗水、纯水设备冲洗水等生产废水。生产废水总排放量一期为649.07m3/d,二期建成后全厂总量为1298.14m3/d,目前湖头污水处理厂尚未建成,因此近期项目废水经处理达一级标准后排入西溪。 二、废水处理系统进水水质、水量 废水产生量及对应的处理设施设计规模单位:t/d 有机研磨抛光酸碱 一期废水产生量88.6 269.78 133.65 157.04 二期废水产生量88.6 269.78 133.65 157.04 处理设施设计规模180 540 280 300 注:废水处理系统一天运行20h,总设计水量应在1300t/d。 项目运营期间产生的酸洗废液、氨洗废液、切削废液作为危废分类集中收集处臵,暂存在厂区内危险废物储存场(设臵于废水处理站旁,设3 个塑料储罐,容积均为20m3,同时设一个地下储池,容积为100m3),每两周由有资质的危废处理单位清运一次;其它各工序废液可进入废水处理站处理(生活污水单独处理)。 项目废水的进水水质 CODCr BOD5 SS 氨氮总磷LAS 有机废水3000 1800 800 50 10 50 研磨废水1000 800 2300 40 3 45 抛光废水1500 900 1000 45 3 60 酸碱废水450 100 250 456 -- 80

三、废水处理系统出水水质 根据环评要求,该项目产生的废水经处理排放执行国家《污水综合排放标准》中GB8978-96 表4一级标准,具体数值见下表。 排放执行GB8978-96表4一级标准 项目单位标准限值(一级) pH值无量纲6~9 悬浮物(SS) mg/L ≤70 五日生化需氧量(BOD5) mg/L ≤20 化学需氧量(COD)mg/L ≤100 氨氮(NH3-N)mg/L ≤15 总磷mg/L ≤0.5 LAS mg/L ≤5 备注:本项目仅针对以上水质指标进行监测,其余指标不在本处理范围内。

高含盐废水处理工艺

高含盐废水处理工艺 一、Fenton或电—Fenton催化氧化预处理工艺 Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。 但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。 二、双膜法预处理工艺 利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。 双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。但要注意以下问题: A.超滤前要调pH为中性、去硬度、去SS净化等; B.原水含盐量在5000mg/L以下,否则透过水量就太低了,脱盐率也降低; C.当含盐原水水量大时投资会很高; D.由于膜要经常水洗、酸洗、碱洗保护,膜的使用寿命也有限,运行成本也是比较高的; E.最大的问题是截留下的更高污染的浓缩液怎么办?如能提取有价物质或有大量可生化废水稀释一起处理还好,否则,如回用会增加污染积累;如焚烧,则投资和运行成本极高; F.对含盐量超过5000mg/L的废水可直接蒸发结晶除盐了,再用膜法没什么意义,但是

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

高盐高浓度废水处理现状

高盐高浓度废水处理现状

高盐高浓度有机废水处理技术现状 摘要:本文对目前国内外高盐高浓度有机废水的处理技术进行了综述,系统归纳出其主要处理方法:物理化学法、生物法及其组合工艺,并简要介绍了各种方法的技术原理、优缺点,最后对高盐高浓度有机废水的近一步研究指明了方向。 关键词:高盐高浓度有机废水;物理化学法;生物法;组合工艺 近年来,随着工农业生产的发展和城镇人民生活水平的提高,工业废水、城市污水排放量越来越大,由此引起的环境污染,已严重影响到环境生态和人类健康,尤其是高盐高浓度有机废水的排放。高盐高浓度有机废水是指至少含有3.5%总溶解固体TDS(Total Dissolved Solid)的高浓度有机废水,其主要来源于海水应用于工农业生产和生活中产生的废水和工业生产过程中产生的高盐废水。高盐废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-、SO42-、Na+、Ca2+等离子,这些盐的存在对常规的生物处理有明显的抑制作用[1]。针对此类废水,目前较为成熟、有效的处理工艺主要包括物理化学法,生物化学法[2]及其组合工艺,其中物理化学法主要有:电化学法[3]、膜分离法[4]、深度氧化法[5]、离子交换法[6]和焚烧法[7]。 1 物理化学法 1.1 电化学法 由于废水的高盐度,使得废水具有较高的导电性能,含盐废水中的Cl-在阳极被转化为Cl2,并可进一步转化为次氯酸: 2Cl-Cl2 Cl2+H2O HCl+HClO 次氯酸本身就是一种强氧化剂,可以将水中的有机物氧化,这一特点为电化学法在高盐度有机废水处理方法提供了良好的发展空间。电化学法具有处理费用低,不需要投加化学药剂,设备简单,可操作性强等优势,因此电化学法更适合于小型污水处理厂的运作。 王慧[8]等采用电化学法处理含盐染料废水,研究发现,在最佳条件下,色度和COD的去除率分别可达到85%和99.18%,电解过程中没有难以继续反应的中间产物生成。 1.2 膜分离法 膜分离法是一种新型隔膜分离技术,它是利用一种特殊的半透膜使溶液中的某些组分隔开,某些溶质和溶剂渗透而达到分离的目的。作为废水的深度处理方法,其在饮用水精制和海水淡化等领域受到重视和研究,并已在工程实践中使用。其中根据溶质或溶剂透过膜的推动力和膜种类不同,水处理中膜分离法又可以分为:电渗析、反渗透、超滤、微滤。其中膜材料和组件的开发是决定膜分离法能否大规模工业化应用的关键。

安全生产应急处置卡模板

XX市安全生产应急处置卡模板 为进一步推进安全生产应急处置卡编制工作,切实提升企业应急处置能力,根据全市XX年度安全生产应急管理重点工作安排,市局收集编制了部分安全生产应急处置卡参考模板,请结合当地实际借鉴参考,切实推进应急处置卡编制工作。各县市区、企业有好的做法和模板,请及时向市局推荐。 本模板分为《主要负责人应急处置卡模板》、《抢险救援组负责人应急处置卡》、《xx岗位应急处置卡模板》、《电工等5类岗位简易应急处置卡》(分别对应附件1-4)等4项。推广过程中请注意以下几点: 1.前两项为企业应急指挥部成员用处置卡,采用正反面打印。可以参照其格式,根据企业应急预案内容制定其他应急指挥部成员的应急处置卡。 2.第三、四项为针对一线作业人员的应急处置卡,采用正反面打印。可以分别推广或根据岗位类型将第四项中处置措施替换第三项中处置措施形成新的岗位应急处置卡。 3.以上应急处置卡请企业结合自身实际情况,制作成口袋卡(约8.5cm*5.5cm)、口袋书或岗位现场看板,发放到相关人员手中或悬挂在相应岗位上。 附件:1.主要负责人应急处置卡模板; 2.抢险救援组负责人应急处置卡;

3.xx岗位应急处置卡模板; 4.电工等5类岗位简易应急处置卡; 安全生产监督管理局 年月日

附件1: 主要负责人应急处置卡模板

单 位 联系电话 (有手机填写手机) 应急指挥部办公室 事故救援组 后勤保障组 事故警戒组 医疗卫生组 技术指导组 安监部门 消防部门 交通部门 医疗部门 上级主管部门 事故应急处置流程 图各应急小组负责人联系方 式

抢险救援组负责人应急处置卡 附件2:

【CN109734238A】一种含盐废水的盐回收系统和方法、以及处理系统和方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910182388.4 (22)申请日 2019.03.11 (71)申请人 美景(北京)环保科技有限公司 地址 100048 北京市海淀区首体南路9号主 语商务中心7号楼10层1001A (72)发明人 胡惊雷 方忠海 何姣 程麟杰  (74)专利代理机构 北京律智知识产权代理有限 公司 11438 代理人 王莹 于宝庆 (51)Int.Cl. C02F 9/10(2006.01) C01D 3/14(2006.01) C01D 5/16(2006.01) C01D 9/16(2006.01) C02F 101/10(2006.01) C02F 101/12(2006.01)C02F 101/16(2006.01) (54)发明名称一种含盐废水的盐回收系统和方法、以及处理系统和方法(57)摘要本发明提供了一种含盐废水的盐回收系统,用于对含盐废水脱盐处理后所得的含氯化钠、硫酸钠、硝酸钠的含盐浓水进行盐回收,其包括第一纳滤单元、臭氧氧化单元、螯合树脂吸附单元、硫酸钠冷冻结晶单元、氯化钠蒸发结晶单元、硝酸钠冷冻结晶单元及第二纳滤单元。本发明还提供了一种含盐废水的盐回收方法。此外,本发明还提供了一种含盐废水的处理系统和方法。本发明提供的系统和方法可从含盐废水中有效回收高纯度的氯化钠、硝酸钠、芒硝等产品,不会产生无法利用的混盐,实现了含盐废水的资源化处理,由此真正实现了含盐废水的零排放,还能有效缓解纳滤等装置的结垢和污堵倾向,由此能保证盐回收系统、废水处理系统长期、稳定、可靠地 运行。权利要求书2页 说明书13页 附图1页CN 109734238 A 2019.05.10 C N 109734238 A

技术:高盐度废水处理工艺

技术 | 高盐度废水处理工艺 高含盐废水的种类很多,石油、页岩气开采,电镀、制药、印染、发酵工业、海产品加工废水等都含有较高浓度的无机盐组分如Cl-等。生物处理方法是目前广泛采用的高盐废水处理方法,虽然高含盐废水中较高的盐度会影响生物处理的效果,但若采用其他的方法,如膜分离等技术则成本较高,所以生物处理仍是首选的处理方法。 盐度影响生物处理效果的主要原因在于:在生物处理方法中,主要是利用活性污泥或生物膜、颗粒污泥中微生物的新代谢来吸附降解废水中的污染物,而高盐度会引起高渗透压,使微生物细胞脱水,同时也会抑制微生物降解有机物的反应效率,从而影响生物处理方法的效果。因此,在处理高含盐废水时应当选择能够耐受高盐度影响的生物反应器。 迄今为止,已进行过盐度影响实验研究的生物反应器有膜生物反应器、移动床生物膜反应器、升流式厌氧污泥床(up-flowanaerobicsludgeblanket,UASB)反应器、上流式厌氧生物滤池反应器、EGSB反应器等,由于颗粒污泥在盐度负荷冲击下能够体现出更高的适应能力,UASB等能够培养出厌氧颗粒污泥的生物反应器得以在处理高含盐废水时有更多的应用研究,但同时从反应器处理效果和微生物角度分析研究较少。EGSB是在UASB基础上发展起来的第三代厌氧反应器,与UASB相比有更好的运行效果。本次研究利用模拟的高盐度废水,从盐度影响

下EGSB反应器的运行效果和厌氧颗粒污泥两个方面进行分析比较,并对厌氧颗粒污泥做高通量测序,以期为EGSB反应器应用于高含盐工业废水的实际处理提供参考的实验数据。 1、材料与方法 1.1实验装置 实验用EGSB反应器由圆筒形有机玻璃制成,总高1.4m,径0.12m,总容积为15.52L,有效容积为15.18L。回流口在距反应器底部1.19m的位置,三相分离器圆环挡板距离顶部0.16m,三相分离集气罩呈圆锥形,底部直径0.1m,顶部直径 0.03m,高0.08m,排气通道高0.07m,集气罩、排气通道和EGSB反应器上盖密闭。投加颗粒污泥于反应器中,进水和回流分别通过蠕动泵从反应器底部进入。颗粒污泥、沼气、废水三相在反应器中混合,随着水流上升至三相分离器,沼气进入集气罩,而大部分废水通过集气罩与挡板间的缝隙进入出水区,颗粒污泥由于重力作用,在遇到挡板和集气罩壁后,下降至污泥层,因此能很好地实现气、液、固的三相分离。 1.2实验用水

高盐腌制废水处理工艺

高盐腌制废水处理工艺 发布时间:2015-2-1 8:58:26 中国污水处理工程网 在国内农副食品加工行业中,酱腌制行业在最近几年中快速发展,但是腌制废水具有盐度大、有机污染物浓度高等特点,以前,多采用物理化学工艺处理高盐废水。例如:电絮凝、吸附和反渗透,但由于投资成本高、运行费用高,还有二次污染的风险,工程应用困难较大。此外,新型耐盐菌和嗜盐菌的筛选、开发使之成为处理含盐废水的一种技术手段,但由于添加耐盐菌后破坏原有的微生物群落结构,不具备长效的稳定性,需要周期性添加,增加运行成本。因此,结合目前先进的耐盐微生物驯化方法和生化处理工艺,建立稳定高效的耐盐微生物群落结构的污水处理工艺是解决高盐废水污染的重点。目前,国内外已有学者尝试将SBR、生物滤池、UASB等成熟的污水处理工艺应用到高盐废水处理领域,获得了一些宝贵的经验和研究成果,为后续的研究奠定了基础。 经调查分析,蔬菜腌制废水中的主要污染物分为两大类:水溶性和非水溶性成分。水溶性成分主要包括糖类、果胶、有机酸、水溶性纤维素、水溶性色素、酶、部分含氮物质和矿物质;非水溶性物质主要包括纤维素、半纤维素、木质素、原果胶、淀粉、色素、矿物质和有机酸盐等。除部分色素和纤维素属于难降解成分外,其他污染物都具有较好的可生化性。 生物接触氧化法兼有活性污泥法及生物膜法的特点,池内具有较高的容积负荷〔可达2.0 ~3.0kg/(m3·d)〕,另外接触氧化工艺不需要污泥回流,无污泥膨胀问题,运行管理较活性污泥法简单,对水量水质的波动有较强的适应能力,适用于含盐有机废水的处理。 笔者采用厌氧—生物接触氧化复合工艺处理成分复杂的实际腌制废水。考察不同菌源、溶解氧、盐度等因素对COD 处理效果的影响。研究工艺的可行性及存在的问题,为工艺的进一步改进和耐盐微生物的群落结构分析和构建提供依据。 1 材料与方法 1.1 材料与仪器

安全生产应急处置卡

安全生产应急处置卡 主要负责人应急处置卡

单 位 联系电话 (有手机填写手机) 应急指挥部办公室 事故救援组 后勤保障组 事故警戒组 医疗卫生组 技术指导组 安监部门 消防部门 交通部门 医疗部门 上级主管部门 事故应急处置流程 图各应急小组负责人联系方 式

抢险救援组负责人应急处置卡

单 位 联系电话 (有手机填写手机) 应急指挥部办公室 事故救援组 后勤保障组 事故警戒组 医疗卫生组 技术指导组 应急队伍队长 应急队伍1小队队长 应急队伍2小队队长 应急队伍3小队队长 事故应急处置流程图 各应急小组负责人联系方式

火灾事故 (1)发现者立即停止作业并大声呼喊传递事故信息,其他人员电话报告公司办公室(电话:xxxxxxx)。 (2)直接用灭火器对着火点进行灭火,附近其他人员闻讯提(推)灭火器前来支援,同时对其它未着火的地方进行防护,防止火势扩大。 (3)电气火灾必须切断电源后才能灭火,如果不能确保是否切断电源,严禁使用水灭火。 (4)若火势扩大,切断总电源。上报企业指挥部对火灾、爆炸现场进行警戒,同时疏散站内车辆及企业周边居民。灭火人员,如有人员伤亡,救出伤员对伤员进行现场急救,并及时将伤员转送医院。 (5)抢险人员要穿戴好必要的应急装备(呼吸 机械伤害事故 (1)发现者关闭机械设备(如条件允许进行断电处理)并高声呼喊传递事故信息,其他人员电话报告公司办公室(电话:xxxxxxx)。 (2)附近人员对受伤人员实施抢救;抢救过程参照人身伤害事故专项应急预案及背面简易处置流程,并及时将伤员转送医院。 (3)抢险人员要穿戴好必要的应急装备(工作服、工作帽、手套、工作鞋、安全绳等),以防止抢险救援人员受到伤害。 (4)抢险过程中,抢险人员应保持通讯联络畅通并确定好联络信号,在抢险人员撤离前,监护人员不得离开监护岗位。 (5)做好现场保护等待调查处理。 Xxx岗位应急处置卡 当事故发生时,第一时间做好停产撤人准备。当判断事故难以现场处置时,马上进行停产撤人。当判断事故可以进行现场处置时,按以下步骤进行处置。

生活污水处理工艺流程

生活污水处理工艺流程 随着人们生活水平的提高,生活污水排放越来越严重。在这样的形式下,生活污水处理工艺也在不断改进,下面我们来了解一下最新的污水处理工艺流程。 曝气生物滤池生活污水处理工艺流程 污水处理工艺流程简介:曝气生物滤池,就是在生物滤池处理装置中设置填料,通过人为供氧,使填料上生长大量的微生物。这种污水处理工艺流程装置由滤床、布气装置、布水装置、排水装置等组成。曝气装置采用配套专用曝气头,产生的中小气泡经填料反复切割,达到接近微控曝气的效果。由于反应池内污泥浓度高,处理设施紧凑,可大大节省占地面积,减少反应时间。 城市污水SPR除磷工艺 污水处理工艺流程简介:水体富营养化主要原因是人类向水体排放了大量的氨氮和磷,磷更是水体富营养化的最主要因素。纵观国内污水处理流程工艺,除磷技术一直是困扰污水处理厂运行的难题。传统的物化除磷技术需要大量的药剂,具有运行成本高,污泥产量大的缺点;前置厌氧的生物除磷工艺具有运行费用低的优点,但是由于完全依赖于微生物的摄磷、释磷作用,难以达到国家污水处理工艺流程的要求。当考虑中水回用时,则更难以达到要求。

实物流程图 图一:格栅间。 初次沉淀池。 图三:曝气池。

二次沉淀池。 消化池

微波化学污水处理工艺不同于传统的污水处理工艺,其优点是工艺流程大大简化,且减少大量的管网工程,对进水的pH,浓度、温度等无特殊要求,工艺流程图见图。 流程说明: 1格栅:(对水中有较大颗粒物的水质,如城市生活污水),清除砂石、木块、塑料等大块杂物; 2调节池:调节水量和水质,降低对后续处理构筑物的冲击负荷; 3混合器:将污水与投加的1#、2#添加剂进行充分混合与振荡; 4微波反应器:污染物与添加剂进行物理化学反应以及微波低温催化的物化反应; 5沉降过滤一体化设备:实现固液分离,达到排放或回用目的,污泥则脱水外运或用作其他用途。 水中污染物是在添加剂与微波的共同作用下,发生剧烈的催化、物理化学反应,转化成不可溶物质或气体从水中分离,水中的大分子、难降解的有机污染物在微波及添加剂的共同作用下,被分解为小分子,与添加剂结合生成速沉絮体物去除;金属离子可直接与添加剂结合生成速沉絮体物沉淀;氨氮转化为氨气逸出;水中磷转化为不可溶解磷酸盐沉淀去除。

含盐废水处理的方法简介说明

含盐废水处理的方法简介说明 一、含盐废水产生途径 1 海水代用排放的废水 所谓海水代用就是将不进行海水淡化处理而直接替代某些场 合使用的淡水资源。在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。 2 工业生产废水 一些行业,如印染、造纸、化工、医药和农药等,在生产中产生高含盐量的有机废水。 3 其他高盐废水 船舶压舱水、废水最小化生产中产生的污水、大型船舰上产生的生活污水 高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。含盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。 含盐废水处理方法:二、高盐废水如何处理,首先我们对其不同情况做一个简单的分析。 1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。突然高盐环境会造成驯化的失败和启动的延迟。

2、稀释进水盐度。既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。 3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。 含盐废水处理方法:三、高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解: (1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。 在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度

相关文档
相关文档 最新文档