文档库 最新最全的文档下载
当前位置:文档库 › 2017年华师大版初二数学八年级第17章一次函数反比例函数与几何综合题专训 初二试卷有答案

2017年华师大版初二数学八年级第17章一次函数反比例函数与几何综合题专训 初二试卷有答案

2017年华师大版初二数学八年级第17章一次函数反比例函数与几何综合题专训 初二试卷有答案
2017年华师大版初二数学八年级第17章一次函数反比例函数与几何综合题专训 初二试卷有答案

华师大版八年级下册第17章一次函数反比例函数与几何综合题专训

一、一次函数反比例函数与线段结合

试题1.(2015?泰州)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.

(1)当P为线段AB的中点时,求d1+d2的值;

(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;

(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.

【解答】解:(1)对于一次函数y=2x﹣4,

令x=0,得到y=﹣4;令y=0,得到x=2,

∴A(2,0),B(0,﹣4),

∵P为AB的中点,

∴P(1,﹣2),

则d1+d2=3;

(2)①d1+d2≥2;

②设P(m,2m﹣4),

∴d1+d2=|m|+|2m﹣4|,

当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,

解得:m=1,此时P1(1,﹣2);

当m>2时,d1+d2=m+2m﹣4=3,

解得:m=,此时P2(,);

当m<0时,不存在,

综上,P的坐标为(1,﹣2)或(,);

(3)设P(m,2m﹣4),

∴d1=|2m﹣4|,d2=|m|,

∵P在线段AB上,

∴d1=4﹣2m,d2=m,

∵d1+ad2=4,

∴4﹣2m+am=4,即(a﹣2)m=0,

∵有无数个点,

∴a=2.

试题2、(2015厦门校级质检)在直角坐标系中,直线y=2x+4交x轴于A,交y轴于D (1)以A为直角顶点作等腰直角△AMD,直接写出点M的坐标为(﹣6,2)、(2,2);

(2)以AD为边作正方形ABCD,连BD,P是线段BD上(不与B、D重合)的一点,在

BD上截取PG=,过G作GF⊥BD,交BC于F,连AP则AP与PF有怎样的数量关系和位置关系?并证明你的结论;

(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD、PG、BG之间有何关系,并证明你的结论.

【解答】解:(1)M(﹣6,2)或(2,﹣2);

(2)AP=PF且AP⊥PF.理由如下:

过A作AH⊥DB,如图,

∵A(﹣2,0),D(0,4),

∴AD==2,

∵四边形ABCD为正方形,

∴BD=2=2,

∴AH=DH=BD=,

而PG=,

∴DP+BG=,

而DH=DP+PH=,

∵∠GBF=45°,

∴BG=GF,

∴Rt△APH≌Rt△PFG,

∴AP=PF,∠PAH=∠FPG,

∴∠APH+∠GPF=90°,即AP⊥PF.

(3)DP2+BG2=PG2.理由如下:

把△AGB绕A点逆时针旋转90°得到△AMD,连MP,如图,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,

∴∠MDP=90°,

∴DP2+BG2=PM2;

又∵∠PAG=45°,

∴∠DAP+∠BAG=45°,

∴∠MAD+∠DAP=45°,即∠MAP=45°,

而AM=AG,

∴△AMP≌△AGP,

∴MP=PG,

∴DP2+BG2=PG2.

试题3、(2015黄石)已知双曲线y=(x>0),直线l1:y﹣=k(x﹣)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线

l2:y=﹣x+.

(1)若k=﹣1,求△OAB的面积S;

(2)若AB=,求k的值;

(3)设N(0,2),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.则A,B两点间的距离为

AB=)

【解答】解:(1)当k=﹣1时,l1:y=﹣x+2,

联立得,,化简得x2﹣2x+1=0,

解得:x1=﹣1,x2=+1,

设直线l1与y轴交于点C,则C(0,2).

S△OAB=S△AOC﹣S△BOC=2(x2﹣x1)=2;

(2)根据题意得:整理得:kx2+(1﹣k)x﹣1=0(k<0),

∵△=[(1﹣k)]2﹣4×k×(﹣1)=2(1+k2)>0,

∴x1、x2是方程的两根,

∴①,

∴AB==,

=,

=,

将①代入得,AB==(k<0),

∴=,

整理得:2k2+5k+2=0,

解得:k=﹣2或k=﹣;

(3)F(,),如图:

设P(x,),则M(﹣+,),

则PM=x+﹣==,

∵PF==,∴PM=PF.

∴PM+PN=PF+PN≥NF=2,

当点P在NF上时等号成立,此时NF的方程为y=﹣x+2,

由(1)知P(﹣1, +1),

∴当P(﹣1, +1)时,PM+PN最小值是2.

二、一次函数反比例函数与三角形结合

试题1.(2016?黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.

【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.

设C1(x,2x),则得x2+(2x﹣2)2=22,

解得,得C1(),

若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,

设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,

∴C2(),

又由点C3与点C2关于原点对称,得C3(),

若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4

(),

所以,满足题意的点C有4个,坐标分别为:(),(),

(),C4().

试题2.,(2016春?南京校级月考)△ABC的两个顶点分别为B(0,0),C(4,0),

顶点A在直线l:上,

(1)当△ABC是以BC为底的等腰三角形时,写出点A的坐标;

(2)当△ABC的面积为6时,求点A的坐标;

(3)在直线l上是否存在点A,使△ABC为Rt△?若存在,求出点A的坐标,若不存在说明理由.

【解答】解:(1)作出线段BC的垂直平分线,与直线l交于点A,连接BA,CA,此时△ABC是以BC为底的等腰三角形,如图1所示,

∵B(0,0),C(4,0),

∴A横坐标为x=2,

把x=2代入y=﹣x+3,得:y=2,即A(2,2);

(2)∵△ABC面积为6,且BC=4,

∴BC|y A

纵坐标|=6,即|y A

纵坐标

|=3,

把y=3代入y=﹣x+3得:x=0;把y=﹣3代y=﹣x+3得:x=12,则A(0,3)或(12,﹣3);

(3)如图2所示,

分三种情况考虑:当∠A1BC=90°时,此时A1(0,3);

当∠BA2C=90°时,作A2D⊥x轴,设OA=m,A2D=﹣m+3,DC=4﹣m,

由△A2BD∽△CA2D,得到A2D2=BDDC,即(﹣m+3)2=m(4﹣m),

解得:m=3.6或m=2,此时A2(3.6,1.2)或(2,2);

当∠A3CB=90°时,此时A3(4,1).

试题3、(2016春?建湖县校级月考)如图,在平面直角坐标系xOy中,一次函数

y=k1x+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).求:

(1)求k值与一次函数y=k1x+b的解析式;

(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;

(3)在y轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.

【解答】解:(1)∵正比例函数y=kx的图象经过点C(3,4),

∴4=3k,

k=,

∵一次函数y=k1x+b的图象经过A(﹣3,0),C(3,4)

∴,

∴,

∴一次函数为y=.

(2)①当DA⊥AB时,作DM⊥x轴垂足为M,

∵∠DAM+∠BAO=90°,∠BAO+∠ABO=90°,

∴∠DAM=∠ABO,

∵DA=AB,∠DMA=∠AOB,

∴△DAM≌△ABO,

∴DM=AO=3,AM=BO=2,

∴D(﹣5,3),

②当D′B⊥AB时,作D′N⊥y轴垂足为N,

同理得△D′BN≌△BAO

∴D′N=BO=2,BN=AO=3,

∴D′(﹣2,5)

∴D点坐标为(﹣5,3)或(﹣2,5).

(3)当OP=OC时,OC==5,

则P的坐标为(0,5)或(0,﹣5),

当CP=CO时,则P的坐标是(0,8),

当PO=PC时,作CK⊥y轴垂足为K,设P的坐标为,(0,t)

在Rt△PCK中,∵PC=t,PK=4﹣t,KC=3,

∴(4﹣t)2+32=t2解得

此时P的坐标是

综上可知P的坐标为(0,5)或(0,﹣5)或(0,8)或.

试题4.(2016春?射阳县校级月考)如图,平面直角坐标系中,直线AB:y=﹣x+b交y 轴于点A(0,4),交x轴于点B.

(1)求直线AB的表达式和点B的坐标;

(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D 的上方,设点P的纵坐标为n.

①用含n的代数式表示△ABP的面积;

②当S△ABP=8时,求点P的坐标;

③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.

【解答】解:(1)∵把A(0,4)代入y=﹣x+b得b=4

∴直线AB的函数表达式为:y=﹣x+4.

令y=0得:﹣x+4=0,解得:x=4

∴点B的坐标为(4,0).

(2)①∵l垂直平分OB,

∴OE=BE=2.

∵将x=2代入y=﹣x+4得:y=﹣2+4=2.

∴点D的坐标为(2,2).

∵点P的坐标为(2,n),

∴PD=n﹣2.

∵S△APB=S△APD+S△BPD,

∴S△ABP=PDOE+PDBE=(n﹣2)×2+(n﹣2)×2=2n﹣4.

②∵S△ABP=8,

∴2n﹣4=8,解得:n=6.

∴点P的坐标为(2,6).

③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.

设点C(p,q).

∵△△PBC为等腰直角三角形,PB为斜边,

∴PC=PB,∠PCM+∠MCB=90°.

∵CM⊥l,BN⊥CM,

∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.

∴∠MPC=∠NCB.

在△PCM和△CBN中,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(6,4).

如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.

设点C(p,q).

∵△△PBC为等腰直角三角形,PB为斜边,

∴PC=PB,∠PCM+∠MCB=90°.

∵CM⊥l,BN⊥CM,

∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.

∴∠MPC=∠NCB.

在△PCM和△CBN中,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(0,2)(不合题意).

综上所述点C的坐标为(6,4).

试题5.(2016春?滨海县校级月考)如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.

(1)当OA=OB时,试确定直线L的解析式;

(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;

(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.

问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.

【解答】解:(1)由题意知:A(﹣10,0),B(0,10m)

∵OA=OB,

∴10m=10,即m=1.

∴L的解析式y=x+10.

(2)∵AM⊥OQ,BN⊥OQ

∴∠AMO=∠BNO=90°

∴∠AOM+∠MAO=90°

∵∠AOM+BON=90°

∴∠MAO=∠NOB

在△AMO和△ONB中,

∴△AMO≌△ONB.

∴ON=AM,OM=BN.

∵AM=8,BN=6,

∴MN=AM+BN=14.

(3)PB的长为定值.

理由:如图所示:过点E作EG⊥y轴于G点.

∵△AEB为等腰直角三角形,

∴AB=EB,∠ABO+∠EBG=90°.

∵EG⊥BG,

∴∠GEB+∠EBG=90°.

∴∠ABO=∠GEB.

在△ABO和△EGB中,

∴△ABO≌△EGB.

∴BG=AO=10,OB=EG

∵△OBF为等腰直角三角形,

∴OB=BF

∴BF=EG.

在△BFP和△GEP中,

∴△BFP≌△GEP.

∴BP=GP=BG=5.

试题6、(2015开县二模)如图,矩形ABC0位于直角坐标平面,O为原点,A、C分别在坐标轴上,B的坐标为(8,6),线段BC上有一动点P,已知点D在第一象限.(1)D是直线y=2x+6上一点,若△APD是等腰直角三角形,求点D的坐标;

(2)D是直线y=2x﹣6上一点,若△APD是等腰直角三角形.求点D的坐标.

【解答】解;(1)如图1所示,作DE⊥y轴于E点,作PF⊥y轴于F点,可得∠DEA=∠AFP=90°,

根据题意可知当△APD为等腰直角三角形时,只有∠DAP=90°满足条件,

∴AD=AP,∠DAP=90°,

∴∠EAD+∠DAB=90°,∠DAB+∠BAP=90°,

∴∠EAD=∠BAP,

∵AB∥PF,

∴∠BAP=∠FPA,

∴∠EAD=∠FPA,

在△ADE和△PAF中,

∴△ADE≌△PAF(AAS),

∴AE=PF=8,OE=OA+AE=14,

设点D的横坐标为x,由14=2x+6,得x=4,

∴点D的坐标是(4,14);

(2)由点D在直线y=2x﹣6上,可设PC=m,

如图2所示,当∠ADP=90°时,AD=PD,易得D点坐标(4,2);

如图3所示,当∠APD=90°时,AP=PD,设点P的坐标为(8,m),

则D点坐标为(14﹣m,m+8),由m+8=2(14﹣m)﹣6,得m=,

∴D点坐标(,);

如图4所示,当∠ADP=90°时,AD=PD时,

同理可求得D点坐标(,),

D点坐标分别为(4,2)或(,)或(,).

三、一次函数反比例函数与特殊的四边形结合

试题1、(2015酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重

合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.

【解答】解:(1)过点D作x轴的垂线,垂足为F,

∵点D的坐标为(4,3),

∴OF=4,DF=3,

∴OD=5,

∴AD=5,

∴点A坐标为(4,8),

∴k=xy=4×8=32,

∴k=32;

(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,

过点D′做x轴的垂线,垂足为F′.

∵DF=3,

∴D′F′=3,

∴点D′的纵坐标为3,

∵点D′在的图象上

∴3=,

解得:x=,

即OF′=,

∴FF′=﹣4=,

∴菱形ABCD平移的距离为.

试题2、(2015宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A (﹣3,),AB=1,AD=2.

(1)直接写出B、C、D三点的坐标;

(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.

【解答】解:(1)∵四边形ABCD是矩形,

∴AB=CD=1,BC=AD=2,

∵A(﹣3,),AD∥x轴,

∴B(﹣3,),C(﹣1,),D(﹣1,);

(2)∵将矩形ABCD向右平移m个单位,

∴A′(﹣3+m,),C(﹣1+m,),

∵点A′,C′在反比例函数y=(x>0)的图象上,

∴(﹣3+m)=(﹣1+m),

解得:m=4,

∴A′(1,),

∴k=,

∴矩形ABCD的平移距离m=4,

反比例函数的解析式为:y=.

试题3、2015德州)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

(1)求证:四边形AEBD是菱形;

(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

【解答】(1)证明:∵BE∥AC,AE∥OB,

∴四边形AEBD是平行四边形,

∵四边形OABC是矩形,

∴DA=AC,DB=OB,AC=OB,AB=OC=2,

∴DA=DB,

∴四边形AEBD是菱形;

(2)解:连接DE,交AB于F,如图所示:

∵四边形AEBD是菱形,

∴AB与DE互相垂直平分,

∵OA=3,OC=2,

∴EF=DF=OA=,AF=AB=1,3+=,

∴点E坐标为:(,1),

设经过点E的反比例函数解析式为:y=,

把点E(,1)代入得:k=,

∴经过点E的反比例函数解析式为:y=.

试题4、(2015十堰)如图,点A(1﹣,1+)在双曲线y=(x<0)上.

(1)求k的值;

(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.

【解答】解:(1)∵点A(1﹣,1+)在双曲线y=(x<0)上,

∴k=(1﹣)(1+)=1﹣5=﹣4;

(2)过点A作AE⊥y轴于点E,过点D作DF⊥x轴于点F,

∵四边形ABCD是以AB,AD为邻边的平行四边形ABCD,

∴DC AB,

∵A(1﹣,1+),B(0,1),

∴BE=,

由题意可得:DF=BE=,

则=,

解得:x=,

∴点D的坐标为:(﹣,).

四、一次函数反比例函数与动点结合

试题1、(2015武侯区模拟)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的函数关系式;

(2)连接BM,动点P从点A出发,沿折线A﹣B﹣C方向以2个单位/秒的速度向终点C 匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围).

【解答】解:(1)过点A作AE⊥x轴,垂足为E,(如图)

∵A(﹣3,4),

∴AE=4,OE=3,

∴OA=5,(1分)

∵四边形ABCO为菱形,

∴OC=CB=BA=OA=5,

∴C(5,0),(2分)

设直线AC的解析式为y=kx+b

最新中考之反比例函数填空选择压轴题

精品文档
中考之反比例函数填空选择压轴题
1、(2011?宁波)正方形的 A1B1P1P2 顶点 P1、P2 在反比例函数 y= 2 (x>0)的图象上,顶 x
点 A1、B1 分别在 x 轴、y 轴的正半轴上,再在其右侧作正方形 P2P3A2B2,顶点 P3 在反比例函
数 y= 2 (x>0)的图象上,顶点 A2 在 x 轴的正半轴上,则 P2 点的坐标为___________,则 x
点 P3 的坐标为__________。 2、已知关于 x 的方程 x2+3x+a=0 的两个实数根的倒数和等于 3,且关于 x 的方程(k-1)
x2+3x-2a=0
有实根,且
k
为正整数,正方形
ABP1P2
的顶点
P1、P2
在反比例函数
y=
k
? 1(x x
>0)图象上,顶点 A、B 分别在 x 轴和 y 轴的正半轴上,求点 P2 的坐标.
3、如图,正方形 OABC 和正方形 AEDF 各有一个顶点在一反比例函数图象上,且正方形
OABC 的边长为 2.(1)求反比例函数的解析式;(2)求点 D 的坐标.
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图象
上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好在
y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图
象上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好

y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
5、2007?泰安)已知三点
P1(x1,y1),P2(x2,y2),P3(1,-2)都在反比例函数
y=
k x

图象上,若 x1<0,x2>0,则下列式子正确的是( )
A.y1<y2<0
B.y1<0<y2
C.y1>y2>0
D.y1>0>y2
精品文档

北师大版一次函数知识点

初二函数知识点 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

反比例函数压轴题

反比例函数 经典结论: 如图,反比例函数k 的几何意义: (I ) 1 2 AOB AOC S S k ??== ; (II ) OBAC S k =矩形。 下面两个结论是上述结论的拓展. (1) 如图①, OPA OCD S S ??=,OPC PADC S S ?=梯形。 (2)如图②, O A P B O B C S S =梯形梯形,BPE ACE S S ??=。 1.如图,已知双曲线(0)k y x x = >经过矩形OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积为2,则k = ; 2.如图,点A B 、为直线y x =上的两点,过A B 、两点分别作y 轴的平行线交双曲线 1 (0)y x x =>于C D 、两点,若2BD AC =,则224OC OD -= . 3.如果一个正比例函数的图象与一个反比例函数x y 6 =的图象交),(),,(2211y x B y x A ,那么 ))((1212y y x x --值为 .

4. 如图,一次函数b kx y +=的图象与反比例函数x m y =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D . (1) 求反比例函数x m y = 和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积. 5.如图,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)k y k x = >上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限), 若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

压轴题反比例函数专题复习

反比例函数压轴题类型 一、反比例函数与几何图形的综合 1、反比例函数与求四边形面积、存在性问题(正方形) 26. (历下区一模、本题满分9分) 如图,正比例函数y =ax 与反比例函数>0)的图象交于点M (6,6). (1)求这两个函数的表达式;(2)如图1,若∠AMB =90°,且其两边分别于两坐标轴的正半轴交于点A 、B .求四边形OAMB 的面积.(3)如图2,点P 是反比例函数y =k x (x >0)的图象上一点,过点P 作x 轴、y 轴的垂线,垂足分别为E 、F ,PF 交直线OM 于点H ,过作x 轴的垂线,垂足为G .设点P 的横坐标为m ,当m >6时,是否存在点P ,使得四边形PEGH 为正方形?若存在,求出P 点的坐标;若不存在,请说明理由. 26.解:(1)将点 分 解得:a =1 ,k =6 2分 ∴这两个函数的表达式分别为:y =x 3分(2)过点M 分别做x 轴、y 轴的垂线,垂足分别为C 、D . 则∠MCA =∠MDB =90°,∠AMC =∠BMD =90°-∠AMD ,MC =MD =6, ∴△AMC ≌△BMD ,…5分∴S 四边形OCMD =S 四边形OAMB =6,…6分 ∵∠MOE =45°,∴OG =GH , ∴OE = OG +GH ∴2x 8分 P 3). …9分 2、反比例函数与判断平行四边形、存在性问题(矩形) 26. (市中区一模、本题满分9分)如图1,已知双曲线y =k x (k >0)与直线y =k ′x 交于A 、B 两点,点A 在第一象限,试回答下列问题:(1)若点A 的坐标为(3,1),则点B 的坐标

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

中考数学函数之一次函数和反比例函数综合问题压轴题专题

中考数学函数之一次函数和反比例函数综 合问题压轴题专题Revised on November 25, 2020

《中考压轴题全揭秘》三年经典中考压轴题 函数之一次函数和反比例函数综合问题 1.(2014年福建泉州14分)如图,直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1). (1)求该反比例函数的关系式; (2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′; ①求△A ′BC 的周长和sin ∠BA ′C 的值; ②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC = 1m . 2.(2014年黑龙江牡丹江10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =4 3. (1)求点A ,C 的坐标; (2)若反比例函数y = k x 的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由. 3.(2014年江苏淮安12分)如图,点A (1,6)和点M (m ,n )都在反比例函数k y x =(x >0)的图象上, (1)k 的值为 ; (2)当m =3,求直线AM 的解析式; (3)当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,试判断直线BP 与直线AM 的位置关系,并说明理由. 4.(2014年山东枣庄10分)如图,一次函数y =ax +b 与反比例函数k y x =的图象交于A 、B 两点,点A 坐标为(m ,2),点B 坐标为(﹣4,n ),OA 与x 轴正半轴夹角的正切值为1 3 ,直线AB 交y 轴于点C ,过C 作y 轴 的垂线,交反比例函数图象于点D ,连接OD 、B D . (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积. 5. (2014年四川巴中10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1 k y x = (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积; (3)请结合图象直接写出不等式1 2k k x b >0x +- 的解集.

北师大版初二数学《一次函数》优秀教案

一次函数 知识点:函数的概念 定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 例1:求下列函数中自变量x 的取值范围: (1)2 1 += x y ; (2)2-=x y . 例2:圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为,它是函数. 知识点:一次函数的概念 定义:一次函数:若两个变量x 、y 间的关系可以表示成(k 、b 为常数,k ≠0)形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的____________.正比例函数是一次函数的特殊情况. 例1:有下列函数:①y =-x -2;②y =-2 x ;③y =-x 2+(x +1)(x -2);④y =-2, 其中不是一次函数的是.(填序号) 例2:要使y =(m -2)x n - 1+n 是关于x 的一次函数,则m 、n 应满足______________. 例3:已知y =(k -1)2 k x 是正比例函数,则k =. 【变式练习】 1、若函数y = (k +1)x +k 2-1是正比例函数,则k 的值为( ) A .0 B .1 C .±1 D .-1 2、若23y x b =+-是正比例函数,则b 的值是() A . 0 B . 23C . 23-D . 3 2 - 3.下列关于x 的函数中,是一次函数的是() 22221A.3(1) B.y=x+x 1 C.y= -x D.y=(x+3)-x x y x =- 考点:正比例函数的图象和性质

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

中考数学反比例函数-经典压轴题附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2. (1)求双曲线的解析式; (2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________; (3)点(6,n)为G1与G2的交点坐标,求a的值. (4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围. 【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得, 所以双曲线的解析式为y= ; (2)2 (3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2), 抛物线G2的解析式为y=﹣(x﹣a)2+9, 把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± , 即a的值为6± ; (4)抛物线G2的解析式为y=﹣(x﹣a)2+9, 把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ; 把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ; ∵G1与G2有两个交点, ∴3+ ≤a≤12﹣2 , 设直线DE的解析式为y=px+q,

把D(3,4),E(12,1)代入得,解得, ∴直线DE的解析式为y=﹣ x+5, ∵G2的对称轴分别交线段DE和G1于M、N两点, ∴M(a,﹣ a+5),N(a,), ∵MN<, ∴﹣ a+5﹣<, 整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0, ∴a<4或a>9, ∴a的取值范围为9<a≤12﹣2 . 【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4), 所以BE= =2 . 故答案为2 ; 【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的 解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围. 2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

北师大版初二上-一次函数讲义

第四章:一次函数 ◆4.1函数 1.函数的概念 一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 辨误区 自变量与另一个变量的对应关系 若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 【例1-1】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ). A .①②③ B .①② C.②③ D .①② 【例1-2】 已知y =2x 2+4, (1)求x 取12和-12 时的函数值;(2)求y 取10时x 的值. . 谈重点 函数中变量的对应关系 当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系. 2.函数关系式 用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 谈重点 函数关系式中的学问 ①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式. 【例2】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

(完整)北师大版八年级数学上册一次函数

数学专题复习:一次函数 【基础知识回顾】 一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数 特别的:当b= 时,一次函数就变为y-kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,只有当b=0时,它才是正比例函数】 二、一次函数的同象及性质: 1、一次函数y=kx+b 的图象是经过点(0,b )(-b k ,0)的一条 正比例函数y= kx 的图象是经过点 和 的一条直线 2、正比例函数y= kx(k ≠0)当k >0时,其图象过 、 象限,此时y 随x 的增大而 当k<0时,其图象过 、 象限,此时y 随x 的增大而 3、 一次函数y= kx+b ,图象及函数性质 ① k >0 b >0过 象限 k >0 b<0过 象限 ② k<0 b >0过 象限 k<0 b >0过 象限 4、若直线l 1: y= k 1x+ b 1与l 2: y= k 2x+ b 2平行,则k 1 k 2, 若k 1≠k 2,则l 1与l 2 三、用系数法求一次函数解析式: 关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式 2、将x ,y 的对应值或点的坐标代入表达式 3、解关于系数的方程或方程组 4、将所求的系数代入等设函数表达式中 四、一次函数与一元一次方程,一元一次不等式和二元一次方程组 1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直 线与坐标轴的交点坐标,代入y= kx+ b 中 2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数同象位于x 轴上方 或下方时相应的x 的取值范围,反之也成立 3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标 【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解得问题】 五、一次函数的应用 一般步骤:1、设定问题中的变量 2、建立一次函数关系式 3、确定取值范围 4、利用函数性质解决问题 5、作答 【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案涉及问题等】 【重点考点例析】 考点一:一次函数的同象和性质 例1 (2012?黄石)已知反比例函数y=x b (b 为常数),当x >0时,y 随x 的增大 而增大,则一次函数y=x+b 的图象不经过第几象限.( )A .一 B .二 C .三 D .四 例2 (2012?上海)已知正比例函数y=kx (k ≠0),点(2,-3)在函数上,则y 随x 的增大而 (增大或减小). 对应训练 1.(2012?沈阳)一次函数y=-x+2图象经过( ) A .一、二、三象限 B .一、二、四象限 C .一、三、四象限 D .二、三、四象限 2.(2012?贵阳)在正比例函数y=-3mx 中,函数y 的值随x 值的增大而增大, 则P (m ,5)在第 象限. 考点二:一次函数解析式的确定 例3 (2012?聊城)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 的解析式; (2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标. 对应训练3.(2012?湘潭)已知一次函数y=kx+b (k ≠0)图象过点(0,2),且与两 坐标轴围成的三角形面积为2,求此一次函数的解析式. 考点三:一次函数与方程(组)不等式(组)的关系(扩展知识 ) Y 随x 的增大而 Y 随x 的增大而

八年级数学下《一次函数及几何综合》专题练习题.doc

2019-2020 年八年级数学下《一次函数与几何综合》专题练习题 1.如图,直线 l1的函数解析式为 y=- 3x+3,且 l1与 x 轴交于点 D,直线 l2经过点 A,B,直线 l 1,l2交于点 C. (1)求点 D 的坐标; (2)求直线 l 2的函数解析式; (3)求△ADC 的面积; (4)在直线 l 2上存在异于点 C 的另一点 P,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标. 1 2. 如图,直线 y=2x+6 与 x 轴交于点 A,与 y 轴交于点 B,直线 y=-2x+1 与 x 轴交于点 C,与 y 轴交于点 D,两直线交于点 E,求 S△BDE和 S 四边形AODE . 4 3.如图,直线 y=-3x+8 分别交 x 轴、y 轴于 A,B 两点,线段 AB 的垂直平分线分别交 x 轴、 y 轴于 C,D 两点. (1) 求点 C 的坐标; (2) 求直线 CE 的解析式; (3) 求△BCD 的面积.

4.如图,在平面直角坐标系中,点 A( -1,0),B(0,3),直线 BC 交坐标轴于 B,C两点,且∠ CBA =45°.求直线 BC 的解析式. 5.如图, A(0,4),B(-4,0),D(-2,0),OE⊥AD 于点 F,交 AB 于点 E,BM ⊥OB 交 OE 的延长线于点 M. (1)求直线 AB 和直线 AD 的解析式; (2)求点 M 的坐标; (3)求点 E,F 的坐标. 6.如图,正方形 OBAC 中, O(0,0),A( -2,2),B,C 分别在 x 轴、 y 轴上, D(0,1),CE⊥BD 交 BD 延长线于点 E,求点 E 的坐标. 1 7. 如图,在平面直角坐标系中,A(0 ,1),B(3,2),P 为 x 轴上一动点,则 PA+PB 最小时点 P 的坐标为 ________.

八年级反比例函数压轴题

1. 如图已知一次函数Y =kX +b 的函数图象与反比例函数Y =- 8 x 的图象相交于A ,B 两点,其中A 点的横坐标与B 点的纵坐标均为2。①求一次函数的解析式;②求三角形△AOB 的面积;③在y 轴上是否存在点P 使△OAP 为等腰三角形,若存在,请求出P 点的坐标;若不存在,请说明理由。 2.如图,直线y =kx +2k (k ≠0)与x 轴交于点B ,与双曲线y =(m +5)x 2m +1交于点A 、C ,其中点A 在第一象限,点C 在第三象限.(1)求双曲线的解析式;(2)求B 点的坐标;(3)若S △AOB =2,求A 点的坐标;(4)在(3)的条件下,在x 轴上是否存在点P ,使△AOP 是等腰三角形?若存在,请写出P 点的坐标;若不存在,请说明理由. 3. 一次函数的图象与反比例函数的图象交于A ,B 两点,与x 轴交于点C ,过A 作AD ⊥x 轴于D ,若OA = 5,AD =21OD ,点B 的横坐标为2 1 (1)求A 点的坐标及反比例函数 的解析式:(2)求一次函数的解析式及△AOB 的面积(3)在反比例函数的图象上是否存在 点P 使△OAP 为等腰三角形,若存在,请写出P 点的坐标;若不存在,请说明理由。 4. 如图,正比例函数 x y 21= 与反比例函数x k y =的图象相交于A 、B 两点,过B 作x BC ⊥轴,垂足为C ,且△BOC 的面积等于4.(1)求k 的值;(2)求A 、B 两点的坐标;(3)在x 轴的正半轴上是否存在一点P ,使得△POA 为直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由 642 -2-4 -5 5 B A O Y X f x () = -8x x A y O D C B

相关文档
相关文档 最新文档