文档库 最新最全的文档下载
当前位置:文档库 › 电工学A1教案第6章

电工学A1教案第6章

电工学A1教案第6章
电工学A1教案第6章

河南科技大学教案首页

第6章 磁路与铁心线圈电路

在很多电工设备中,例如变压器、电机和电磁铁等,不仅有电路的问题,同时还有磁路的问题,只有同时掌握了电路和磁路的理论,才能对电工设备的性能进行全面地分析,或者设计出性能良好的电工设备,或者能正确地使用这些设备。

本章首先简要介绍磁路的分析方法,然后讨论铁心线圈电路,最后讨论变压器与电磁铁,作为应用实例。 §6.1 磁路及其分析方法

在电机、变压器及各种铁磁元件中常用磁性材料做成一定形状的铁心。铁心的磁导率比周围空气或其它物质的磁导率高的多,磁通的绝大部分经过铁心形成闭合通路,磁通的闭合路径称为磁路。

直流电机磁路 交流接触器磁路

一.磁场的基本物理量 1.磁感应强度B

磁感应强度B 是表示磁场内某点磁场强弱和方向的物理量。磁感应强度B 的方向:与电流的方向之间符合右手螺旋定则。

磁感应强度B 的大小:lI

F

B

磁感应强度B 的单位:特斯拉(T),1T = 1Wb/m 2

均匀磁场: 各点磁感应强度大小相等,方向相同的磁场,也称匀强磁场。

2.磁通

磁感应强度B 与垂直于磁场方向的面积S 的乘积,成为通过该面积的磁通Φ 。

在均匀磁场中 Φ=BS 或 B = Φ/S ,如果不是均匀磁场,则取B 的平均值。

磁感应强度B 在数值上可以看成为与磁场方向垂直的单位面积所通过的磁通,故又称磁通密度。

磁通F 的单位:韦[伯](Wb) 1Wb =1V·s 3.磁场强度

介质中某点的磁感应强度B 与介质磁导率μ之比称为磁场强度H ,即:

μ

B

H =

磁场强度H 的单位 :安培/米(A/m )

安培环路定律(全电流定律):磁场强度矢量沿任意闭合回线(常取磁通作为闭合回线)的线积分,等于穿过闭合回线所围面积的电流的代数和,

即:

?∑=I l H d

式中:

?l H d 是磁场强度矢量沿任意闭合线(常取磁通作为闭合回线)

的线积分;∑I 是穿过闭合回线所围面积的电流的代数和。

安培环路定律电流正负的规定:

任意选定一个闭合回线的围绕方向,凡是电流方向与闭合回线围绕方向之间符合右螺旋定则的电流作为正、反之为负。

在均匀磁场中 Hl = IN 或l

IN H =

安培环路定律将电流与磁场强度联系起来。

例: 环形线圈如图,其中媒质是均匀的,试计算线圈内部各点的磁场强度。

解:取磁通作为闭合回线,以其方向作为回线的围绕方向,则有:

?∑=I l H d x 2H l H

l H x x

x π?==?d

NI I =∑

NI x π2H x =?

故得:x

x l NI

x π2NI H =

= 式中:N 线圈匝数;

l x =2πx 是半径为x 的圆周长; H x 半径x 处的磁场强度; NI 为线圈匝数与电流的乘积。

线圈匝数与电流的乘积NI ,称为磁通势,用字母F 表示,则有: F = NI

磁通由磁通势产生,磁通势的单位是安[培]。 4.磁导率

磁导率是表示磁场媒质磁性的物理量,衡量物质的导磁能力。它与它与磁场强度H 的乘积就等于磁感应强度B :B = μ H

磁导率μ的单位:亨/米(H/m )

真空的磁导率为常数,用μ0表示,H/m 10π470-?=μ

相对磁导率μr :任一种物质的磁导率μ和真空的磁导率μ0的比值。

0r μμμ=

H H 0μμ=0

B B

=

例:环形线圈如图,其中媒质是均匀的,磁导率为μ,试计算线圈内部各点的磁感应强度。

解:半径为x 处各点的磁场强度为: x

x l NI H =

故相应点磁感应强度为:

x

x x l NI H B μ

μ== 由上例可见,磁场内某点的磁场强度H 只与

电流大小、线圈匝数、以及该点的几何位置有关,与磁场媒质的磁性(μ)

无关;而磁感应强度B 与磁场媒质的磁性有关。

二.磁性材料的磁性能 1.非磁性物质

非磁性物质分子电流的磁场方向杂乱无章,几乎不受外磁场的影响而互相抵消,不具有磁化特性。非磁性材料的磁导率都是常数,有:

μ≈μ0 μr ≈1

当磁场媒质是非磁性材料时,有:B =μ0 H ,即B 与H 成正比,呈线

性关系。

由于 l

NI H , S

ΦB =

= 所以磁通Φ与产生此磁通的电流 I 成正比,呈线性关系。

2.磁性物质

磁性物质内部形成许多小区域,其分子间存在的一种特殊的作用力使每一区域内的分子磁场排列整齐,显示磁性,称这些小区域为磁畴。

在没有外磁场作用的普通磁性物质中,各个磁畴排列杂乱无章,磁场互相抵消,整体对外不显磁性。

在外磁场作用下,磁畴方向发生变化,使之与外磁场方向趋于一致,物质整体显示出磁性来,称为磁化。即磁性物质能被磁化。

磁性材料主要指铁、镍、钴及其合金等。它们具有下列磁性能:

(1)高导磁性

磁性材料的磁导率通常都很高,即μr>>1 (如坡莫合金,其μr可达2×105 )。所以,磁性材料能被强烈的磁化,具有很高的导磁性能。

磁性物质的高导磁性被广泛地应用于电工设备中,如电机、变压器及各种铁磁元件的线圈中都放有铁心。在这种具有铁心的线圈中通入不太大的励磁电流,便可以产生较大的磁通和磁感应强度。

(2)磁饱和性

磁性物质由于磁化所产生的磁化磁场不会随着外磁场的增强而无限的增强。当外磁场增大到一定程度时,磁性物质的全部磁畴的磁场方向都转向与外部磁场方向一致,磁化磁场的磁感应强度将趋向某一定值。

B J:磁场内磁性物质的磁化磁场的磁感应强度曲线;

B0:磁场内不存在磁性物质时的磁感应强度直线;

B:B J曲线和B0直线的纵坐标相加即磁场的B-H磁化曲线。

B-H磁化曲线的特征:

Oa段:B与H几乎成正比地增加;

ab段:B的增加缓慢下来;

b点以后:B增加很少,达到饱和。

有磁性物质存在时,B与H不成正比,磁性物质的磁导率μ不是常数,随H而变。所以,有磁性物质存在时,磁通Φ与I不成正比。

磁性物质的磁化曲线在磁路计算上极为重要,其为非线性曲线,可通过实验得出。

(3)磁滞性

磁性材料中磁感应强度B的变化总是滞后于外磁场变化的性质,称为

磁滞性。

磁性材料在交变磁场中反复磁化,

其B-H关系曲线是一条回形闭合曲线,

称为磁滞回线。

剩磁感应强度B r(剩磁):当线圈中电流减小到零(H=0)时,铁心中的

磁感应强度。

矫顽磁力Hc:使B =0所需的H值。

磁性物质不同,其磁滞回线和磁化曲线也不同。几种常见磁性物质的磁化曲线如下:

按磁性物质的磁性能,磁性材料分为三种类型:

i)软磁材料

具有较小的矫顽磁力,磁滞回线较窄。一般用来制造电机、电器及变压器等的铁心。常用的有铸铁、硅钢、坡莫合金即铁氧体等。

ii)永磁材料

具有较大的矫顽磁力,磁滞回线较宽。一般用来制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。

iii)矩磁材料

具有较小的矫顽磁力和较大的剩磁,磁滞回线接近矩形,稳定性良好。

在计算机和控制系统中用作记忆元件、开关元件和逻辑元件。常用的有镁锰铁氧体等。

三.磁路及其分析方法

磁路的欧姆定律是分析磁路的基本定律。 1. 引例

环形线圈如图,其中媒质是均匀的,磁导率为μ,试计算线圈内部的磁通Φ。

解:根据安培环路定律,有:

?∑=I l H d

设磁路的平均长度为l ,则有:

l S l Hl NI μμ

Φ=

=

=B

即: S

l NI Φμ=m R F

=

式中:F =NI 为磁通势,由其产生磁通;

Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度; S 为磁路的截面积。

2.磁路的欧姆定律

若某磁路的磁通为Φ,磁通势为F ,磁阻为Rm ,则

m R F =

Φ

此即磁路的欧姆定律。 3.磁路与电路的比较

4.磁路分析的特点

(1)在处理电路时不涉及电场问题,在处理磁路时离不开磁场的概念;

(2)在处理电路时一般可以不考虑漏电流,在处理磁路时一般都要考虑漏磁通;

(3)磁路欧姆定律和电路欧姆定律只是在形式上相似。由于μ不是常数,其随励磁电流而变,磁路欧姆定律不能直接用来计算,只能用于定性分析;

(4)在电路中,当E=0时,I=0;但在磁路中,由于有剩磁,当F=0 时,Φ不为零;

5.磁路的分析计算

主要任务:预先选定磁性材料中的磁通Φ(或磁感应强度),按照所定的磁通、磁路各段的尺寸和材料,求产生预定的磁通所需要的磁通势F=NI,确定线圈匝数和励磁电流。

基本公式:设磁路由不同材料或不同长度和截面积的n段组成,

则基本公式为:

n n l H l H l H NI 2211+???++= 即:∑==n

i i i l H NI 1

基本步骤:(由磁通Φ求磁通势F =NI ) (1)求各段磁感应强度 Bi

各段磁路截面积不同,通过同一磁通Φ,故有:

n n S B B S B Φ=Φ=Φ=

, ... , S , 2211

(2)求各段磁场强度H i

根据各段磁路材料的磁化曲线 B i =f (H i ),求B 1,B 2 ,……相对应的 H 1,H 2 ,……。

(3)计算各段磁路的磁压降(H i l i ) (4)求出磁通势 ∑==n

i i i l H NI 1

例1:一个具有闭合的均匀的铁心线圈,其匝数为300,铁心中的磁感应强度为0.9T ,磁路的平均长度为45cm ,试求: (1)铁心材料为铸铁时线圈中的电流; (2)铁心材料为硅钢片时线圈中的电流。

解:(1)查铸铁材料的磁化曲线,

当 B=0.9 T 时,磁场强度 H=9000 A/m ,则

5.1330045.09000N Hl I A =?==

(2)查硅钢片材料的磁化曲线, 当 B=0.9 T 时, 39.0300

45

.0260N Hl I A =?==

结论:如果要得到相等的磁感应强度,采用磁导率高的铁心材料,可以降低线圈电流,减少用铜量。

在例1(1),(2)两种情况下,如线圈中通有同样大小的电流0.39A ,要得到相同的磁通Φ,铸铁材料铁心的截面积和硅钢片材料铁心的截面积,哪一个比较小?

【分析】如线圈中通有同样大小的电流0.39A ,则铁心中的磁场强度是相等的,都是260 A/m 。查磁化曲线可得, B 铸铁 = 0.05T 、 B 硅钢 =0.9T,

B 硅钢是B 铸铁的17倍。因F =BS ,如要得到相同的磁通Φ,则铸铁铁心的截

面积必须是硅钢片铁心的截面积的17倍。

结论:如果线圈中通有同样大小的励磁电流,要得到相等的磁通,采用磁导率高的铁心材料,可使铁心的用铁量大为降低。

例2:有一环形铁心线圈,其内径为10cm ,外径为5cm ,铁心材料为铸钢。磁路中含有一空气隙,其长度等于0.2cm 。设线圈中通有 1A 的电流,如要得到 0.9T 的磁感应强度,试求线圈匝数。

解:空气隙的磁场强度:A/m 102.710

49

.057

0?=?=

=

-πμB H 铸钢铁心的磁场强度,查铸钢的磁化曲线,B =0.9 T 时,磁场强度

H1=500 A/m

磁路的平均总长度为: 2.392

15

10l cm =+=

π 铁心的平均长度: 390.2- 2.39l l 1cm ==-=δ 各段磁压降:A 1440102.0102.7H 250=???=-δ

A 1951039500l H 211=??=-

总磁通势为:A 16351951440l H H NI 110=+=+=δ 线圈匝数为:16351

1635I NI N ===

可见,磁路中含有空气隙时,由于其磁阻较大,磁通势几乎都降在空气隙上面。

结论:当磁路中含有空气隙时,由于其磁阻较大,要得到相等的磁感应强度,必须增大励磁电流(设线圈匝数一定)。 §6.2 交流铁心线圈电路

一.电磁关系

定义:主磁通Φ :通过铁心闭合的磁通。Φ与i 不是线性关系。

漏磁通Φσ:经过空气或其它非导磁媒质闭合的磁通。

e :主磁感应电动势 e σ:漏磁感应电动势

则电磁关系可以表述如下;

t i

L t ΦN e t

Φ

N

e Ni i u σ

σσd d d d d d )

(-=-=→Φ-=→Φ→σ

其中漏磁通Φσ通过空气闭合,不通过铁心,所以Φσ∝i ,铁心线圈的漏磁电感常数==

i

N ΦL σ

σ。但是,主磁通通过铁心闭合,Φ与i 不是线性关系,铁心线圈的主磁电感L 不是常数。

二.电压电流关系

根据KVL: e e Ri u --=σ)(d d e t

i

L Ri σ

-++= 式中:R 是线圈导线的电阻 L σ是漏磁电感

当u 是正弦电压时,其它各电压、电流、电动势可视作正弦量,则电压、电流关系的相量式为:

)()(σ

E E I R U -+-+=)(j σE I X I R -++=

)

(j σE I X I R U -++=

设主磁通t sin ωm Φ=Φ,则

)sin (d d

d d m t t

N t N

e ωΦ-=Φ-=t N ωωcos m Φ-= )90t (sin 2m ?-Φ=ωπfN )90(sin m ?-=t E ω

有效值 m m

m Φ=Φ=

=

fN 44.42

fN 22

E E π

由于线圈电阻 R 和感抗X σ(或漏磁通F σ)较小,其电压降也较小,与主磁电动势 E 相比可忽略,故有

E U -≈

(V )

S fNB 44.4fN 44.4E U m m =Φ=≈

式中:Bm 是铁心中磁感应强度的最大值,单位[T]; S 是铁心截面积,单位[m 2]。

三.功率损耗

交流铁心线圈的功率损耗主要有铜损和铁损两种。

1.铜损(△Pcu )

在交流铁心线圈中,线圈电阻R 上的功率损耗称铜损,用△P cu 表示。

△P cu = RI 2

式中:R 是线圈的电阻;

I 是线圈中电流的有效值。

2.铁损(△P Fe )

在交流铁心线圈中,处于交变磁通下的铁心内的功率损耗称铁损,用△P Fe 表示。铁损由磁滞和涡流产生。

(1)磁滞损耗(△P h )

由磁滞所产生的能量损耗称为磁滞损耗(△P h )。磁滞损耗转化为热能,

引起铁心发热。

磁滞损耗的大小:单位体积内的磁滞损耗 正比与磁滞回线的面积和磁场交变的频率f 。 减少磁滞损耗的措施:

选用磁滞回线狭小的磁性材料制作铁心。变压器和电机中使用的硅钢等材料的磁滞损耗较低。

设计时应适当选择值以减小铁心饱和程度。 (2)涡流损耗(△Pe )

涡流:交变磁通在铁心内产生感应电动势和电流,称为涡流。涡流在

垂直于磁通的平面内环流。

涡流损耗:由涡流所产生的功率损耗。 涡流损耗转化为热能,引起铁心发热。 减少涡流损耗措施:

提高铁心的电阻率,把铁心用彼此绝 缘的钢片叠成,把涡流限制在较小的截面 内。

铁心线圈交流电路的有功功率为:Fe 2cos ΔP RI UI P +==? *四.等效电路

所谓等效电路,即是用一个不含铁心的交流电路来等效替代铁心线圈交流电路。

等效条件:在同样电压作用下,功率、电流及各量之间的相位关系保持不变。

先将实际铁心线圈的线圈电阻R 、漏磁感抗X σ分出,得到用理想铁心线圈表示的电路如图所示:

理想铁心线圈有能量的损耗和储放,可用具有电阻R 0和感抗X 0串联的电路等效。其中:电阻R 0是和铁心能量损耗(铁损)相应的等效电阻,感抗X 0是和铁心能量储放相应的等效感抗。其参数为:

2Fe 0ΔI P R =

2Fe 0I Q X = I U I U X R Z 2

20≈'=+=0

式中: △P Fe 为铁损, Q Fe 为铁心储放能量的无功功率。 故有铁心线圈的交流等效电路:

例1:有一交流铁心线圈,电源电压 U = 220 V 电路中电流 I =4 A ,功率表读数P =100W ,频率f =50Hz ,漏磁通和线圈电阻上的电压降可忽略不计,试求:(1)铁心线圈的功率因数;(2)铁心线圈的等效电阻和感抗。

解:(1)114.04

220100

UI P =?==

?cos (2)铁心线圈的等效阻抗模为 Ω 554

220I U Z ===' 等效电阻为0220R Ω 25.64

100

I P R R R ≈===

+=' 等效感抗为02222

0σX Ω 6. 5425.655R X X X ≈=-='-'=+='Z

例2:要绕制一个铁心线圈,已知电源电压 U = 220 V ,频率 f =50Hz ,今量得铁心截面为30.2cm 2,铁心由硅钢片叠成,设叠片间隙系数为0.91 (一般取0.9~0.93)。(1)如取 B m=1.2T ,问线圈匝数应为多少? (2)如磁路平均长度为 60cm,问励磁电流应多大?

解:铁心的有效面积为2 5.2791.02.30S cm =?= (1)线圈匝数为:30010

5.272.15044.4220

S fB 44.4U N 4

=????==

-m (2)查磁化曲线图:B m =1.2T 时,H m =700 A/m,则

A

130021060700N 2l H I 2

=???==-m

§6.3 变压器

变压器是一种常见的电气设备,在电力系统和电子线路中应用广泛。 变压器的主要功能有:变电压、变电流和变阻抗。

例如在能量传输过程中,当输送功率P =UI cos ?及负载功率因数cos ?一定时:节约金属材料(经济)

电能损耗小

↓↓→↓↓=?↓

↑→S I Rl I P I U 2,所以电力工业中常采用高

压输电低压配电,实现节能并保证用电安全。具体如下:

]

在电子线路中,除电源变压器之外,变压器还用来耦合电路,传递信号,或实现阻抗匹配。

在测量电路中,使用电流互感器实现电流变换。 变压器的分类:

(1)按用途分: 电力变压器 (输配电用)

仪用变压器: 电压互感器 电流互感器 整流变压器

(2)按相数分: 三相变压器

单相变压器

(3)按制造方式:壳式

心式

变压器的符号:

一.变压器的工作原理 1.变压器的构造

变压器由闭合铁心、一次绕组和二次绕组的几个部分组成,单相变压器的结构如图所示:

一次、二次绕组互不相连,能量的传递靠磁耦合。 2.电磁关系 (1)空载运行情况

一次侧接交流电源,二次侧开路。

(2)带负载运行情况

一次侧接交流电源,二次侧接负载。

t

i L e N i i t i L e t

ΦN e t

ΦN e N i i u σd d )

(d d

d d d d

)(2

2212220

11 12

1

11001σσσσσσ-=Φ→←-=Φ↓

-=-=Φ→↓→→t

i L e t

ΦN e t

ΦN e N i i u σd d

d d d d

)(0

11 12

1

11001σσσ-=Φ↓

-=-=Φ→↓→

3.电压变换(设加正弦交流电压) (1)一次、二次侧主磁通感应电动势

主磁通按正弦规律变化,设为t sin ωm Φ=Φ,则

t)sin (t

N t N m 11

1ωΦ-=Φ-=d d

d d

e t N 1ωωcos m Φ-=

)90t (sin m 1?-=ωE

有效值:2

22

111m

m fN E E Φ=

=π1m 44.4N f Φ=

同理:

)90t (sin m 22?-=ωE e 2m 244.4N f E Φ=

(2)一次、二次侧电压 变压器一次侧等效电路如图

根据KVL :

1111111111j E I X I R E E I R U σ -+=--=

式中,R 1为一次侧绕组的电阻;

X 1=ωL σ1为一次侧绕组的感抗 (漏磁感抗,由漏磁产生)。

由于电阻 R 1 和感抗 X 1 (或漏磁通)较小,其两端的电压也较小,与主磁电动势 E 1比较可忽略不计,则:

1

1111N f 44.4E U E U m Φ=≈→-≈ 对二次侧,根据KVL :

相关文档