文档库 最新最全的文档下载
当前位置:文档库 › 北师版高数必修五第5讲:等比数列的前n项和公式

北师版高数必修五第5讲:等比数列的前n项和公式

北师版高数必修五第5讲:等比数列的前n项和公式
北师版高数必修五第5讲:等比数列的前n项和公式

等比数列的前n 项和公式

__________________________________________________________________________________ __________________________________________________________________________________

教学重点: 掌握等比数列前n 项和通项公式及性质,理解等比数列前n 项和公式与函数的关系 教学难点: 等比数列前n 项和通项公式的性质的应用

1. 等比数列前n 项和通项公式

设等比数列{}n a 的前n 项和为n S ,则12...n n S a a a =+++ (1) 当1q =时,1n S na = (2) 当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

--

2. 等比数列前n 项和公式的性质

(1) 等比数列中,连续m 项的和(如232,,,...m m m m m S S S S S --)仍组成等比数列(注意:

公比1q ≠-)

(2)

{}n a 是公比不为1的等比数列()0n n S Aq B A B ?=++=

(3) m

n m m n S S q S +=+(q 为公比)

(4) 若等比数列的项数为()2k k N +∈,则

S

S

偶/奇

q = ;

若等比数列的项数为()21k k N ++∈ ,则

S a

S

- 奇/偶q =

3. 等比数列前n 项和公式与函数的关系

(1) 当 1q =时,1n S na =是关于n 的正比例函数(常数项为0的一次函数);当1q ≠时,

()0n n S Aq A A =-+≠是n 的一个指数式与一个常数的和,其中指数式的系数和常数项互为相反数,且1

1a A q

=

- (2) 当1q =时,数列123,,,...,,...n S S S S 的图像是正比例函数1y a x =的图像上的一群孤立的

点;当1q ≠时,数列123,,,...,,...n S S S S 的图像是函数()0x y Aq A A =-+≠的图像上的一群孤立的点。

(3) 若n S 表示数列{}n a 的前n 项和,且()0,1n n S Aq A Aq q =-≠≠则数列{}n a 是等比

数列。

类型一:等比数列前n 项和通项公式

例1. 在等比数列{}n a 中,若189,2,96,n n S q a ===求1,a n 解析:由()1111,1n n n n a q S a a q q

--=

=?-以及已知条件得

()()111121891

121111962962192,189211923232,63n n a n n n a a a a a n --=--=??∴?=∴=-=-∴===∴=???

Q 答案:13,6a n ==

练习1. 在等比数列{}n a 中,若13465

10,4

a a a a +=+=

,求4a 和5S 答案:45311,2

a S ==

练习2. 在等比数列{}n a 中,若42,1,q S ==求8S 答案:817S =

例2.等比数列{}n a 中,已知333,9,a S ==求1a 和公比q

解析:当1q =时,13313,39a a S a ====符合题意;当1q ≠时,由已知得

()2311332

191210,a a q a q S q

q q ==-==-??∴--=??? 解得12q =-或1q =(舍)1111121,3;,122a q a q a ∴=∴===-= 答案:111

1,3;,122

q a q a ===-=

练习3.已知数列{}n a 满足124

30,,3

n n a a a ++==-则{}n a 的前10项和等于 答案:()

10313--

练习 4.设公比为()0q q >的等比数列{}n a 的前n 项和为n S 若224432,32,S a S a =+=+则q 为____ 答案:

32

类型二: 等比数列前n 项和公式的性质

例3.等比数列{}n a 的前n 项和为n S ,若102010,30S S ==则30S = ___________ 解析:{}n a 是等比数列,1020103020,,S S S S S ∴--仍成等比数列,又

()2

102030

30301010,30,30,7010

S S S S -==∴-=

∴=

答案:70

练习5. 等比数列{}n a 的前n 项和为n S ,已知368,7,S S ==则789a a a ++= () A.

18 B.18- C.578 D.55

8

答案:A

练习6.已知等比数列的前n 项和1

3,,n n S a n N ++=+∈则实数a 的值是()

A.-3

B.3

C.-1

D. 1 答案:A

类型三: 等比数列前n 项和公式与函数关系

例4.若等比数列{}n a 中,前 n 项和2n

n S a =+,则a =()

A.-2

B.2

C.1

D.-1

解析:由题意知,{}n a 为公比不为1的等比数列,因为2n

n S a =+故101a a +=∴=-故选D

答案:D

练习7.设n S 为等比数列{}n a 的前n 项和,已知481,17,S S ==求n S 答案:当2q =时,()12115

n

n S =

- 当2q =-时,()12115n

n S ??=

--?

? 练习8.已知等比数列{}n a 的前n 项和为1

1

3

,6

n n S x -=?-则x 的值为_______ 答案:

12

例5.数列2

2

1

1,12,122,...,122...2n -+++++++的前 n 项和等于()

A.1

2

n n +- B.2n C.2n n - D.122n n +--

解析:不妨设该数列为{}n a ,其前n 项和为n S ,则

()()()()2112121

2

3

1

122...221...2121...21222 (22)

2n n n n n n n

n a S a a a n n

-+=++++=-∴=+++=-+-++-=++++-=--

答案:D

练习9.已知数列{}n a 满足12...21,n n a a a +++=-则222

12...n a a a +++= ____________

答案:413

n -

练习10.1

22133434...344n

n n n n ---+?+?++?+= ________________

答案:114

3n n ++-

1. 已知等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .514 B .513 C .512 D .510 答案:

D

2. 等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于()

A.6B.5 C.4 D.3

答案:C

3. 已知等比数列的前n项和S n=4n+a,则a的值等于()

A.-4B.-1 C.0 D.1

答案:B

4.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a+b+c的值为()

A.1

答案:A

5. 若S n是数列{a n}的前n项和,且S n=n2,则{a n}是()

A.等比数列,但不是等差数列

B.等差数列,但不是等比数列

C.等差数列,但也是等比数列

D.既不是等差数列,又不是等比数列

答案:B

6. 设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于() A.6B.7 C.8 D.9

答案:A

7. 等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()

A.7B.8 C.15 D.16

答案:C

8. 设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()

A.13B.35 C.49 D.63

答案:C

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

1. 在数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,则a 1,a 3,a 5( )

A .成等差数列

B .成等比数列

C .倒数成等差数列

D .不确定 答案:B

2. 等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )

A .81

B .120

C .168

D .192 答案:B

3. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1

a n }的前5项和为( )

A .158或5

B .3116或5

C .3116

D .158

答案:C

4. 设等比数列{a n }的前n 项和为S n ,若S 3=9,S 6=27,则S 9=( ) A .81 B .72 C .63 D .54 答案:C

5. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4

a 4=________.

答案:15

6. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =______,前n 项和S n =______. 答案:2, 2n +

1-2

7. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为________. 答案:-1

2

8. 设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. 答案:24

9. 已知等差数列{a n }的公差不为0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;

(2)求a 1+a 4+a 7+a 10+…+a 3n -2. 答案:(1)设公差为d ,由题意,得

a 211=a 1·

a 13,即(a 1+10d )2=a 1(a 1+12d ), 又a 1=25,解得d =-2或d =0(舍去).

∴a n =a 1+(n -1)d =25+(-2)×(n -1)=27-2n . (2)由(1)知a 3n -2=31-6n ,

∴数列a 1,a 4,a 7,a 10,…,是首项为25,公差为-6的等差数列. 令S n =a 1+a 4+a 7+…+a 3n -2 =

n (25+31-6n )

2

=-3n 2

+28n .

10. 在等比数列{a n }中,已知a 6-a 4=24,a 3·a 5=64,求数列{a n }的前8项和. 答案:解法一:设数列{a n }的公比为q ,根据通项公式a n =a 1q n -

1,由已知条件得

a 6-a 4=a 1q 3(q 2-1)=24,

a 3·a 5=(a 1q 3)2=64, ∴a 1q 3=±8.

将a 1q 3=-8代入①式,得q 2=-2,没有实数q 满足此式,故舍去. 将a 1q 3=8代入①式,得q 2=4,∴q =±2. 当q =2时,得a 1=1,所以S 8=a 1(1-q 8)

1-q =255;

当q =-2时,得a 1=-1,所以S 8=a 1(1-q 8)

1-q =85.

解法二:因为{a n }是等比数列,所以依题意得 a 24=a 3·

a 5=64, ∴a 4=±8,a 6=24+a 4=24±8. 因为{a n }是实数列,所以a 6

a 4

>0,

故舍去a 4=-8,而a 4=8,a 6=32,从而a 5=±a 4·a 6=±16. 公比q 的值为q =a 5

a 4

=±2,

当q =2时,a 1=1,a 9=a 6q 3=256, ∴S 8=a 1-a 9

1-q

=255;

当q =-2时,a 1=-1,a 9=a 6q 3=-256, ∴S 8=a 1-a 9

1-q =85.

能力提升

11. 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满

足S n =n

90·(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )

A .5月、6月

B .6月、7月

C .7月、8月

D .8月、9月

答案:C

12. 已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )

A .n (2n -1)

B .(n +1)2

C .n 2

D .(n -1)2 答案:C

13. 设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9

S 6

=( )

A .2

B .73

C .8

3 D .3

答案:B

14. 等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值为( )

A .1

B .-12

C .1或-12

D .-1或1

2

答案: C

15. 已知等比数列前20项和是21,前30项和是49,则前10项和是( )

A .7

B .9

C .63

D .7或63 答案:D

16. 已知{a n }是等比数列,a 2=2,a 5=1

4

,则a 1a 2+a 2a 3+…+a n a n +1=( )

A .16(1-4-n )

B .16(1-2-n )

C .323(1-4-n )

D .323(1-2-

n )

答案:C

17. 等比数列{a n }中,若前n 项的和为S n =2n -1,则a 21+a 22+…+a 2n

=________. 答案:1

3

(4n -1)

18. 已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -

1(4n -3),则S 22-S 11=________. 答案:-65

19. 等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1等于( ) A .65 B .5

6 C .20 D .110

答案:B

20. 已知数列{a n }的首项a 1=2,且a n =4a n -1+1(n ≥2),则a 4为( ) A .148 B .149 C .150 D .151 答案:B

21.已知a ,b ,c 成等比数列,a ,x ,b 成等差数列,b ,y ,c 也成等差数列,则a x +c

y 的值__________.

答案:2

22. 将全体正整数排成一个三角形数阵:

1 2 3 4 5 6 7 8 9 10

……

按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.

答案:n 2-n +62

23. 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.

(1)求{a n }的通项公式;

(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 答案:(1)设公比为q (q >0),

∵a 1=2,a 3=a 2+4, ∴a 1q 2-a 1q -4=0, 即q 2-q -2=0,解得q =2, ∴a n =2n .

(2)由已知得b n =2n -1, ∴a n +b n =2n +(2n -1),

∴S n =(2+22+23+…+2n )+(1+3+5+…+2n -1) =2(1-2n )1-2+[1+(2n -1)]n 2

=2n +

1-2+n 2.

24. 在数列{a n }中,a 1=1,a n +1=2a n +2n .

(1)设b n =a n

2n -1.证明:数列{b n }是等差数列.

(2)求数列{a n }的前n 项和. 答案:(1)∵a n +1=2a n +2n ,

∴a n +12n =a n

2n -1+1,即b n +1=b n +1, ∴b n +1-b n =1.

故数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知b n =n ,∴a n =n ·2n -

1. S n =1×20+2×21+3×22+…+n ·2n -

1, 2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n , 两式相减得-S n =1+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =2n -1-n ·2n , ∴S n =(n -1)2n +1.

25. 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.

(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .

答案:(1)∵S 1,S 3,S 2成等差数列,2S 3=S 1+S 2,

∴q =1不满足题意. ∴2a 1(1-q 3)1-q =a 1+a 1(1-q 2)1-q ,

解得q =-12.

(2)由(1)知q =-1

2

又a 1-a 3=a 1-a 1q 2=3

4a 1=3,

∴a 1=4.

∴S n =4[1-(-1

2

)n ]

1+12

=83[1-(-1

2

)n ]. 26. 已知等比数列{a n }的前n 项和为S n ,S 3=72,S 6=632

.

(1)求数列{a n }的通项公式a n ;

(2)令b n =6n -61+log 2a n ,求数列{b n }的前n 项和T n . 答案:(1)∵S 6≠2S 3,∴q ≠1.

∴????

?

a 1(1-q 3)1-q

=7

2a 1

(1-q 6

)1-q =632

解得q =2,a 1=1

2

.

∴a n =a 1q n -1=2n -

2. (2)b n =6n -61+log 22n -

2 =6n -61+n -2=7n -63.

b n -b n -1=7n -63-7n +7+63=7, ∴数列{b n }是等差数列.

又b 1=-56,∴T n =nb 1+1

2n (n -1)×7

=-56n +1

2n (n -1)×7

=72n 2-1192

n . 27. 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n . 答案:设{a n }公比为q ,由S 4=1,S 8=17,知q ≠1,

∴?????

a 1(1-q 4)

1-q

=1a 1

(1-q 8

)1-q =17

两式相除并化简,得q 4+1=17,即q 4=16. ∴q =±2.

∴当q =2时,a 1=115,S n =1

15(1-2n )1-2=1

15(2n -1);

当q =-2时,a 1=-1

5,S n =-1

5[1-(-2)n ]1+2

=1

15

[(-2)n -1]. 28. 已知数列{a n }的首项a 1=23,a n +1=2a n

a n +1

,n =1,2,….

(1)证明:数列?

???

??

1a n

-1是等比数列;

(2)求数列????

??

n a n 的前n 项和S n .

答案:(1)∵a n +1=2a n

a n +1

∴1a n +1=a n +12a n =12+12·1a n ,

1

a n +1

-1=12????1

a n -1, 又a 1=23,∴1a 1-1=1

2

∴数列????

??1a n -1是以12为首项,1

2为公比的等比数列.

(2)由(1)知1a n -1=12·12n -1=1

2n ,

即1a n =12n +1,∴n a n =n

2n +n . 设T n =12+222+323+…+n 2n ,

① 则12T n =122+223+…+n -12n +n

2n +1,

①-②得12T n =12+122+…+12n -n 2n +1

=12??

??1-12n 1-12

-n 2n +1=1-12n -n 2n +1,

∴T n =2-12

n -1-n

2n .又1+2+3+…+n =n (n +1)2.

∴数列????

??

n a n 的前n 项和

S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +2

2

n .

课程顾问签字: 教学主管签字:

等比数列及其前n项和

等比数列及其前n 项和 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【知识通关】 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用 字母q 表示,定义的数学表达式为a n +1a n =q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m q n -m . (2)前n 项和公式: S n =??? na 1(q = 1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). [常用结论] 1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k . 2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),???? ??1a n ,{a 2n },{a n ·b n },???? ??a n b n 仍然是等比数列. 3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项?G 2=ab .( ) (3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )

高中数学必修五《等比数列》教案

3.4.1等比数列教案 临澧一中高一数学组 颜干清 课题 :3.4.1等比数列(一) 教学目标 (一) 教学知识点 1、 等比数列的定义. 2、 等比数列的通项公式. (二) 能力训练要求 1、 掌握等比数列的定义. 2、 理解等比数列的通项公式及推导. (三) 德育渗透目标 1、 培养学生的发现意识. 2、 提高学生的逻辑推理能力. 3、 增强学生的应用意识. 教学重点 等比数列的定义及通项公式. 教学难点 灵活应用等比数列的定义及通项公式解决一些相关问题. 教学方法 比较式教学法 采用比较式教学法,从而使学生抓住等差数列与等比数列各自的特点,以便理解、掌握与应用. 教学过程 Ⅰ复习回顾 前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容 1、等差数列定义:a n -a n-1=d (n ≥2)(d 为常数) 2、等差数列性质: ①若a 、A 、b 成等差数列,则A= ②若m+n=p +q ,则,a m + a n = a p + a q , ③S k ,S 2k - S 3k ,S 2k …成等差数列. 3、等差数列的前n 项和公式:d n n na a a n s n 2 )1(2)(21-+=+= Ⅱ新课讲授 下面我们来看这样几个数列,有何时共特点? 1,2,4,8,16,…,263 ;① a +b 2

5,25,125,625,…; ② 1,- , ,- ,…; ③ 仔细观察数列,寻其共同特点: 数列①:)2(2;21 1≥==--n a a a n n n n ; 数列②: )2(5;51 ≥==-n a a a n n n n 数列③: )2(2 1;21 )1(111≥-=?-=---n a a a n n n n n 共同特点:从第二项起,第一项与前一项的比都等于同一个常数.(也就是说,这些数列从第二项起,每一项与前一项的式都具有“相等”的特点) 1、定义 等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列数列的公比;公比通常用字母q 表示(q ≠0),即:a n :a n-1= q (q ≠0) 数列①②③都是等比数列,它们的公比依次是2,5,- ,与等差数列比较,仅一字之差。 总之,若一数列从第二项起,每一项与其前一项之“差”这常数,则为等差数列,之“比”这常数,则为等比数列,此常数称为“公差”或“公比”. 注意公差①“d ”可为0,②公比“q ”不可为0. 2、等比数列的通项公式 请同学们想想等差数列通项公式的推导过程,试着推一推等比数列的通项公式. 解法一:由定义式可得 a 2=a 1q a 3=a 2q =( a 1q )q = a 1q 2 a 4=a 3q =( a 2q )q =((a 1q )q )q = a 1q 3 …… a n =a n-1q = a 1q n-1(a 4,q ≠0),n=1时,等式也成立,即对一切n ∈N *成立. 解法二:由定义式可得:(n-1)个等式 1 2 1 8 1 2 1 4 a 2 a 1 = q a 3 a 2 = q ① ②

高中数学《等比数列的前n项和(第一课时)》教学设计

高中数学《等比数列的前n项和(第一课时)》教学设计 一.教材分析。 (1教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思 维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

数列.版块三.等比数列-等比数列的通项公式与求和.学生版

【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n , ,,若数列{}n b 有连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =31 32 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; ⑵求n a 的通项公式及10S . 典例分析 等比数列的通项公式与求和

【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则22212 n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++……314log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

等比数列的通项公式(教案)

等比数列的通项公式(教案) 一、教学目标 1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。 2、掌握由等比数列的通项公式推导出的相关结论。 二、教学重点、难点各种结论的推导、理解、应用。 三、教学过程 1、导入复习等比数列的定义: 通项公式: 用归纳猜测的方法得到,用累积法证明 2、新知探索例1 在等比数列中,(1)已知;(2)已知、,分析(1)根据等比数列的通项公式,得(2)可以根据等比数列的通项公式列出一个二元一次方程组解得所以问:上面的第(2)题中,可以不求而只需求得q就得到吗?分析在归纳猜测等比数列的通项公式时,有这样一系列式子:注意观察等式右边各项的下标与q的次方的和,可以发现,的表达式中,始终满足结论1 数列是等比数列,则有。再来看一下例1中(2)的另一种解法:,所以q=2,所以习题2、3(1) 2、在等比数列中,(1)已知;(2)已知、分析(1)可以根据定义和结论1给出两种解法。方法一方法二,所以q=3,所以。(2),所以例2 在243和3中间插入3个数,使这5个数

成等比数列。分析设此三个数为,公比为q,则由题意得243,,3成等比数列;,所以得故插入的三个数为81,27,9或-81,27,-9、问:观察一下例2中,当时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。习题2、3(1) 6、在等比数列中,,,求的值。分析得,同理得例3 已知等比数列的通项公式为,求首项和公比q、分析在例3中,等比数列的通项公式为,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点均在函数的图像上。问:如果一个数列的通项公式为,其中,都是不为零的常数,那么这个数列一定是等比数列吗?分析,,所以是等比数列。一般可以看作是等比数列通项公式的变形,,其中结论2 等比数列的通项公式均可写成(,为不等于零的常数)的形式。反之成立。习题2、3(1) 5、在等比数列中,(1)是否成立?是否成立?(2) (n>2)是否成立?(3)你能得到更一般的结论吗?分析 (1),所以成立。(2),所以成立。(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?同时,类比等差数列中的一个结论:在等差数列中,当m+n=p+q(m,n,p,q都是正整数)时,有,可以猜测:在等比数列中,当m+n=p+q(m,n,p,q都是正整数)时,有、证,所以、结论3 在等比数列中,当m+n=p+q(m,n,p,q都是

等比数列及其前n项和(作业)

等比数列及其前n 项和(作业) 例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31 2 a ,22a 成等差数列,则 910 78 a a a a +=+( ) A .1 B .1 C .3+D .3- 【思路分析】 设公比为q ,则0q >,21a a q =,231a a q =, ∵1a ,31 2 a ,22a 成等差数列, ∴3122a a a =+,即21112a q a a q =+, 解得1q =+ 1, ∴22910787878()3a a a a q q a a a a ++===+++. 故选C . 例2: 若等比数列 {} n a 中,25112a a a ++=,58146a a a ++=,那么 2581114a a a a a ++++的值为( ) A .8 B .9 C .242 31 D . 240 41 【思路分析】 设公比为q ,则335814251125112511() a a a q a a a q a a a a a a ++++==++++,即33q =, ∴38553a a q a ==,9145527a a q a ==, 由58146a a a ++=,得5553276a a a ++=,解得56 31 a = , ∴2581114251158145242 ()()31 a a a a a a a a a a a a ++++=+++++-=. 故选C . 例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{} n c

的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978 B .557 C .467 D .1 023 【思路分析】 设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =, 则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =, ∴2122q d q d +=??+=? ,解得21q d =??=-?, ∴数列{}n a 的前10项之和10110(1) 1 0231a q S q -= =-.故选D . 1. 在等比数列{}n a 中,已知332a = ,前三项和39 2 S =,则公比q =( )

高二数学知识点总结高二数学必修5等比数列知识点总结

高二数学知识点总结高二数学必修5等比数列 知识点总结 等比数列在人们的日常生活中运用比较广泛,也是高二数学课本重点知识点,下面是WTT给大家带来的高二数学必修5等比数列知识点总结,希望对你有帮助。 高二数学必修5等比数列知识点 高二数学学习方法 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由

一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 看了“高二数学必修5等比数列知识点总结”的人还看了: 1.高二数学等比数列公式归纳 2.高中数学必修五等比数列及其前n项和知识点总结 3.高二数学必修5等差数列知识点 4.高中数学必修5等比数列练习 5.高一数学必修5等比数列的前n项和知识点总结

等比数列通项公式及性质练习

等比数列通项公式及性 质练习 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等比数列通项公式及性质 1.若等比数列的首项为98,公比为23,3 1 n a ,则该数列的项数为( ) A .3 B .4 C .5 D .6 2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 4.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) D .2 5.已知等比数列{a n },a 4=7,a 6=21,则a 8等于( ) A .35 B .63 C .21 3 D .±21 3 6.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12 7.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 8.等比数列{a n }的各项均为正数,公比为q ,若q 2=4,则a 3+a 4a 4+a 5 的值为( ) B .±12 C .2 D .±2 9.(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于 ( ) A .2 B .4 C .8 D .16

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

必修五 等比数列的性质

第2课时等比数列的性质 课时过关·能力提升 1已知等比数列{a n}的公比q>0,且a3a9=2,a2=1,则a1等于(). A. B. C. D.2 解析:∵a3a9==2,∴q2==2. 又q>0,∴q=, ∴a1=. 答案:B 2等比数列{a n}的公比q=-,a1=,则数列{a n}是(). A.递增数列 B.递减数列 C.常数数列 D.摆动数列 解析:由于公比q=-<0, 所以数列{a n}是摆动数列. 答案:D 3在等比数列{a n}中,a3a4a5=3,a6a7a8=24,则a9a10a11的值等于(). A.48 B.72 C.144 D.192 解析:∵=q9=8, ∴a9a10a11=a6a7a8·q9=24×8=192. 答案:D ★4若数列{a n}是等比数列,则下列数列一定是等比数列的是(). A.{lg a n} B.{1+a n} C. D.{}

解析:当a n=-1时,lg a n与无意义,1+a n=0,则选项A,B,D都不符合题意;选项C中,设 a n=a1q n-1(q是公比),则 b n=, 则有=常数, 即数列是等比数列. 答案:C 5已知等差数列a,b,c三项之和为12,且a,b,c+2成等比数列,则a等于(). A.2或8 B.2 C.8 D.-2或-8 解析:由已知得 得故a=2或a=8. 答案:A 6等比数列{a n}的各项都为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10等于(). A.12 B.10 C.8 D.2+log35 解析:因为a5a6+a4a7=2a5a6=18,所以a5a6=9. 所以log3a1+log3a2+…+log3a10 =log3(a1a2…a10)=log3[(a1a10)(a2a9)…(a5a6)] =log3[(a5a6)5]=log395=10. 答案:B 7在等比数列{a n}中,a2=2,a6=16,则a10=. 解析:∵a2,a6,a10成等比数列, ∴=a2a10.∴a10==128. 答案:128 8在等比数列{a n}中,a888=3,a891=81,则公比q=.

等比数列的通项公式基础测试

一、选择题: 1.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 () A .4 B . 2 3 C . 9 16 D .2 2.已知等比数列{}n a 中,公比2q =,且30123302a a a a ????=L ,那么36930a a a a ????L 等于 A .102 B .202 C .162 D .152 二、填空题: 3.等比数列{an}中,a 1=2,a 9=32,则q=. 4.已知一个等比数列的第5项是 94,公比是-31 ,它的第1项是. 5.在等比数列{a n }中,已知a 1=2 3 ,a 4=12,则q =_________,a n =______. 6.在81和3中间插入2个数和,使这4个数成等比数列. 7.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =____. 8.在等比数列{}n a 中,3620,160a a ==,则n a =. 9.等比数列中,首项为98,末项为13,公比为23 ,则项数n 等于. 10.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于. 11.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a += 12.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为3 1 的等比数列,则a n 等于。 三、解答题: 13.在等比数列{a n }中, (1)已知{}n a 是递增的等比数列,,4,2342=-=a a a 则{}n a 的公比q ,及通项公式n a (2)已知n a a a a a n 求,2 1 ,18,367463= =+=+ 14.已知数列满足a 1=1,a n +1=2a n +1(n ∈N*) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式. 15.一个等比数列{}n a 中,701333241=+=+a a a a ,,求这个数列的通项公式。 一、选择题 1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于()

(经典)讲义:等比数列及其前n项和

(经典)讲义:等比数列及其前n 项和 1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项 若G 2 =a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +). (2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ ≠0),? ???????? ?1a n ,{a 2n }, {a n ·b n },? ???????? ?a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式 等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q . 【注意】 6.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n 1-q (q ≠1). 7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

等比数列的通项公式

等比数列的通项公式 例1 已知{a n}为等比数列, 求证:当m+n=p+l时 a m·a n=a p·a l 证明: 设等比数列的首项a1,公比为q, ∵m+n=p+l ∴a m·a n=a p·a l得证. 评注: 本题证明过程并不难,但结论:等比数列中,下标之和相等则对应项之积相等,这在解决有关等比数列的问题时常使解决的过程变得很简捷. 例2 在等比数列{a n}中 (1)已知:a1+a2+a3=6,a2+a3+a4=-3,求a3+a4+a5+a6+a7+a8的值; (2)已知a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,求通项a n. 分析:利用等比数列的定义和性质整体观察. 解 (1)不难看出a1+a2+a3,a2+a3+a4,a3+a4+a5,a4+a5+a6,a5+a6+a7,a6+a7+a8成等比数列,且公比为q(即数列{a n}的公比).

设为{A n},即A1=6,A2=-3, (2)由已知可以看到 ∴a1(1+2+4+8+16)=31,a1=1 ∴a n=2n-1. 评注: 以上二题均可用列方程和方程组解决,但掌握等比数列有关性质整体考虑问题会使运算更简捷. 例3 在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 解: 根据等比中项的性质, a5a6=a1a10=a2a9=a3a8=a4a7=9.

∴a1a2…a9a10=(a5a6)5=95. ∴log3a1+log3a2+…+log3a10 =log3(a1a2 (10) =log395 =5log39 =10. 故正确答案为(B). 评注: (1)应用等比中项求解某些等比数列问题,简便快捷. (2)对等比数列{a n},有以下结论: 例4 若{a n}为等比数列,且a n>0,已知a5a6=128 则log2a1+log2a2+…+log2a10的值为 [ ] A.5 B.28 C.35 D.40

北师大版高中数学必修5等比数列 第2课时

等比数列 (第二课时) 教学目标: 进一步熟悉等比数列的有关性质 教学重点: 等比数列的性质 教学过程 一、复习引入: 1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0), 即:1-n n a a =q (q ≠0) 2.等比数列的通项公式: ) 0(11 1≠??=-q a q a a n n , ) 0(≠??=-q a q a a m m n m n 3.{ n a }成等比数列?n n a a 1 +=q (+ ∈N n ,q ≠0) 4.既是等差又是等比数列的数列:非零常数列. 二、等比数列的有关性质: 通过类比等差数列得到: 1、与首末两项等距离的两项积等于首末两项的积。 与某一项距离相等的两项之积等于 这一项的平方。 2、若q p n m +=+,则q p n m a a a a = 三、 例1:已知无穷数列 ,10 ,10,10,105 152 51 50 -n , 求证:(1)这个数列成等比数列 (2)这个数列中的任一项是它后面第五项的 10 1, (3)这个数列的任意两项的积仍在这个数列中

证:(1) 51 5 251 1 1010 10== ---n n n n a a (常数)∴该数列成等比数列 (2) 10 110 10 101 5 451 5 = == -+-+n n n n a a ,即:5 10 1+= n n a a (3)5 2 5 1 5 110 10 10 -+--==q p q p q p a a ,∵N q p ∈,,∴2≥+q p ∴11≥-+q p 且()N q p ∈-+1, ∴? ?? ? ?? ∈--+5 1n 5 2 1010 q p ,(第1-+q p 项) 例2:一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项. 解:设这个等比数列的第1项是1a ,公比是q ,那么:1221=q a ,① 18 3 1=q a , ② 由②÷①可得第2 3=q ③ 把③代入①可得8 3 16121==∴= q a a a 答:这个数列的第1项与第2项是3 16和8. 例3:已知{}{}n n b a ,是项数相同的等比数列,求证{}n n b a ?是等比数列. 证明:设数列{}n a 的首项是1a ,公比为q 1;{}n b 的首项为b 1,公比为q 2,那么数列{}n n b a ?的第n 项与第n+1项分别为: n n n n n n q q b a q q b a q b q a q b q a ) () (21111 211121111 2 11 1 1与即为与---?????? .) ()(211 2111211111q q q q b a q q b a b a b a n n n n n n == ??-++ 它是一个与n 无关的常数,所以{}n n b a ?是一个以q 1q 2为公比的等比数列. 例4:在等比数列 {}n a 中,2 2 -=a , 54 5=a ,求 8 a , 解: 1458 2 54 542 553 58-=-? =? ==a a a q a a

高中数学 数列 版块三 等比数列 等比数列的通项公式与求和完整讲义(学生版)

学而思高中完整讲义:数列.版块三.等比数列-等比数列的通项公式 与求和.学生版 【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和 n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n ,,,若数列{}n b 有 连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =3132 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; 典例分析

⑵求n a 的通项公式及10S . 【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则 222 12n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++ (314) log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

等比数列及其前n项和(讲义)

等比数列及其前n 项和(讲义) 知识点睛 一、等比数列 1. 等比数列的概念 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0)q ≠表示. (1)等比中项 (2)等比数列的通项公式:11n n a a q -=. 2. 等比数列的性质 (1)通项公式的推广:*(),n m n m a a q m n N -=∈. (2)若{}n a 是等比数列,且*(),,,k l m n k l m n N +=+∈, 则k l m n a a a a =??. (3)若{}n a 是等比数列,则k a ,k m a +,2k m a +,…*(),k m N ∈组成公比为m q 的等比数列. (4)若{}n a 是等比数列,则{}n a λ,{}||n a ,1{}n a ,{}2 n a 也是等比数列. (5)若{}n a ,{}n b 是等比数列,则{}n n a b ?,{ }n n a b 也是等比数列. (6)当数列{}n a 是各项均为正数的等比数列时, 数列{}lg n a 是公差为lg q 的等差数列. 二、 等比数列的前n 项和公式 1. 对于等比数列 1a ,2a ,3a ,…,n a ,…

当1q ≠时, 它的前n 项和的公式为1(1) 1n n a q S q -=-或11n n a a q S q -=-. 当1q =时, 它的前n 项和的公式为1n S na =. 推导过程:错位相减法 2. 等比数列各项和的性质 (1)若m S ,2m S ,3m S 分别是等比数列{}n a 的前m 项,前2m 项,前3m 项的和,则m S ,2m m S S -,32m m S S -成等比数列,其公比为m q . (2)等比数列的单调性 ①当101a q >??>?或10 01a q ??<?时,{}n a 是递减数列; ③当101a q ≠??=?时,{}n a 是常数列; ④当0q <时,{}n a 是摆动数列. 精讲精练 1. 设{}n a 为等比数列,且4652a a a =-,则公比是( ) A .0 B .1或-2 C .-1或2 D .-1或-2

相关文档
相关文档 最新文档