文档库 最新最全的文档下载
当前位置:文档库 › 参数估计和假设检验(精)

参数估计和假设检验(精)

参数估计和假设检验(精)
参数估计和假设检验(精)

参数估计和假设检验 一. 参数估计 估计的原理:

在前面我们已经得到样本统计量的如下分布: (1)X 2

(,)n

σμ

(2)

2

2(1)2

n n s χσ-? (3) p (,

)pq

p n

(4)22

12

12121

2

()(,)X X n n σσμμ--+

(5) 1122

121212

()(,

)p q p q p p p p n n --+ (6)

2

12

12

12222

(1,1)s F n n s σσ--

(7)当总体的方差2σ

(1)n t - 对于事先确定的置信概率,我们可以构造一个不等式区间,利用这一不等式区间来进行估计,例如已知样本容量和样本均值以及总体的方差,要求以95%的置信概率来估计总体的均值,利用统计量

X 2

(,

)n

σμ,则我们知道X 落入μ±

这一区间的概率是95%,

也就是X μμ-≤≤+这一不等式成立的概率是95%,由

于在这一不等式中σ、X 、n 为以知,故可得出:

X X μ-≤≤+则估计完毕。

同样在知道样本容量及样本方差的情况下可以利用2

2(1)

2

n n s χσ-? 来对总体的方差进行估计

在知道样本容量和样本比例的情况下利用 p (,)pq

p n

来对总体比例进行估计

利用22

12

12121

2

()(,)X X n n σσμμ--+

来估计12μμ-

利用 1122

121212

()(,

)p q p q p p p p n n --+ 来估计12p p - 利用

2

12

12

12222

(1,1)s F n n s σσ-- 来估计2

122

σσ

在总体的方差2σ

(1)n t - 来估计μ

利用匹配样本来估计两个总体均值的差:见书P194页

样本容量的确定:

在估计总体的均值、比例和两个总体的均值之差和比例之差时,估计的误差E ,主要由置信概率所决定的区间长度确定的,例如在利用样本均值来估计总体均值时,假设置信概率为95%,则

利用这一等式,显然在E 、σ确定时,也就可以计算出n 。

在估计总体的比例和两个总体的均值之差和比例之差时,样本容量的确定也可以以此类推。

二.假设检验

假设的建立:我们将希望出现的结果作为备择假设

H,而将与备择

1假设对立的结果作为原假设

H。

假设检验的原理:从证实的角度看要证明备择假设

H是很困难的,

1而一旦原假设

H成立,则1H就肯定不会成立,但如果0H不成立,

也并不意味着

H就肯定会成立,在这种情况下,我们只能说1H可

1

能会成立。因此我们是通过检验原假设

H来对备择假设的命题是

否成立进行检验。

检验的方法:首先是利用原假设

H确定总体的参数服从某一分布,

然后在假定总体的参数服从这一分布的情况下,利用上面的(1)-(7)个统计量求样本出现的概率,如果样本落在大概率区间,则接受原假设,备择假设肯定不成立,如果样本落在小概率区间就拒绝原假设,则备择假设有成立的可能性。

检验一个假设:一枚硬币是均匀的,采用如下的决策规则:(1)如果在投掷100次的一个样本中,正面出现的次数在40-60之间,就接受假设,(2)否则,就拒绝假设

求:A.当假设正确时,拒绝假设的概率?

B.用图形解释决策规则,和A中的结果

C.如果在100次的投掷中,产生了53次正面、60次正面,

是否支持原假设?

D.在C中,你的结论会犯错误吗?请解释

E.如果真实情况是正面出现的概率为0.7时,接受硬币是均匀的这一假设的概率是多少?

应用范围:可以检验总体的均值、总体的方差、总体的比例、两个总体的均值之差、两个总体的比例之差、两个总体的方差比。

两类错误与α的确定:在假设检验中存在着两个类型的错误,弃真和取伪(见书P214页),如果要减少弃真错误,就要增加大概率区间1α

-,而增加大概率区间也就增加了取伪错误,因此要减少一种类型的错误,势必要增加另一种类型的错误,一般的原则是首先控制犯α错误的概率。

单侧检验和双侧检验:要根据备择假设的形式来确定,

H可以是

1

不等于、大于、小于,而相应的就是双侧、左侧、右侧检验。

匹配样本的检验:见书P238页

两个总体比例之差检验中,原假设的差异所带来的检验方法的差异:见书P235页

练习:

1.在测量反映时间中,一位心理学家估计的标准差是0.05秒,

他必须取多大容量的样本才能保证以95%的置信水平使他的反应时间的均值的估计误差不超过0.01秒

2.一个球的直径的10个测量样本给出的均值为4.38厘米,样本的标准差为0.06厘米,求实际直径的95%的置信区间3.在一个社区中,随机选择100个投票者,发现有55%是支持特定候选人的,求全体投票者支持该候选人的95%的置信区间

4.在看某一个电视节目的400个成年人和600个青少年的随机样本里,发现有100个成年人和300个青少年表明喜欢,以95%的置信概率求青少年和成年人喜欢该电视节目的比例之差。

5.某校有100个男生,从中随机挑选16个男生,其身高的标准差为2.4厘米,要求以95%的置信概率求该校男生身高标准差的置信区间。

6.一种专利药物的制造者宣称在8小时内该药物减轻病情的有效率为90%,今以200个病人为样本,发现该药对160人有效,要求以0.01的显著性水平检验厂商的说法是否正确7.两个班分别有40和50个学生,进行一场测验,第一班平均成绩为74分,标准差为8,第二班的平均成绩为78分,标准差为7,要求以0.05的显著性水平检验这两个班的成绩是否有显著的差异

8.A、B两群人,每群各有100个病人,给A群一种药,而不

给B群,其他处理两群完全一样,今发现A群和B群分别有75人和65人痊愈,要求以0.05的显著性水平检验该药的有效性。

9.一台机器装一种重量为40公斤的口袋,已知其标准差为0.25公斤,现取20袋作为一个随机样本,样本的标准差为0.32公斤,要求以0.05的显著性水平检验机器的稳定性是否出现问题。

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。 点估计是用估计量的某个取值直接作为总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。统计学家在某种程度上确信这个区间会包含真正的总体参数。 在区间统计中置信度越高,置信区间越大。置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1 置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等 (1)来自正态分布的样本均值,不论抽取的是大样本还是小样本,均服从正态分布 (2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布 (3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理 (4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近 (5)样本均数服从的正态分布为N(u a^2/n)远远小于原变量离散程度N (u a^2) 2. 假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。 假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。最重要的是看能否通过得到的概率去推翻原定的假设,而不是去证实它<2>统计学中假设检验的基本步骤:(1)建立假设,确定检验水准α--假设有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单、双侧检验两种。检验水准用α表示,通常取0.05或0.10,检验水准说明了该检验犯第一类错误的概率。(2)根据研究目的和设计类型选择适合的检验方法 这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。 (3)确定P值并作出统计结论 u检验得到的是u统计量或称u值,t检验得到的是t统计量或称t值。方差分析得到的是F统计量或称F值。将求得的统计量绝对值与界值相比,可以确定P值。当α=0.05时,u值要和u界值1.96相比较,确定P值。如果u<1.96,则P>0.05.反之,如u>1.96,则P<0.05.t值要和某自由度的t界值相比较,确定P值。如果t值<t界值,故P>0.05.反之,如t>t 界值,则P<0.05。相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。即单侧检验更容易出现阳性结论。当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。 3.参数估计与假设检验之间的联系与区别: (1)主要联系:a.都是根据样本信息推断总体参数;b.都以抽样分布为理论依据,建立在概率论基础之上的推断;c.二者可相互转换,形成对偶性。 (2)主要区别:a.参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;b.区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;c.区间估计立足于大概率,假设检验立足于小概率。

参数估计与假设检验

参数估计与假设检验 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。 点估计是用估计量的某个取值直接作为总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。统计学家在某种程度上确信这个区间会包含真正的总体参数。 在区间统计中置信度越高,置信区间越大。置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1 置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等 (1)来自正态分布的样本均值,不论抽取的是大样本还是小样本,均服从正态分布 (2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布 (3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理 (4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近 (5)样本均数服从的正态分布为N(u a^2/n)远远小于原变量离散程度N (u a^2) 2. 假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。 假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。最重要的是看能否通过得到的概率去推翻原定的假设,而不是去证实它<2>统计学中假设检验的基本步骤:(1)建立假设,确定检验水准α--假设有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单、双侧检验两种。检验水准用α表示,通常取0.05或0.10,检验水准说明了该检验犯第一类错误的概率。(2)根据研究目的和设计类型选择适合的检验方法 这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。 (3)确定P值并作出统计结论 u检验得到的是u统计量或称u值,t检验得到的是t统计量或称t值。方差分析得到的是F统计量或称F值。将求得的统计量绝对值与界值相比,可以确定P值。当α=0.05时,u值要和u界值1.96相比较,确定P值。如果u<1.96,则P>0.05.反之,如u>1.96,则P<0.05.t值要和某自由度的t界值相比较,确定P值。如果t值<t界值,故P>0.05.反之,如t>t 界值,则P<0.05。相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。即单侧检验更容易出现阳性结论。当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。 3.参数估计与假设检验之间的联系与区别: (1)主要联系:a.都是根据样本信息推断总体参数;b.都以抽样分布为理论依据,建立在概率论基础之上的推断;c.二者可相互转换,形成对偶性。 (2)主要区别:a.参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;b.区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;c.区间估计立足于大概率,假设检验立足于小概率。

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 0.05,α=26,n = 0:1600H μ=, 即,以95%的把握认为这批产品的指标 的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数 的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)? 解: 012112:, :,H H μμμμ≥< 3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)? 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n =由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)? 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n =由检验统计量0.9733 Z = ==<1.65,接受H 0:p ≤0.05. 即, 以95%的把握认为p ≤0.05是成立的.

第5章参数估计与假设检验练习题(精)

第5章 参数估计与假设检验练习题 1、设随机变量 X 的数学期望为 μ ,方差为 σ2 ,(X 1 ,X 2 ,···,X n )为X 的一个样本, 试比较 ))(1(1 2 ∑=-n i i X n E μ 与 ))(1(12∑=-n i i X X n E 的大小。 ( 前者大于后者 ) 2、设随机变量 X 与Y 相互独立,已知 EX = 3,EY = 4,DX = DY = σ2 ,试问:k 取何值时,Z = k ( X 2 - Y 2 ) + Y 2 是 σ2 的无偏估计 。 ( 16 / 7 ) 3、设正态总体 X ~ N ( μ , σ2 ) ,参数 μ ,σ2 均未知,( X 1 ,X 2 ,… ,X n )( n ≥ 2 ) 为简单随机样本,试确定 C ,使得 ∑-=+-=1 1212 )(?n i i i X X C σ 为 σ2 的无偏估计。 ( ) 1(21 -n ) 4、假设总体 X 的数学期望为 μ ,方差为 σ 2 ,),...,,(21n X X X 为来自总体 X 的一个样本, X 、S 2 分别为样本均值和样本方差,试确定常数 c ,使得 22cS X - 为 μ 2 的无偏估计量. ( 1 / n ) 5、设 X 1 ,X 2 是取自总体 N ( μ , σ2 ) ( μ 未知)的一个样本,试说明下列三个统计量 2114341?X X +=μ ,2122121?X X +=μ ,2132 1 31?X X +=μ 中哪个最有效。 ( 2?μ )

6、设某总体 X 的密度函数为:??? ??><=其它 03),(3 2θθθx x x f ,( X 1 ,X 2 ,… ,X n )为该 总体的样本, Y n = max ( X 1 , X 2 , … , X n ) ,试比较未知参数 θ 的估计量 X 3 4 与 n Y n n 31 3+ 哪个更有效? ( n > 1 时,n Y n n 31 3+ 更有效 ) 7、从某正态总体取出容量为10的样本,计算出 15010 1 =∑=i i x ,272010 1 2=∑=i i x 。求总体期望与 方差的矩估计 μ ? 和 2?σ 。 ( 15 ;47 ) 8、设总体 X 具有密度 ?? ? ??≤>=+-C x C x x C x f 01);()1 1(1???? ,其中参数 0 < ? < 1,C 为已知常数,且C > 0,从中抽得一样本 X 1 ,X 2 ,… ,X n ,求参数 ? 的矩估计量。 ( 1 - C /?X ,其中 ∑==n i i X n X 1 1 ) 9、设总体 X 服从( 0,? )上的均匀分布,其中 ? > 0 是未知参数,( X 1 ,X 2 ,… , X n )为简单随机样本,求出 ? 的矩估计量 ? ? ,并判断 ?? 是否为 ? 的无偏估计量。 ( 2?X ,其中 ∑==n i i X n X 1 1 ;是 ) 10、设( X 1 ,X 2 ,… ,X n )为总体 X 的一组样本,总体 X 密度函数为:

实验六 参数估计与假设检验

实验六参数估计与假设检验 一、实验目的: 学习利用spss对数据进行参数估计与假设检验(参数估计,单样本、独立样本、配对样本T 检验)。 二、实验内容: 某助眠药物临床实验征集了20位被试,试验后得数据表包含被试的性别、身高、体重、用药前睡眠时长及用药后睡眠时长。试就该数据估计性别对未使用药物时睡眠时长的影响、检验被试总体身高与165差距是否显著、对不同性别的被试的身高和体重变量进行独立样本T 检验、并检验药物是否对被试有用。 三、实验步骤: 参数估计 1、定义变量并输入数据 2、选择菜单“分析→描述统计→探索”弹出“探索”对话框,将对话框左侧的变量框中“用药前睡眠时长”添加到因变量列表,“性别”添加到自变量列表 3、点击“统计量”,弹出“探索:统计量”对话框,勾选描述性并设置均值置信区间为95%,单击“继续” 4、单击“确定”按钮,得到输出结果,对结果进行分析解释。 单样本T检验 1、定义变量并输入数据 2、选择菜单“分析→比较均值→单样本T检验”,弹出“单样本T检验”对话框,将对话框左侧的变量框中的“身高”添加到右侧的“检验变量”框中,将检验值设为165; 3、点击“选项”,弹出“选项”对话框,将置信区间百分比设为95%,点击“继续” 4、单击“确定”按钮,得到输出结果,对结果进行分析解释。 独立样本T检验 1、定义变量并输入数据 2、选择菜单“分析→比较均值→独立样本T检验”,弹出“独立样本T检验”对话框,在对话框左侧的变量列表中选变量“身高”“体重”进入检验变量框,选变量“性别”进入控制列表框 3、点击定义组,在组1(1)中填写1,组2(2)中填写2,点击继续, 4、点击“确定”按钮,得到输出结果。对结果进行分析解释。 配对样本T检验 1.打开一份可用数据。 2.选择分析→比较平均值→配对样本T检验,选择一对配对样本“用药前睡眠时长”和“用 药后睡眠时长”,将“用药前睡眠时长”拖至“variable1”,“用药后睡眠时长”拖至“variable2”,单击“选项”设置置信区间为95%,点击“确定”查看自定义结果。

参数估计和假设检验案例(精)

参数估计和假设检验案例 案例一:工艺流程的检测 某公司是一家为客户提供抽样和统计程序方面建议的咨询公司,这些建议可以用来监控客户的制造工艺流程。在一个应用项目中,一名客户向该公司提供了一个样本,该样本由工艺流程正常运行时的 800个观测值组成。这些数据的样本标准差为 0.21;因为有如此多的样本数据,因此,总体标准差被假设为 0.21。然后,该公司建议:持续不断地定期抽取容量为 30的随机样本以对工艺流程进行检测。 通过对这些新样本的分析,客户可以迅速知道,工艺流程的运行状况是否令人满意。当工艺流程的运行状况不能令人满意时,可以采取纠正措施来解决这个问题。设计规格要求工艺流程的均值为 12,该公司建议采用如下形式的假设检验。 H 0 :12 H 1 :12 只要 H 0被拒绝,就应采取纠正措施。 下表为第一天运行新的工艺流程的统计控制程序时,每隔一小时收集的样本数据。

μ=μ≠ 问题: 1、对每个样本在 0.01的显著性水平下进行假设检验,并且确定,如果需要

Z0.005=2.58 2、 4、讨论将显著性水平改变为一个更大的值时的影响?如果增加显著性水平, 哪种错误或误差将增加? 显著性水平增加,置信区间减小,误差减小。 案例二:计算机辅助教学会使完成课程的时间差异缩小吗? 某课程引导性教程采用一种个性化教学系统, 每位学生观看教学录像, 然后给以程式化的教材。每位学生独立学习直至完成训练并通过考试。人们关心的问题是学生完成训练计划的进度不同。有些学生能够相当快地完成程式化教材, 而另一些学生在教材上需要花费较长的时间,甚至需要加班加点才能完成课程。学的较快的学生必须等待学得较慢的学生完成引导性课程才能一起进行其他方面的训练。 建议的替代系统是使用计算机辅助教学。在这种方法中, 所有的学生观看同样的讲座录像,然后每位学生被指派到一个计算机终端来接受进一步的训练。μ= 在整个教程的自我训练过程中,由计算机指导学生独立操作。 为了比较建议的和当前的教学方法, 刚入学的 122名学生被随机地安排到这两种教学系统中。 61名学生使用当前程式化教材, 而另外 61名学生使用建议的计算机辅助方法。记录每位学生的学习时间(小时 ,如表所示。

参数估计和假设检验案例

参数估计和假设检验案例 案例一:工艺流程的检测 某公司是一家为客户提供抽样和统计程序方面建议的咨询公司,这些建议可以用来监控客户的制造工艺流程。在一个应用项目中,一名客户向该公司提供了一个样本,该样本由工艺流程正常运行时的800个观测值组成。这些数据的样本标准差为0.21;因为有如此多的样本数据,因此,总体标准差被假设为0.21。然后,该公司建议:持续不断地定期抽取容量为30的随机样本以对工艺流程进行检测。 通过对这些新样本的分析,客户可以迅速知道,工艺流程的运行状况是否令人满意。当工艺流程的运行状况不能令人满意时,可以采取纠正措施来解决这个问题。设计规格要求工艺流程的均值为12,该公司建议采用如下形式的假设检验。 μ=μ≠ H0 :12 H1 :12 只要H0被拒绝,就应采取纠正措施。 下表为第一天运行新的工艺流程的统计控制程序时,每隔一小时收集的样本数据。

问题: 1、对每个样本在0.01的显著性水平下进行假设检验,并且确定,如果需要 Z0.005=2.58 2、 μ= 4、讨论将显著性水平改变为一个更大的值时的影响?如果增加显著性水平, 哪种错误或误差将增加? 显著性水平增加,置信区间减小,误差减小。 案例二:计算机辅助教学会使完成课程的时间差异缩小吗? 某课程引导性教程采用一种个性化教学系统,每位学生观看教学录像,然后给以程式化的教材。每位学生独立学习直至完成训练并通过考试。人们关心的问题是学生完成训练计划的进度不同。有些学生能够相当快地完成程式化教材,而另一些学生在教材上需要花费较长的时间,甚至需要加班加点才能完成课程。学的较快的学生必须等待学得较慢的学生完成引导性课程才能一起进行其他方面的训练。 建议的替代系统是使用计算机辅助教学。在这种方法中,所有的学生观看同样的讲座录像,然后每位学生被指派到一个计算机终端来接受进一步的训练。

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验的Stata实现本章用到的Stata命令有 例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下: 146 7 125 142 7 128 140 1 7 144 151 117 118 该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。 数据格式为

计算95%可信区间的Stata命令为: 结果为 该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71) 例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。 在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。 结果为: 该市7岁男童总体均数90%的可信区间(122.90~124.34)。 例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准

差为13.34。试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。 本题也可以应用Stata的即时命令: 结果: 差值为4.86,差值的可信区间为0.81~8.90。 例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。 Stata即时命令为 结果为 肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。 例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。 Stata即时命令为

参数估计和假设检验

第五章参数估计和假设检验 本章重点 1、抽样误差的概率表述; 2、区间估计的基本原理; 3、小样本下的总体参数估计方法; 4、样本容量的确定方法; 本章难点 1、一般正态分布 标准正态分布; 2、t分布; 3、区间估计的原理; 4、分层抽样、整群抽样中总方差的分解。 统计推断:利用样本统计量对总体某些性质或数量特征进行推断。 两类问题:参数估计和假设检验 基本特点:(1)以随机样本为基础; (2)以分布理论为依据; (3)推断的只是一种可能的结果; (4)是归纳推理和演绎推理的结合。本章主要内容:阐述常用的几种参数估计方法。 第一节参数估计 一、参数估计的基本原理 两种估计方法

点估计 区间估计 1.点估计:以样本指标直接估计总体参数。 点估计优良性评价准则 (1)无偏性。估计量 的数学期望等于总体参数,即 , 该估计量称为无偏估计。 (2)有效性。当 为 的无偏估计时, 方差 越小, 无偏估计越有效。 (3)一致性。对于无限总体,如果对任意 ,有 ,则称 是 的一致估计。 (4)充分性。一个估计量如能完全地包含未知参数信息,即为 充分估计量。 2.点估计的缺点:不能反映估计的误差和精确程度 区间估计:利用样本统计量和抽样分布估计总体参数的可能区间 【例1】CJW 公司是一家专营体育设备和附件的公司,为了监控公司的服务质量, CJW 公司每月都要随即的抽取一个顾客样本进行调查以了解顾客的满意分数。根据以往的调查,满意分数的标准差稳定在20分左右。最近一次对100名顾客的抽样显示,满意分数的样本均值为82分,试建立总体满意分数的区间。 抽样误差 抽样误差:一个无偏估计与其对应的总体参数之差的绝对值。 抽样误差 = (实际未知) 要进行区间估计,关键是将抽样误差E 求解。若 E 已知,则区间可表示为: 区间估计:估计未知参数所在的可能的区间。 区间估计优良性评价要求 θ θ??θ?θθ=?E θ?0> εθ?2)?(θθ-E 0)|?(|=≥-∞ →εθθn n P Lim n θ?θθαθθθ-=1)??(U L P <<[]E x x +-,E

参数估计和假设检验

攀 枝 花 学 院 实 验 报 告 实验课程:数学实验及模型 实验项目:参数估计和假设检验 实验日期:2010.12.30 系:计算机 班级: 姓名: 学号: 同组人: 指导教师: 成绩: 【实验目的】: 1 理解参数估计的基本概念、原理和方法; 2 理解正态总体的均值、方差的区间估计的方法; 3 了解假设检验的基本概念、原理和方法; 4 掌握用Matlab 进行参数估计; 5 掌握用Matlab 进行假设检验. 【实验内容:】 1 参数估计的基本概念、原理和方法; 2 假设检验的基本概念、原理和方法; 3 利用Matlab 进行参数估计和假设检验. 【实验原理:】 1 参数估计:参数估计包括点估计和区间估计 (1)点估计:点估计法主要包括矩估计和最大似然估计. 点估计的常用公式如下: ?x μ =,22?s σ= (2)区间估计:区间估计就是根据样本来估计其分布函数中未知参数的范围区间,并使区 间包含未知参数的概率≥1a -,1a -称为置信水平,估计区间称为置信区间. 总体均值μ、标准差σ的区间估计(置信水平1α-)的常用公式如下: ① σ已知时,μ 的置信区间为:2 x z α ± σ未知时,μ 的置信区间为:()2 1x n α± - ② 2σ的置信区间为: ()()()()2 222 12211,11n S n S n n ααχχ- ??-- ? ?-- ??? 其中,2 z α、()2 1t n α-、()2 2 1n αχ-分别为()0,1N 、()1t n -、()21n χ-分布的上 2 α分位点. (3)Matlab ,常见分布函数中参数估计的点估计和区间估计函数见表3-4.

第六章参数估计和假设检验(精)

第六章参数估计和假设检验 教学目的及要求:了解参数的点估计、区间估计的含义,掌握区间估计的几个概念,包括置信水平、置信区间、小概率事件,熟练掌握参数区间估计的计算方法,了解不同抽样组织形式下的参数估计,掌握参数估计中样本量的确定。了解假设检验的原假设和备择假设的含义,假设检验的两类错误,掌握总体均值的检验方法。 本章重点与难点:区间估计的计算与总体均值的假设检验方法。 计划课时:授课6课时;技能训练2课时。 授课特点:案例教学 第一节点估计和区间估计 一、总体参数估计概述 ?1、总体参数估计定义 ?就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。 ?2、参数估计应满足的两个条件 二、参数的点估计 ?用样本的估计量直接作为总体参数的估计值 例如:用样本均值直接作为总体均值的估计 例如:根据一个抽出的随机样本计算的平均分数为80分,我们就用80分作为全班考试成绩的平均分数的一个估计值,这就是点估计。 再例如,要估计一批产品的合格率,根据抽样结果合格率为96%,将96%直接作为这批产品合格率的估计值,这也是点估计 三、参数的区间估计 (一)参数的区间估计的含义 ?区间估计:计算抽样平均误差,指出估计的可信程度,进而在点估计的基础上,确定总体参数的所在范围或区间。

(二)有关区间估计的几个概念 置信水平 1. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平 2. 表示为 (1 - α% ) α 为是总体参数未在区间内的比例 3. 常用的置信水平值有 99%, 95%, 90% 相应的显著性水平α 为0.01,0.05,0.10 置信区间 1. 由样本统计量所构造的总体参数的估计区间称为置信区间 2. 统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间 3. 用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值 我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个 4. 由样本均值的抽样分布可知,在重复抽样或无限总体抽样的情况下,样本均值的数学期望等于总体均值, 5. 样本均值的标准差为 由此可知样本均值落在总体均值μ的两侧各为一个抽样标准差范围内的概率为0。6873 落在总体均值两个抽样标准差范围内的概率为0。9545 落在总体均值三个抽样标准差范围内的概率为0。9973 影响区间宽度的因素 1.总体数据的离散程度,用 σ 来测度 2.样本均值标准差 3.置信水平 (1 - α),影响 z 的大小 评价估计量的标准 x n x σ σ=

参数估计与假设检验的辨析

参数估计与假设检验的辨析 1、参数估计 参数估计是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数。参数估计的方法有点估计和区间估计两种。 1. 点估计 点估计就是用样本统计量的某个取值直接作为总体参数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估 计总体矩,如用样本均值估计总体均值。②最大似然估计 法。于1912年由英国统计学家R.A.费希尔提出,利用样本分 布密度构造似然函数来求出参数的最大似然估计。③最小二 乘法。主要用于线性统计模型中的参数估计问题。 虽然在重复抽样条件下,点估计的均值可望等于总体真值,但由于样本是随机的,抽出一个具体的样本得到的估计 值很可能不等于总体真值,所以必须给出点估计值的可靠 性,点估计值的可靠性由抽样标准误差来衡量。 2. 区间估计 区间估计是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。在进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。一般的,如果将构造置信区间的步骤重复多 次,置信区间中包含总体参数真值的次数所占的比例称为置信水平,也称置信度或置信系数。 求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。 3. 评价估计量的标准 1) 无偏性。指估计量抽样分布的数学期望等于被估计的总体 参数。 2) 有效性。指对同一总体参数的两个无偏估计量,有更小标 准差的估计量更有效。 3) 一致性。指随着样本量的增大,点估计量的值越来越接近 被估总体的参数。 2、假设检验 假设检验是用来判断样本与总体的差异是由抽样误差引起还是

统计学第六章 参数估计和假设检验习题

第六章参数估计和假设检验 一、填空题 1、总体参数估计是指 2、 称为置信水平,表示为 3、落在总体均值两个抽样标准差范围内的概率为 4、影响样本的单位数目的因素有 5、是研究者想收集证据予以反对的假设。 答案:1、就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。 2、将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例,(1 - 3、0.9545 4、总体变量的变异程度σ、允许的误差范围△、抽样的可靠程度1-α 5、纯随机抽样、等距抽样(机械抽样)、类型抽样(分层抽样)和整群抽样 二、单项选择题 1、估计量的含义是指(A) A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体数值 2、一个95%的置信区间是指( C ) A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数

3、抽取一个容量为100的随机样本,其均值为x =81,标准着s=12。总体均值μ的99%的置信区间为( C ) 81±1.97 81±2.35 81±3.10 81±3.52 4.成数与成数方差的关系是(C ) A.成数的数值越接近0,成数的方差越大 B.成数的数值越接近0.3,成数的方差越大 C.成数的数值越接近0.5,成数的方差越大 D.成数的数值越接近l ,成数的方差越大 5.纯随机重复抽样的条件下,若其他条件不变,要使抽样平均误差缩小为原来的1/3,则样本单位数必须( B ) A.增大到原来的3倍 B.增大到原来的9倍 C.增大到原来的6倍 D.也是原来的1/3 6、对于非正态总体,使用统计量 x z =估计总体均值的条件是(D ) A .小样本 B .总体方差已知 C .总体方差未知 D .大样本 7、在假设检验中,原假设和备选假设( C ) A. 都有可能成立 B. 都有可能不成立 C. 只有一个成立而且必有一个成立 D. 原假设一定成立,备选假设不一定成立 8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( A ) A .0:5H μ=,1:5H μ≠

参数估计和假设检验(精)

参数估计和假设检验 一. 参数估计 估计的原理: 在前面我们已经得到样本统计量的如下分布: (1)X 2 (,)n σμ (2) 2 2(1)2 n n s χσ-? (3) p (, )pq p n (4)22 12 12121 2 ()(,)X X n n σσμμ--+ (5) 1122 121212 ()(, )p q p q p p p p n n --+ (6) 2 12 12 12222 (1,1)s F n n s σσ-- (7)当总体的方差2σ (1)n t - 对于事先确定的置信概率,我们可以构造一个不等式区间,利用这一不等式区间来进行估计,例如已知样本容量和样本均值以及总体的方差,要求以95%的置信概率来估计总体的均值,利用统计量 X 2 (, )n σμ,则我们知道X 落入μ± 这一区间的概率是95%, 也就是X μμ-≤≤+这一不等式成立的概率是95%,由 于在这一不等式中σ、X 、n 为以知,故可得出:

X X μ-≤≤+则估计完毕。 同样在知道样本容量及样本方差的情况下可以利用2 2(1) 2 n n s χσ-? 来对总体的方差进行估计 在知道样本容量和样本比例的情况下利用 p (,)pq p n 来对总体比例进行估计 利用22 12 12121 2 ()(,)X X n n σσμμ--+ 来估计12μμ- 利用 1122 121212 ()(, )p q p q p p p p n n --+ 来估计12p p - 利用 2 12 12 12222 (1,1)s F n n s σσ-- 来估计2 122 σσ 在总体的方差2σ (1)n t - 来估计μ 利用匹配样本来估计两个总体均值的差:见书P194页 样本容量的确定: 在估计总体的均值、比例和两个总体的均值之差和比例之差时,估计的误差E ,主要由置信概率所决定的区间长度确定的,例如在利用样本均值来估计总体均值时,假设置信概率为95%,则 利用这一等式,显然在E 、σ确定时,也就可以计算出n 。

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600 解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2 Z z α>,取0.05,α=26,n = 0.0250.9752 1.96z z z α===, 由检验统计量 1.25 1.96Z = ==<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为根,各台布机断头数的标准差为根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为根,标准差为根。问,新工艺上浆率能否推广(α= 解: 012112:, :,H H μμμμ≥< ( 3.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显著影响(α= 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n = 由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤是否成立(α= 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n = 由检验统计量0.9733Z = ==<,接受H 0:p ≤. 即, 以95%的把握认为p ≤是成立的. 5.某产品的次品率为,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α= 解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n = ^ 0.950.05, 1.65z α=-=-,由检验统计量 400 1.5973i x np Z -= = =-∑>, 接受0:0.17H p ≥, 即, 以95%的把握认为此项新工艺没有显著地提高产品的质量. 6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)

参数估计与假设检验

参数估计与假设检验 一、单选题 1.样本平均数的可靠性和样本的大小(D)。 A.没有一定关系B.成反比C.没有关系D.成正比 2.区间估计依据的原理是(B)。A.概率论B.样本分布理论c.小概率事件D.假设检验 3.一个好的估计量应具备的特点是(B)。 A.充分性、必要性、无偏性、一致性B.充分性、无偏性、一致性、有效性C.必要性、无偏性、一致性、有效性D.必要性、充分性、无偏性、有效性 4.用从总体抽取的一个样本统计量作为总体参数的估计值称为(B)。 A.样本估计B.点估计C.区间估计D.总体估计 5.总体分布正态,总体方差σ2已知时,从总体中随机抽取容量为25的小样本,用样本平均数估计总体平均数的置信区间为(A)。 6.理论预期实验处理能提高某种实验的成绩。一位研究者对某一研究样本进行了该种实验处理,结果未发现处理显著的改变实验结果,下列哪一种说法是正确的?(D) A.本次实验中发生了I类错误B.本次实验中发生了Ⅱ类错误C.需要多次重复实验,严格设定统计决策的标准,以减少I类错误发生的机会D.需要改进实验设计,提高统计效力,以减少Ⅱ类错误发生的机会 7.假设检验中的第二类错误是(C)。 A.原假设为真而被接受B.原假设为真而被拒绝C.原假设为假而被接受D.原假设为假而被拒绝 8.实际工作中,两均数作差别的统计检验时要求数据近似正态分布,以及(C)。 A.两样本均数相差不太大B.两组例数不能相差太多C.两样本方差相近D.两组数据标准误相近 9.在假设检验中,α取值越大,称此假设检验的显著性水平(B)。 A.越高B.越低C.越明显D.越不明显 10.假设检验中两类错误的关系是(D)。

参数估计和 假设检验区别联系

参数估计、假设检验及它们之间的关系(相同点、联系与区别) 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数的真值,它的方法有点估计和区间估计两种。 点估计就是直接以样本统计量直接作为相应总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间是由样本统计量加减允许误差(极限误差)得到的。在区间估计中,由样本统计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。在其它条件相同的条件下,区间估计中置信度越高,置信区间越大。置信水平为1-a, a(显著性水平)为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1。置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。 (1)来自正态分布的样本均值,总体方差已知,不论抽取的是大样本还是小样本,均服从正态分布。 (2)总体不是正态分布,总体方差已知或未知,大样本的样本均值服从正态分布,小样本的不能进行参数估计。 (3)来自正态分布的样本均值,如果总体方差未知,原则上都按t 分布来处理(但在大样本的情况下,可近似按正态分布处理)。 2.假设检验假是根据样本统计量来检验对总体参数的先验假设是否成立,是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。

参数估计假设检验练习题

第三章 假设检验例子 例1:某糖厂用自动打包机装糖。已知每袋糖的重量(单位:千克)服从正态分布()2~,X N μσ。今随机抽查9袋,称出它们的重量并计算得到*48.5, 2.5x s ==。取显著性水平0.05α=。在下列两种情形下分别检验()01:50 :50H H μμ=≠ 22(1) 4 (2)σσ=未知 解: ()( )2*01220.975 12 ~,48.5, 2.5,9,0.05:50 :50(1) 4 (2)(1) 2.25 1.96 2.25 1.96X N x s n H H u u u αμσαμμσσ- =====≠======>糖的重量,现在已知显著性水平,在两种情形下检验:未知 解:计算检验统计量的观测值 临界值,因为,所以拒绝原假设 即不能认为糖的重量50的平均值是千克,即打包机工作不正常。 ()( )()()2*0120.97512 ~,48.5, 2.5,9,0.05:50 :50(2) 1.818 2.306 1.8 2.306X N x s n H H t t n t αμσαμμσ- =====≠===-==<糖的重量,现在已知显著性水平,在两种情形下检验:未知 解:计算检验统计量的观测值 临界值,因为,所以不能 拒绝原假设,即不能认为打包机工作不正常。 例2:在上题中,试在显著性水平0.1α=下检验()2201: 4 :4H H σσ=> () ()()()*2201*2 22 02210.948.5, 2.5,9,0.1: 4 :4112.5 1813.36212.513.362. x s n H H n s n αασσχσχχ-=====>-= =-==<显著性水平,解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常 例3:监测站对某条河流每日的溶解氧(DO )质量浓度记录了30个数据,并由此算得 2.52, 2.05x s ==。已知这条河流的每日DO 质量浓度服从()2,N μσ,试在显著性水平0.05α=下检验()01: 2.7 : 2.7H H μμ=≠。

相关文档
相关文档 最新文档