文档库 最新最全的文档下载
当前位置:文档库 › 脉冲电源在火电厂静电除尘器中的应用

脉冲电源在火电厂静电除尘器中的应用

脉冲电源在火电厂静电除尘器中的应用
脉冲电源在火电厂静电除尘器中的应用

高频及脉冲电源在火电厂静电除尘器中的应用

[摘要]:某电厂I期锅炉设备是上海电气集团有限公司生产的SG2084/25.4型600MW 超临界参数,单炉膛,半露天布置,固态排渣锅炉。电除尘设备由菲达环保有限责任公司提供,采用双室五电场卧式排列方式,设计除尘效率≥99.7%。配套控制设备由大连宗益科技发展有限公司(大连电子研究所)提供,为该公司2008年设备。机组投运后,电除尘出口粉尘浓度稳定在60 mg/Nm3左右,除尘效率99.72%左右,电场耗电1700kw(机组运行时的均值)。达到了电除尘设计标准和当时的国家烟气排放标准。

随着国家环保部门对烟气排放标准的大幅提高(由200 mg/Nm3提高到20 mg/Nm3),原电除尘设备已无法满足新的国家标准,对原设备进行升级改造成为必然。

通过对电除尘设备的考察,制定了前三级电场使用高频电源,后两级电场使用脉冲电源的方案。高频设备起晕电压低,运行方式灵活,粉尘荷电能力强,除尘效率高,适用于前级电场。由于后级电场主要是细微粉尘,所以采用脉冲电源;脉冲电源设备由于运行电压高,对高比阻粉尘和细微颗粒粉尘有很好的除尘效果。这个方案在不改变电除尘器本体的情况下,预期达到排放烟气粉尘浓度≤20 mg/Nm3的标准。

项目实施后,根据陕西省环境监测站电除尘器效率测定结果,在锅炉1700t/h并稳定运行,1号炉电除尘器各电场均正常投入运行时,电除尘器的除尘效率为99.90%,烟气粉尘含量13.3 mg/Nm3(改造前为60 mg/Nm3)。2号炉电除尘器各电场均正常投入运行时,电除尘器的除尘效率为99.92%,烟气粉尘含量14.2 mg/Nm3。1、2号炉电除尘器的效率有大幅提高,电除尘出口烟气粉尘含量均≤20 mg/Nm3,达到新的国家标准。

本文主要介绍了首先分析了静电除尘的工作原理,然后,分析电除尘传统电源和高频及脉冲电源的工作原理,及各自的优缺点,并通过在该火电厂电除尘器上的工作情况对比其经济效益及环保要求。

【关键词】高频电源脉冲电源除尘效率烟气粉尘浓度国家标准

1.概述

该火电厂电除尘设备由菲达环保有限责任公司提供,采用双室五电场卧式排列方式,设计除尘效率≥99.7%。配套控制设备由大连宗益科技发展有限公司(大连电子研究所)提供,为该公司2008年设备。2009年投入运行,电除尘出口粉尘浓度稳定在60 mg/Nm3左右,除尘效率99.72%左右,电场耗电1700kw(机组运行时的均值)。

2.立项背景

随着国家的发展,环保问题成为国家的重点工作。国家环保部门将企业烟气粉尘排放标准由200 mg/Nm3提高到20 mg/Nm3。对此,原电除尘设备必须更新换代才能满足新的排放标准。

通过对电除尘设备的了解和对其他电力企业电除尘设备使用情况的考察,制定了1、2、3电场使用高频设备,4、5电场使用脉冲电源设备的方案。通过高频电源和脉冲电源的配合,预计达到电除尘出口延期粉尘含量≤20 mg/Nm3的标准。

3、静电除尘器的工作过程

1.空气电离:在两个电极之间通以高压直流电,建立电场,由于电极系统的电压超过临界的电压,气体电离,产生电晕放电。出现电晕后,在电场内形成两个区域:一是放电极附近的电晕区,另一区为电晕外区,该区占有电极之间的大部分空间,区内并不产生气体电

离。电晕区在离放电极表面大约2~3mm的范围内。在这一区域内,气体由于放电极表面有非常高的电场强度而电离,产生大量的正离子和电子。放电极若施加的是负电压,则产生负电晕放电,电子移向正极(阳极)而正离子移向放电极本身(阴极)。

2.尘粒荷电:由于电晕区内产生的离子或电子进入电晕的外区,并与中性分子发生碰撞,使尘粒荷电。荷电量的大小与尘粒的粒径、电场的强度、离子的热能及停留时间等因素都有关。通常我们认为尘粒荷电有两种机理:即电场荷电和扩散荷电。前者是由于在电场作用下,离子与尘粒碰撞,粘附于尘粒上荷电。后者是由于离子的不规则热运动、气体扩散与尘粒碰撞、粘附,使尘粒荷电。

3.收尘:粉尘荷电后,在电场作用下按照自载电荷的极性,向极性相反的电极运动,并沉积在该电极的表面上。通常将粉尘垂直于极板的运动速度称之为驱进速度。驱进速度的大小与粉尘的荷电量、电场速度、气体性质等因素有关系。带负电荷的粉尘与收尘极接触后,随即失去电荷,成为中性粒子粘附于电极的表面。然后借助振动装置使电极产生抖动,尘粒从电极的表面脱落,落入电除尘器底部灰斗中,然后通过灰道输送至灰库。

4、高频电源简介

高频电源是把三相工频电源通过整流形成直流电,通过逆变电路形成高频交流电,再经整流变压器升压整流后形成高频脉动电流送除尘器,其工作频率在20kHz左右。

高频电源的供电电流由一系列窄脉冲构成,其脉冲幅度、宽度及频率可以调整,可以给电除尘器提供各种电压波形,因而可以根据电除尘器的工况提供合适的电压波形,提高电除尘器的除尘效率,提高供电效率。和传统电源相比,高频电源具有以下特点:

1、火花控制方面:工频整流电源工作时二次电压平均值不高,但是二次电压峰值很高(平均值50KV时,峰值可以达到75KV以上),电场内部会由于很高的峰值电压而很容易产生火花,而且火花至少要维持20ms,再加上火花恢复过程至少30~50ms,影响运行参数降低除尘效率;如果火花控制策略不好,每分钟50~60个火花的话,那么累计起来影响除尘器运行的时间就比较长,除尘效率更加严重,同时火花产生时还浪费很多电能。

而高频整流电源后,二次电压纹波很小,基本是平稳直流,不会出现工频供电时很高的峰值电压,工作时电场内极不易放电,可以把运行电压、电流大幅提升,从而提高除尘效率。

同时在电场产生火花放电时,高频电源系统可以在20us内快速关断IGBT,从而缩短火花影响的时间,提高除尘效率,同时还可以大大降低火花浪费的能耗。因此,前级电场采用高频电源对提高前部电场的除尘效率有明显效果。

2、反电晕的抑制方面:工频电源受电源50Hz限制及供电时不可以偏励磁的限制,在间歇供电时,每次间歇时间必须是20ms的倍数(即2个半波的倍数),跨度较大,在优化充电比时间歇时间不够精细。

采用高频电源后,充电间歇时间非常灵活,最小单位可到20us,在应用反电晕自动优化时,优化的精细程度和准确度大大提高,从而较工频系统可以提高除尘效率。

高频电源因为有着除尘效率高,火花率低,能耗小的特点,所以作为前三级电厂的电源使用。

5、脉冲电源简介

韩国浦项制铁POS MPS-2000 是一款为清除细微粉尘和高比电阻粉尘而开发的脉冲电源,应用于钢厂烧结厂、火力发电站、炼油厂等领域。

低压控制系统分为Control Panel 控制部分、高电压(High-V oltage) Tank 部分、及HMI 部分。POS Micro Pulse System 是脉冲加电方式,除尘板和放电极板之间,在直流电压(Vdc) 上面重叠短幅宽(120μs 左右)的脉冲电压(Vps),加到除尘极板。脉冲电压用来提供强电晕,直流电压(Vdc)用来收尘。

5.1脉冲电源的优点

1.给电场施加的电压由电晕开始电压保持(Vdc) 加Micro second 短脉冲高电压(Vps) 除尘室施加电压与两个电压成分之和相同。使其工作电压达到70~80kv,加大了粉尘的荷电能力。由于脉冲很窄(120μs 左右),使得电除尘总的能耗大幅下降,比工频电源节电约60~80%。

2.脉冲电源的供电方式,抑制了大量无用的电子流吸附于阳极板的高比电阻粉尘之上,从而有效地防止了电场中反电晕的的产生。电场锅炉的粉尘,一般为高比电阻粉尘;特别是后级电场,粉尘颗粒微细,比电阻高,更易产生反电晕。反电晕的产生,会严重降低除尘效率。

3.在原有电除尘器改造或者新装时安装施工简便,直接安装即可,不需要对电除尘本体进行改造。

4.此外,脉冲电源也可以DC 加电单独运行。

6、高频加脉冲电源在火电厂的应用效果

6.1国内首家使用高频脉冲电源:

有针对性的在前三电场使用高频电源,后两个电场使用脉冲电源。在原本体不变的情况下,最大程度的发挥了各电源的性能特点,取得了即节约能源又提高了除尘效率的良好结果。1号机组作为集团公司内首台改造成功案例,该方案与集团内外其他电除尘设备除尘效率的比较,处于领先水平。

6.2除尘效率

2014年11、12月,陕西省环境监测站电除尘器效率测定结果:

本次试验期间1号炉出力为1700t/h并稳定运行,1号炉电除尘器各电场均正常投入运行时,电除尘器的除尘效率为99.90%,烟气粉尘含量13.3 mg/Nm3。2号炉电除尘器各电场均正常投入运行时,电除尘器的除尘效率为99.92%,烟气粉尘含量14.2 mg/Nm3。1、2号炉电除尘器的效率有大幅提高,烟气粉尘含量均达标(烟气粉尘含量≤20 mg/Nm3)。

6.3电场耗电情况

通过现场统计记录,改造后1号炉电场平均耗能801.3KW,2号机平均耗能778.6KW;能耗比原的300KW左右运行值有较大增加,但仍远小于电除尘的出厂保证值(保证值:2553KW)。

能耗增大的原因是1、2、3电场的高频电源未启用节能模式。节能模式的启用,可导致除尘效率的下降。

7、结论

国内如今大多数火电厂静电除尘器使用的是高频电源或传统电源,传统电源如今已经不能满足国家的环保要求,而高频电源对高比阻粉尘的除尘效果相对较差。在未来,国家对环保要求将会越发的严格,高频与脉冲电源的组合对电厂除尘效果提升比较明显,或将成为必要的趋势。

高压静电除尘原理

2.1 主要技术参数 2.1.1 输入、输出参数 GGAJ02(GAC)高压静电除尘用整流设备常用系列产品输入、输出技术参数见附表(一)。 2.1.2 输出调节范围 输出电流调节范围:0~100%额定值。 输出电压调节范围:0~100%额定值。 2.1.3 调压方式 晶阐管调压,可控制的晶阐管导通角范围为0~172度。 2.1.4 运行方式 100%额定输出电流,连续。(负载等级“I”级)。 2.1.5 效率和功率因数 效率≥80%,功率因数≥0.8。 2.2 使用条件 ① 海拔不超过1000m。若海拔高于1000m时,其额定值应按相关标准作相应修正。 ② 对于控制柜,环境温度为-10~+40℃;对于高压整流变压器,环境温度不高于+40℃,不低于变压器油所规定的凝点温度。 ③ 空气最大相对湿度为90%(在相当于空气20±5℃时)。 ④ 无剧烈振动和冲击,垂直倾斜不超过5%。 ⑤ 运行地点无导电爆炸尘埃,没有腐蚀金属和破坏绝缘的气体或蒸气。 ⑥ 输入交流电压持续波动范围不超过额定值±10%; ⑦ 输入交流电压频率波动范围不超过±2%; 2.3 产品的功能 2.3.1 控制方式选择 本系列产品具有多种控制方式可供在不同的工况条件选择运行。 ① 火花跟踪方式:为最常用的控制方式,适用于大部分工业现场的除尘、除雾、除焦油等应用。设备的火

花率可以调节,调节范围为:4次/每分钟~120次/每分钟。高火花率状态适用于粉尘浓度高,工况恶劣的场合,能起到加强粉尘荷电率和火花清灰的作用;低火花率状态适用于除尘器末电场或工况稳定的场合,在保证除尘效率的同时又减少电场因放电而产生的二次飞扬。 ② 功率跟踪方式:适用于高比电阻粉尘,易出现反电晕的应用场合。运行功率跟踪方式时,GAC-120微机控制器综合各反馈信号的变化情况,自动寻找最佳工作点,保持向电场输入最高有效功率。 ③ 电压跟踪方式:适用范围同功率跟踪方式,保持向电场输入最高电压。 ④ 简易间歇脉冲供电方式:适用于高比电阻粉尘或粉尘浓度很低的场合。高低脉冲比例有1:2和1:4两种可选。 2.3.2 故障检测保护功能 2.3.2.1显示故障类型 系统出现下列故障时,自动报警,跳闸切断主电源,并显示故障性质。 ① 一次过电流显示器闪动显示“LOAD” ② 二次开路显示器闪动显示“OPEN” ③ 二次短路显示器闪动显示“SHORT” 2.3.2.2 开机自检 开机时,处理器对系统主要部件进行自检,若发现故障,设备无法启动,显示器显示系统故障类型:“RAM ERROR”:外部存贮器故障; “EEPROM ERROR“:电可擦除存贮器故障; “A/D ERROR”:模数转换故障; “SYSTEM ERROR”:系统故障。 2.3.2.3 变压器油温和危险气体报警 变压器油温超过设定报警值,或除尘器内易爆气体超过报警值时,输出电流、电压自动降为零。油温超报警值时,显示器闪动显示:“TEMP”;危险气体超标时,显示器闪动显示:“GAS”。当上述故障消除时,输出电流电压自动恢复。当变压器油温超过设定极限值时,跳闸并报警。 变压器油温和危险气体报警为用户可选功能。 2.3.3 闪络控制功能 高压静电除尘用整流设备的控制部分必须准确地捕捉电场的闪络信号,并迅速作出适当的处理。如果小闪络信号(闪络时,二次电流、电压波形只发生高频畸变,二次电流波形变宽,而二次电流幅度没有明显增高)无法捕捉,将导致下一个波出现二次电流幅度增高,即过渡成更强闪络;在出现闪络后如果以固定半波数关

静电除尘器

静电除尘器 静电除尘器的工作原理是利用高压电场使烟气发生电离,气流中的粉尘荷电在电场作用下与气流分离。负极由不同断面形状的金属导线制成,叫放电电极。 正极由不同几何形状的金属板制成,叫集尘电极。静电除尘器的性能受粉尘性质、设备构造和烟气流速等三个因素的影响。粉尘的比电阻是评价导电性的指标,它对除尘效率有直接的影响。比电阻过低,尘粒难以保持在集尘电极上,致使其重返气流。比电阻过高,到达集尘电极的尘粒电荷不易放出,在尘层之间形成电压梯度会产生局部击穿和放电现象。这些情况都会造成除尘效率下降。 静电除尘器的电源由控制箱、升压变压器和整流器组成。电源输出的电压高低对除尘效率也有很大影响。因此,静电除尘器运行电压需保持40一75kV乃至100kV以上。 基本结构 静电电除尘器由两大部分组成:一部分是电除尘器本体系统;另一部分是提供高压直流电的供电装置和低压自动控制系统。电除尘器的结构原理图如图1所示,高压供电系统为升压变压器供电,除尘器集尘极接地。低压电控制系统用来控制电磁振打锤、卸灰电极、输灰电极以及几个部件的温度。 工作原理 电除尘器的基本原理是利用电力捕集烟气中的粉尘,主要包括以下四个相互有关的物理过程:(1)气体的电离。(2)粉尘的荷电。(3)荷电粉尘向电极移动。(4)荷电粉尘的捕集。 荷电粉尘的捕集过程:在两个曲率半径相差较大的金属阳极和阴极上,通过高压直流电,维持一个足以使气体电离的电场,气体电离后所产生的电子:阴离子和阳离子,吸附在通过电场的粉尘上,使粉尘获得电荷。荷电极性不同的粉尘在电场力的作用下,分别向不同极性的电极运动,沉积在电极上,而达到粉尘和气体分离的目的。 特点

静电除尘器的常见故障与处理方法

电除尘 一、基础知识 1、什么是电晕放电? 电晕放电是指当极间电压升高到某一临界值时,电晕电极处在的高电场强度将其附近气体局部击穿,现在电晕极周围出现淡蓝色的辉光并伴有咝咝的响声的现象。 2、什么是火花放电? 在产生电晕放电后,继续升高极间电压,妥到某一数值时,两极间产生一个接一个瞬时的,通过整个间隙的火花闪络和噼啪声的现象。 3、什么是电弧放电? 在产火花放电后,继续升高极间电压,当到某一数值时,就会使气体间隙强烈击穿,出现持续放电,爆发出强光和强烈的爆裂声,并伴有高温、强光,将贯穿阴极和阳极的整个间隙,这种现象就叫电弧放电。 4、简述电除尘器的工作原理。 电除尘器是利用高直流电压主生电晕放电,使气体电离,烟气在电除尘器中通过时,烟气中的粉尘在电场中荷电,荷电粉尘在电场力的作用下向极性相反的电极运动,到达极板

或极线时,粉尘被吸附到极板或极线上,通过振打装置打落入灰斗,而使烟气净化。 5、简述粉尘荷电的过程。 在电除尘器阴极与阳极之间施以足够高的直流电压时,两极间产生极不均匀电场,阴极附近的电场强度最高,产生电晕放电,使其周围气体电离,气体电离主生大量的电子和正离子,在电场力的作用下向异极运动,当含尘烟气通过电场时,负离子和负离子与粉尘相互碰撞,并吸附在粉尘上,使中性的粉尘带上电荷,实现粉尘荷电。 6、荷电粉尘在电场中是如何运动的? 处于收尘极和电晕极之间的荷电粉尘,受四种力的作用,其运动服从牛顿定律,这四种力是:尘粒的重力、电场作用在荷电尘粒上的静电力、惯性力和尘粒运动时的介质阻力,重力可以忽略不计,荷电尘粒在电场力作用下向收尘极运动时,电场力和介质阻力很快达到平衡,并向收尘极作等速运动,此时惯性力也可忽略。 7、荷电尘粒是如何被捕集的? 在电除器中,尘粒的捕集与许多因素有关,如尘粒的比电阻、介电常数和密度,气流速度,温度和湿度,电场的伏

高频电源

a)整流和滤波 三相交流电压经整流桥得到直流电压,再经滤波,输出平直的直流电压。 b)高频逆变 直流电压经由IGBT逆变桥、谐振电容、谐振电感组成的串联LC谐振逆变电路,逆变成高频交流电压。 c)高频升压整流 逆变波形经过高频变压器升压,再经高频整流桥整流,从而得到ESP所要求的直流高压。 d)控制与调整 智能控制系统检测ESP工况,根据设置的参数,自动调整电源输出电压和电流大小,波形等,并给出设备是否正常指示,工况是否合适. 高频电源主要有以下几大特点: 1.高效节能。 高频电源相对于常规工频(50Hz)电源而言,高频的工作频率可达40KHz,相当于工频电源的800倍,高频电源本身的效率与功率因素高,效率≥92%,功率因素≥0.92,比工频电源基础节能达35%以上。 2.提高电场运行电压,提高除尘效率。 高频电源纯直流供电时输出电压纹波,通常小于5%,远小于工频电源的35%-45%的纹波百分比,运行平均电压可达工频电源的1.3倍,运行电流可达工频电源的2倍,可有效增强电场的粉尘荷电,提高除尘效率。

3.适应性强,适合高浓度和高比电阻粉尘。 在燃用低硫煤,飞灰,高比电阻粉尘时会存在反电晕现象,引起除尘效率低,理论和 实践均表明,间歇脉冲供电可以在一定程度上克服高比电阻粉尘引起的反电晕。高频电源 脉冲供电时具有更窄的脉冲宽度,更有利于电场降低反电晕程度,从而提高收尘效率。 4.火花控制特性好。 高频电源串并联混合谐振的拓扑结构使其具有恒流特性,可以有交抑制电场火花的冲击,30uS内迅速熄灭火花。因而火花能量小,对供电冲击小,判断时间短同,电场电压恢 复速度快(仅需工频电源恢复时间的20%),提高了电场的平均电压,提高了除尘效率。 5.与工频相比,高频电源节能效果明显 高频电源提供给电场的电能有效利用率高,减少了无功的供电损耗,高频电源提高了 粉尘荷电能力,明显提高除尘效率。在保证除尘效率不变的情况下,与工频电源相比,节 能幅度最高可达90%,减少粉尘排放40%-70%. 6.安装方便,节省费用。 高频电源直接安装在电除尘器顶部,节省配电室空间,节省部分信号电缆和控制电缆,减少安装费用。 7.体积小,重量轻,高度集成。

高频电源在静电除尘器上的应用分析

高频电源在静电除尘器上的应用分析 发表时间:2015-12-03T14:13:52.597Z 来源:《电力设备》2015年4期供稿作者:姚凌飞何立刚陈崇荣 [导读] 浙江菲达环保科技股份有限公司高频电源采用现代电力电子技术,是将三相交流输入经过三相整流为直流电源,经逆变为高频交流电,最后整流输出直流高压。 姚凌飞何立刚陈崇荣 (浙江菲达环保科技股份有限公司 311800) 摘要:本文介绍了高频电源应用于静电除尘器的节能减排原理,通过工程实例的对比试验发现:高频电源与工频电源比较,节能率达到50%以上,节能减排效果显著。 关键词:高频电源;静电除尘器;应用 随着国家排放标准的趋严,以及节能减排国策的施行,大气粉尘污染治理应用行业也出现了新的特点。提高除尘效率,降低能耗,成为发电企业当前的一个主要问题。大功率高频电源是新一代静电除尘器的供电装置,与目前普遍使用的工频电源相比,可以在确保除尘效率的前提下,大幅度减少静电除尘器的电耗。某发电厂将静电除尘器由工频电源改为高频电源后,取得了显著的节能效果。 一、高频电源原理 高频电源采用现代电力电子技术,是将三相交流输入经过三相整流为直流电源,经逆变为高频交流电,最后整流输出直流高压。变换器实现直流到高频交流的转换,高频变压器和高频整流器实现升压整流输出,为除尘器提供电源,高频电源原理见图1。 1.1高频电源节能原理 静电除尘器的工频电源频率低,电源转换效率只有75%,而高频电源转换效率为95%,此项节电约20%。 静电除尘器采用工频电源供电产生电晕时,只有极少量电能用于烟尘荷电,绝大部份电能做了无效的空气电离。而用高频电源向除尘器供电时,用高频率、窄带宽(微秒级)的脉冲使烟尘荷电,其特点是荷电量大而能耗非常少,使电能大幅度下降。 高频电源是三相整流后,在纹波非常小的直流上再进行逆变,因而直流脉冲的幅值可以有效控制在非火花区内,基本不产生火花,即使产生火花,也可以在5~10100μs内自行关断快速响应,进行火化控制,而工频电源火花多而耗能大,一旦产生火花要10ms(即10000μs)内才能关断响应,所以高频电源可以达到节电的目的。高频电源的节能原理图如图2所示。 1.2高频电源除尘增效原理 高频电源由于高压转换始终工作在50kHz以上,可以控制在非火花区内把脉冲幅值调到最大,即二次电压调到最高,不会像工频电源出现放电的时间,而一直保持可荷电状态,因而烟尘总体荷电量大,特别对微细烟尘也容易荷电,所以从理论上,高频电源可达到提高除尘率的作用。 对高比电阻烟尘,若用工频电源供电,很易产生反电晕放电,一旦出现反电晕放电,会产生反电晕放电扬尘,影响出口烟尘指标,而用高频直流脉冲供电,供电的脉冲时间任意可调,具有更宽的脉冲宽度和脉冲频率选择自由度、更陡峭的电压上升率,使高比电阻烟尘在集尘极上有足够的放电时间,基本消灭了反电晕放电,使除尘效率提高。直流脉冲幅值可控,不会产生火花放电,即使产生火花,在5~10100μs内即自行关断响应,进行火化控制,不会因火花而产生扬尘,所以从理论上,高频电源可达到提高高比电阻烟尘脱除率的作用。 二、工程实例 2.1改造前的设备状况 某发电厂2×150MW机组某年投入商业运行,所配锅炉为哈尔滨锅炉厂480t/h循环流化床锅炉,配套福建龙净环保股份公司生产的BE301/-4/23/450/14.53/8×4-G型双室四电场静电除尘器,电场有效断面积301m2,最大烟气量为763235m3/h,设计除尘效率99.8%。除尘器原采用380V三相控工频电源,为了达到节能目的,拟将静电除尘器电源改造为高频电源。 2.2改造方案 2012年开始对两台机组中的一台静电除尘器进行改造,经过几天完成设备的安装,通过安装8台HEP8000高频高压自冷型数字除尘电源代替原相控工频高压电源对电场进行供电。为保证设备正常运行和便于对比验收,最大限度提高产品运行可靠性,原有8台工频电源控制柜和整流变压器均保留,通过增设一台三点式转换柜,确保新柜体与原电源及电场接口位置不变,使新旧电源通过转换柜实现方便切换,

电除尘器高频用电源介绍

一、 电除尘器高频电源 JHGP型电除尘器高频电源介绍 概述 除尘器高频高压电源是国际上先进的电除尘器供电新型电源,具有完全自主知识 产权,佳环电子在专业生产电除尘用高压电源技术上处于领先地位。 该产品与传统的可控硅控制工频电源相比性能优异,具有输出纹波小、平均电压电流高、体积小、重量轻、集成一体化结构、转换效率与功率因数高、采用三相平衡供电对电网影响小等多项显著优点。特别是可以较大幅度地提高除尘效率,所以它是传统可控硅工频电源的革命性的更新换代产品,实现了电除尘器供电电源技术水平质的飞跃。 该产品主要开关器件采用了德国semikrom(西门康)公司的器件,控制采用数 字化控制,具有多种通讯方式,以便集中管理控制。 可控硅交流 工频 直流 电除尘器 电场 相整流变压器 工频电源 直流k交流直流电除尘器 电场 高频相 整流变压器 二、 高频电源 工频电源与高频电源原理结构图JHGP型高频电源的特点 高频 逆变器 整流 电路

▲更好的节能效果:高频电源具有高达93%以上的电能转换效率,在电场所需相同的功率下,可比常规电源更小的输入功率(约20%),具有节能效果。;有更好的荷电强度,在保证了粉尘充分荷电的基础上,可以大幅度减少电场供电功率,从而减少无效的电场电功率。 ▲三相平衡供电:高频电源为三相输入,三相供电平衡,功率因数大于0.95, 无缺相损耗,无电网污染。 ▲可提高电晕功率:高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。 ▲更好的电源适应性:与工频电源相比,高频电源的适应性更强。高频电源的输出由一系列的高频脉冲构成,可以根据电除尘器的工况提供最合适的电压波形。间歇供电时,供电脉宽最小可达到1ms,而工频电源最小为10ms,可任意调节占空比,具有更灵活的间歇比组合,可有效抑制反电晕现象,特别适用于高比电阻粉尘工况。 ▲更好的火花控制特性:高频电源的火花关断时间<10μs而工频电源需 10ms,火花能量很小,电场恢复快,提高了电场的平均电压,从而可提高了除尘效率。 ▲完善的保护功能:为保证设备的安全可靠运行,具有输入过流、IGBT过流过热、输出开路短路保、直流母线电压过低、IGBT散热器和变压器油过热、油箱压力过高、油箱油位过低等保护,基本上是属于免维护的产品。 ▲方便的调试界面:高频电源一般安装于除尘器顶部,JHGP高频电源装有液晶触摸人机界面,在就地可完成开停、设定参数、查看各种运行参数等功能,大大提高设备调试的方便性。 ▲标准的联络通讯能力:采用标准的MODBUS 协议通讯,可以方便与上位机系统通讯,实现远程管理和系统集成。 ▲更方便的安装方式:高频电源采用集成一体化结构,体积更小、重量更轻,高频电源直接安装在电除尘器顶部,节省配电室空间,节省大部分信号电缆和控制电缆,减少安装费用。高压出线位置及轮子位置与工频整流变压器完全一样,非常适合电源的改造。

大气污染控制工程课程设计静电除尘器

南京工程学院 课程设计说明书(论文)题目锅炉烟气静电除尘器的设计 课程名称大气污染控制工程 院(系、部、中心) 康尼学院 专业环境工程 班级 K环境091 学生姓名朱盟翔 学号 0 设计地点文理楼A404 指导教师李乾军 设计起止时间:2012年5月7日至 2011 年5月18日 目录 烟气除尘系统设计任务书

一、课程设计的目的 通过课程设计近一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 二、设计原始资料 锅炉型号:SZL4-13型,共4台 设计耗煤量:600 kg/h (台) 排烟温度:160 ℃ 烟气密度(标准状态): kg/m3 空气过剩系数:α= 排烟中飞灰占煤中不可燃成分的比例:18% 烟气在锅炉出口前阻力:800 Pa 当地大气压力: kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按m3

烟气其他性质按空气计算 煤的工业分析元素分析值: C ar =68% H ar =% S ar =% O ar =6% N ar =1% W ar =4% A ar =16% V ar =14% 按锅炉大气污染物排放标准(GBl3271-2011)中二类区标准执行。 烟尘浓度排放标淮(标准状态下):30mg/m 3 二氧化硫排放标准(标准状态下):200mg/m 3。 基准氧含量按6%计算。 净化系统布置场地如图1所示的锅炉房北侧15m 以内。 图1. 锅炉房平面布置图 图 2. 图1的剖面图 三、设计内容 (1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 (2) 净化系统设计方案的分析确定。 (3) 除尘器的比较和选样:确定除尘器类型、型号及规格,并确定其主要运行参数。

静电除尘的实验报告.doc

静电除尘的实验报告 静电除尘是气体除尘方法的一种。含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积。在冶金、化学等工业中用以净化气体或回收有用尘粒。利用静电场使气体电离从而使尘粒带电吸附到电极上的收尘方法。在强电场中空气分子被电离为正离子和电子,电子奔向正极过程中遇到尘粒,使尘粒带负电吸附到正极被收集。 【操作步骤】 1. 将高压电源的输出端接到静电除尘仪玻璃筒的中轴铜杆上,地线接到紧贴玻璃筒内壁的螺旋铜线接头上,同时把电源的地线接地。 2. 在玻璃筒的下方的铁盒里点燃蚊香,可看到浓烟上升。 3. 开启高压电源,逐渐加大电压,电压升高到一定值时,烟尘立即消失。 4. 演示完毕后将电源电压降到0,关掉电源。 【实验原理】 本次实验装置中沿圆柱筒的轴线为一根粗导线,作为除尘仪的正极;贴在玻璃筒内部的螺旋导线作为除尘仪的负极。给除尘仪的两极加上高压之后,在玻璃筒内就形成了轴对称的非均匀强电场,强电场使空气分子电离,离子在电场力的作用下向两极移动时,碰到烟尘微粒使微粒带电,因此,带电微粒会在电场力

的作用下,分别向中轴导线和管壁移动;同时,具有电介质性质的烟尘在强电场中将产生极化成为电偶极子,电偶极矩在非均匀电场中也要受力,因此烟尘纷纷向中轴导线移动,并在那里聚合成稍大的尘粒落下,变成炉渣的一部分。 【静电除尘的特点】 与其它除尘器相比,静电除尘具有以下优点:(1)除尘效率高,可达99.5%,可收集0.01--0.001um级的超细粒子。其它除尘器无法相比。(2)电耗小,运行、维护费用低。(3)处理量大,可处理高温、高压及腐蚀性气体。其缺点是一次性投资较高。 【收尘效率】 悬浮于气体中的荷电粒子,其运动服从经典力学的牛顿定律。荷电粒子主要受到四种力的作用:重力、电力、粘滞力和惯性力。1922年,Deutch导出收尘效率公式:η=1-e-Aω/Q 式中η—效率,ω—粉尘速度, A—极板面积,Q—烟气量 【除尘电压】 为保证电场强度达到或接近临界击穿状态,可通过增大电压或减小极板间距的方式。一般而言,工业除尘器电压在 40--80KV甚至150KV,这对节省极板材料是必要的。民用除尘器如油烟净化器的电压在10--20KV,这对安全和环保是必要的,因为过高的电压即不安全又易产生大量的臭氧和氧氮化合物,产生二次污染。总之,静电除尘是一种环保的除尘方式,在工业

磁控溅射高频脉冲(A-2K)电源的研制1

中南民族大学 硕士学位论文 磁控溅射高频脉冲(A<'2>K)电源的研制 姓名:刘亚东 申请学位级别:硕士 专业:等离子体物理 指导教师:孙奉娄 20080501

摘要 根据调研和文献,对不同的溅射技术进行了比较,针对脉冲磁控溅射(Pulse Megnetron Sputtering(PMS))的特点及受限于电源技术的瓶颈,提出了A2K(Active Arc Killer)电源指标:输出频率最高达300kHz,负向电压在0~-500V可调,负向最大峰值电流达2A,正向电压在0~100V可调,正向最大峰值电流达1A,负向占空比10%~60%范围可调的双向脉冲电源。 为了实现电源指标,分析了拟设计电源的难点:主要是受电力电子器件的限制,电压、电流和频率同时达到所需水平的电力电子器件目前在国内无法找到,即使找到了成本也是相当高。因此,本文从结构上入手,提出了整体的电源解决方案,它由两个独立的DC/DC变换(分别用于调节正、负向电压)、一个斩波系统(用于形成正向脉冲)和一个逆变倍频系统(用于形成负向脉冲)构成。逆变倍频系统及其与斩波系统的配合是核心问题,方案在一定程度上突破了电力电子器件的限制,为溅射电源设计提供了新的方案。 根据总体方案,详细论述了主电路的拓扑选择、功率器件的选择、磁性器件的设计、缓冲电路的选择、控制电路和驱动电路的设计。在比较了各种拓扑优缺点之后,根据电源指标要求,选择了全桥电路作为负向调压系统的DC/DC变换拓扑,正激电路作为正向调压系统的DC/DC变换拓扑,逆变倍频系统也采用全桥逆变,副边采用可控整流。由于对频率有较高要求,功率开关管全部采用功率MOSFET。讨论了中高频下Miller效应对功率开关管驱动的影响及其解决方案,还讨论了缓冲电路的作用及参数选择。 本文还从工程经验上详细描述了电源调试中出现的问题和如何解决这些问题的详细过程。通过示波器检测驱动信号实时波形,验证了Miller效应的影响。通过检测负载电压和电流波形、电源在功能上达到了设计指标。 实际用于磁控溅射实验,与RF、DC溅射进行比较,验证了脉冲溅射的优势和电源的实用性,此电源可作为实验室磁控溅射试验电源。 关键词:脉冲磁控溅射;高频脉冲电源;逆变倍频;Miller效应

静电除尘模块

静电场模块 立项报告 编号: 一、立项目的、意义(限800字之内) 1、项目所面向的我市经济、社会和科技发展等有效需求 中国室内空气环境治理产业将处于快速成长期,空气净化器行业在中国有巨大的增长空间。在我国,近些年来随着各类流行性传染疾病,人们对室内空气质量越来越关注,从政府、企业到消费者都开始非常注重空气质量,购买空气净化器成了人们预防病毒传播的方法之一,目前我国空气净化器家庭保有量不足1%,未来的空气净化器将呈现突飞猛进发展之势。 静电除尘由于其除尘效率高、运行阻力小、处理烟气量大和耗能少等诸多优点而备受人们的关注,并迅速占领了除尘市场。随着经济的持续高速发展,以及环保标准的提高,各国在空气净化领域对静电除尘应用技术和装置设备等方面进行了深入的研究,并取得了一定的成就。

2、项目先进性、重要性、可行性以及在行业发展中的地位和作用 静电集尘是气体除尘方法的一种。含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积。静电集尘的先进性与重要性:1、净化效率高:能够铺集小于0.01微米的细粒粉尘。2、在设计中可以通过不同的操作参数,来满足客户所要求的不同净化效率/3、阻力损失小:阻力损失很小。不影响空调进风、出风效果。 4、处理风量范围广:适用于各种大小风量。5、无噪音:自身的技术原理决定了静电除尘方式没有噪音产生。 自从1907年,科特雷尔首次将静电除尘技术应用到工业烟气的净化中,并获得成功后,今天,静电除尘技术己经广泛应用于钢铁工业、冶炼工业、火电工业、化学工业、空气净化等甚至所有领域。据资料统计,从1955年起到如今,静电除尘器在空气污染的处理量上大致为指数増长形势,如今对环境保护的要求更是严苛,可以预想到静电除尘器将会得到更广阔的应用和发展。 二、项目主要研究内容(限1500字之内) 1、项目主要研究内容 研究通过与高压电源的连接,静电模块的高压正极与针相连,在尖端电极附近聚集起空间电荷,通过高压强度与正负极间的距离的调节,产生高效安全稳定的电晕放电,减少辉光放电而产生臭氧的几率。 3、项目涉及的技术领域、工艺范畴 项目涉及工业设计、控制集成电路的开发设计、材料加工工艺等。需要了解熟悉空气净化器国家标准、家用电器安全技术标准、医疗器械备案认证安全等技术标准规范、医院消毒卫生标准等。 4、解决的关键技术问题 通过高压放电,利用高压电力使空气中的部分氧气分解后聚合为臭氧,实现臭氧发生量可调,安全稳定。 5、采用的技术原理、技术方法、技术路线以及工艺流程 静电除尘空气净化技术利用高压直流电场使空气中的气体分子电离,产生大量电子和离子,在电场力的作用下向两极移动,在移动过程中碰到气流中的粉尘颗粒和细菌使其荷电,荷电颗粒在电场力作用下向自身电荷相反的极板做运动,在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离

高频电源在火电厂静电除尘器中的应用

高频电源在火电厂静电除尘器中的应用 发表时间:2017-01-18T08:58:54.957Z 来源:《基层建设》2016年30期作者:白凌肖亮沈成喆郝大伟 [导读] 摘要:本文介绍了电除尘器高频电源工作原理,分析了高频电源相对于传统工频电源的优越性. 神华国华三河发电有限责任公司河北三河 065201 摘要:本文介绍了电除尘器高频电源工作原理,分析了高频电源相对于传统工频电源的优越性.以三河发电公司的4台机组电除尘器改造为例,介绍了高频电源在火电厂电除尘器上的改造效果、运行控制策略及存在的问题,为其他公司的电除尘高频电源改造提供宝贵数据及经验,具有很好的应用前景。 关键词:静电除尘器;高频电源;控制;策略 概述 随着新环保法的实施,以及当下雾霾天气的加剧,人们对环保要求越来越高提高。《火电厂大气污染物排放标准》(GB13223-2011)对燃煤发电厂的烟尘排放浓度作出了更为严格的限制,重点地区烟尘排放标准变为5mg/Nm3。目前,国内部分火力发电厂电除尘器很难达到新标准要求,作者所在的三河发电公司对对4台发电机组电除尘器进行了高频电源改造,改造后运行效果良好,烟尘排放值满足国家标准。 1工作原理 1.1火电厂静电除尘器工作原理 电除尘器除尘是利用高压电建立起足以使气体发生电离的电场,使流经电场的灰尘粒子荷电(带上电子或离子),并在电场力的做用下使荷电灰尘粒子向异性电极运动,并积附在异性电极上,从而实现灰尘粒子与烟气流的分离,通过振打使阴极线、阳极板上积灰被振落,掉入下部灰斗中。 电除尘器分为本体和电气两大部分。本体部分主要包括阴极系统、阳极系统、进出口封头和气流均布板、壳体、灰斗及保温等。在绝缘子室、阴极振打瓷轴和灰斗处都设置有电加热器。电气部分为高频电源,高频电源一次部分:主断路器、主接触器、经三相整流模块(整流为580V直流)、滤波电容、IGBT模块(高频开关到5~20KHz)、谐振电容、高频整流变压器等组成,高压侧柜门装有电源指示、运行和故障指示、就地操作开关、二次电压表、二次电流表。高频电源低压控制部分:控制电源开关、主冷却风机电源、柜顶风机电源、电源板、控制器、二次控制器件,同时高频电源集成该电场阴阳极振打控制等。 1.2高频电源工作原理 高频电源是将三相交流电经整流和滤波后得到约530V左右的直流电压,经全桥逆变,形成20KHz左右的交变电流,再经高频变压器升压整流后形成高频高压脉动直流送电除尘器。 2高频电源介绍 高频高压整流电源(简称高频电源)是新一代的电除尘器供电装置,可广泛应用于电力、冶金、化工、水泥等行业的烟气粉尘治理,可实现高效除尘、保护环境的作用。该产品是我公司独立研发、拥有完全自主知识产权的高新技术产品。电除尘器高频电源是利用高频开关技术而形成的逆变式电源,其供电电流是一系列窄脉冲构成,可以给电除尘器提供具有从接近纯直流到脉动幅度很大的各种电压波形。高频电源控制方式灵活多样,可根据电除尘器运行工况选择最合适的电压波形,减少电除尘能耗,提高除尘效率;另外,高频电源还有体积小、重量轻、节省电缆用量,三相平衡供电等诸多优点。 2.1高频电源优点 从图1可以清楚的看出,使用工频电源时,二次电压峰值会高出平均值约1.3倍,电场会因较高的峰值电压而放电,从而降低了电场输入电流。而高频电源可以很好避免这一问题,提升电场输入电流,即增加集尘板电流密度。 2.2大幅提升集尘板电流密度的重要意义 单一供电分区的设计电流量=分区集尘板面积*0.35~0.38mA/m2(电流密度)。那么设计用2000mA的电源电流量其实暗指本体分区的集尘板面积比较大,但运行中工频电源基本只能运行到1000mA左右电场就有可能因为峰值电压很高而放电,这样的话实际集尘板运行电流密度仅为0.17~0.19mA/m2,较设计电流密度,或者说饱和电流密度还差距很大,这还没有考虑电场内部电流不均匀的问题。从而严重影响了工频电源运行中的除尘效率。 而改用高频电源后,如果运行电压依然达到火花放电水平时,电场输入电流较工频会有大幅提升,可以接近甚至达到设计板电流密度或饱和电流密度,从而挖掘出除尘器潜在的除尘效率。 2.3高频电源控制器 HIRCON高频电源控制器采用两块32位DSP处理器作为核心,完成所有信号采样、数学运算、产生调整触发脉冲,实现电场内火花的检测判断及控制,把火花频率维持在一个合适的状态。 低压控制---HIRCON除对电除尘器高频整流变压器进行控制外,还集成了5路DO输出,可以对振打回路和加热回路进行控制,多达8套控制定时器,用于控制振打电机或电加热器在不同时段和控制模式下的振打频率及减电压的方式等。对于电磁振打锤方式的电除尘器,

静电除尘器规程

静电除尘器规程文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

目录 第一章电除尘器及相关辅助设备技术规范一、电除尘器本体技术特性:

1)负载短路保护。 2)开路保护。 3)变压器偏励磁保护。 4)变压器温度和瓦斯的声光报警和保护。 第二章电除尘器启动前的检查 1、电除尘器经过大修或长时间停运,在启运前,应对除尘器进行全面仔细的检查。 2、所有工作票应办理终结手续,检修期间的安全措施,如临时脚手架、遮拦等全部拆除,永久性栏杆、平台、走道、标牌等应恢复,场地清理干净。 3、通知电气检查相应设备的工作票是否已全部终结,临时安全措施(如临时接地线)是否已恢复备用状态。 4、电除尘器本体部分检查: 1)除尘器内部无杂物、灰块,阴极电晕线,收尘极板表面清洁、无杂 物、积灰。 2)阴极电晕线、收尘极板无明显变形、移位,电晕线、极板联接固定 部位无松动,框架支吊固定螺栓齐全、完好,无松动断裂现象。 3)绝缘部件上无灰尘、水份。 4)检查各电场室内无人工作后,将所有人孔门。检查孔全部严密关 闭,并上锁挂警示牌,钥匙交回集控制室,由锅炉运行班长负责集中所有钥匙插入安全联锁系统。 5)所有转动部件无异常现象,各连接部件、螺栓无松动。 6)振打转动机构保护罩及保险片完好,变速箱,各轴承润滑油充足, 油质合格。 7)所有楼梯、平台等工作场所,无杂物、照明完好、充足。

8)除尘器外壳保温完好,排灰装置完好,进灰口无杂物堵塞,灰沟畅 通。 9)冲灰器水量充足,各管道、阀门无泄漏现象。 10)蒸汽加热系统的各管道、阀门无泄漏现象,保温良好。 11)所有仪表、开关、报警信号、保护装置完整齐全,安全联锁盘的钥 匙全部清点归位。 5、控制柜及仪表盘的检查: 1)通知电气查询所有相关电气工作票应已全部注销,安全措施拆除。 2)各配电屏、专用盘、低压动力柜、高压控制柜、动力箱、继电器等 柜内应清洁无杂物,各电气连接部分接触良好,各种仪表齐全,指 示正确。 3)检查各控制屏及所有的振打、排灰、电加热装置的开关在解除位 置,低压程控柜开关在断开位置。 4)电气应检查除尘专用盘、振打加热专用盘的所有刀闸在断开位置, 电除尘值班员检查排灰、振打装置各动力箱开关在分开位置。 5)检查“二点式”隔离开关操作灵活,在接“接地”位置。 6)检查硅整流电源刀闸在断开位置,可控硅高压整流变压器的高、低 瓷套管无破裂、变压器、集油盘无漏油。呼吸器应完好,硅胶无受 潮,油位正常各处接地线良好。 7)值班室、控制室、配电室、变压器室、控制楼内外照明充足,各处 的事故照明处于正常备用。 6、通知电气值班员测量以下设备的电阻: 1)测量电除尘本体接地电阻应小于1欧姆。 2)用2500y摇表检查硅整流变压器的绝缘电阻,高压端反向对地电阻 值应大于1000兆欧,低压端对地绝缘应大于300兆欧。 3)用2500V兆欧表测量电场及高压供电系统的绝缘电阻应大于1000 兆欧。 4)用500V摇表测量电动机及电缆对地绝缘应大于0.5兆欧,控制 柜、整流器接地电阻不得大于4欧。 7、全面检查后,汇报班长或值长,并对检查情况作好记录。 8、电除尘器启动前的准备 1)准备工作必须在全面检查工作结束后进行。 2)通知电气运行或值长对电除尘变送电。 3)合上380V进线控制柜电源开关,对电除尘专用盘母线送电。 4)值长应在锅炉点火前12~24h,通知电除尘值班员投入绝 缘预加热,阴极振打瓷轴加热,灰斗加热,控制温度在80~90℃. 9、值长应在锅炉点火前2h,通知电除尘值班员投入振打装置,卸灰机。同时投入冲灰器的供水系统。其操作步骤如下:

高频脉冲专题

一、高频电源在电除尘前电场的应用 电除尘前电场的粉尘浓度大,且粉尘空间分布均匀,所以前电场主要作用就是收集粒径较大的颗粒,因此烟气电离越充分,,收尘越好。 根据除尘效率公式(多依奇公式):η=1-e-Aω/Q 其中:η为电除尘器的效率;A为电除尘器的比收尘面积;ω为带电粒子在电场中的趋进速度;Q为电除尘器的处理烟气量,电除尘中Q值,A值是既定的,所以只能通过改变驱进速度ω来提高电除尘的除尘效率。 驱进速度ω的公式:ω=0.11aE2/η 式中:a为带电粒子的粒径,E为场强;η为含尘烟气的粘度,所以只有提高粉尘荷电量或提高前电场电压才能提高驱进速度。 高频电源是通过整流桥把三项交流整流成直流,通过IGBT逆变和LC振荡,变成高频交流,再经整流变压器升压整流后,形成高频窄脉冲电流送到除尘器,负载运行时,高频起晕电压平均值和峰值一样高,有利于二次电流的提高,电晕功率增大,电场内粉尘的荷电能力也就增加了。 当使用间隙供电时,其脉冲宽度更窄,频率范围更大,可以有效抑制反电晕,提高除尘效率。 二、脉冲电源在电除尘末电场的应用 末电场粉尘颗粒小,质量轻,高频电源和公平的供电特性无法使其有效荷电,电场强度上不去,采用脉冲MPS脉冲电源技术,使用短宽度的脉冲施加高脉冲电压所产生的电场很稳定,而且不会产生反电晕,微妙级脉冲电源使细微粉尘荷电更好,径粒在10um附件颗粒物,电量从34有效提高到67,且脉冲电源对粒子的驱尽速度快,所以脉冲电源对用在末电场的效果是非常显著的。 脉冲电源的高电压、低电流也是非常节能的。 三、结论:高频电源和脉冲都是新技术,根据各电场灰的情况和特性,前边电场用高 频,末电场用脉冲的组合是合理的。 导电滤槽的弊端:对于后面电场增加导电滤槽,经过参考多个项目使用效果, 安装导电滤槽后,开始效果比较不错,运行一段时间后,滤槽就会出现严重积灰,槽孔堵死,尤其用顶部电磁振打,下半部分的灰根本无法清楚,导致烟气流场不均,末电场运行不是很稳定。而且滤槽距离出口最近,所以振打滤槽时,二次扬尘很大,尤其电磁振打一个一个打过去,会造成出口粉尘排放连续性超标。

静电除尘器高频电源

静电除尘器高频电源 各类高压电源的性能对比与脉冲高频电源简介 概述 在饱受雾霾之苦的今天。随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。这就迫使企业对现有的静电除尘器设备进行不断的升级和改造。但是现有的问题是,很多企业的静电除尘器在当初设计时没有考虑到未来的排放标准会如此苛刻,导致一批静电除尘器在今天的环保标准下排放超标。而在静电除尘器升级改造中,增加电场又没有足够的场地,用袋式除尘器又担心后期的维护成本。所以提高静电除尘器高压电源的供电技术,才是解决这个问题最有效的捷径。下面我们就通过粉尘的荷电机理与电源工作原理来论证一款由中国自主研发的新型静电除尘器高压电源——脉冲高频电源。

一、静电除尘器高压电源发展的三个阶段: 第一阶段:工频电源 1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。输 出 频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率300Hz。 二次电压输出波形:纹波较小的直流(DC)电压波形。 第二阶段:高频电源 1、按输出频率可分为:10 kHz、20 kHz、50 kHz。 2、按调压方式可分为:调频高频电源、调幅高频电源。 三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。输出频率10 kHz、20 kHz、50kHz。 二次电压输出波形:基本上纯直流的(DC)电压波形。 第三阶段:工频基波脉冲电源 工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。基波频率300Hz,脉冲频率100pps,脉冲宽度75μs; 第四阶段:脉冲高频电源: 由多组独立高频电源叠加组成。基波频率10~50 kHz,双脉冲频率1~10000 pps,脉冲宽度8μs;脉冲电源输入电压: 三相交流380V。 二次电压输出波形:直流(DC)电压波形叠加脉冲(PULSE)电压波形。即直流叠加脉冲(DC+PULSE)电压波形。

静电除尘器的工作原理

一、静电除尘器的工作原理 一、静电除尘器的工作原理 1.气体电离和电晕放电 由于辐射摩擦等原因,空气中含有少量的自由离子,单靠这些自由离子是不可能使含尘空气中的尘粒充分荷电的。因此,要利用静电使粉尘分离须具备两个基本条件,一是存在使粉尘荷电的电场;二是存在使荷电粉尘颗粒分离的电场。一般的静电除尘器采用荷电电场和分离电场合一的方法,如图5-7-1所示的高压电场,放电极接高压直流电源的负极,集尘极接地为正极,集尘极可以采用平板,也可以采用圆管。 图5-7-1静电除尘器的工作原理 在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离子的运动速度愈快。由于离子的运动,极间形成了电流。开始时,空气中的自由离子少,电流较少。电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。因此,这个放电的导线被称为电晕极。 在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。如果进一步提高电压,空气电离(电晕)的围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。电场击穿时,发生火花放电,短路,电除尘器停止工作。为了保证电除尘器的正常运动,电晕的围不宜过大,一般应局限于电晕极附近。

如果电场各点的电场强度是不相等的,这个电场称为不均匀电场。电场各点的电场强度都是相等的电场称为均匀电场。例如,用两块平板组成的电场就是均匀电场,在均匀电场,只要某一点的空气被电离,极间空气便会部电离,电除尘器发生击穿。因此电除尘器必须设置非均匀电场。 开始产生电晕放电的电压称为起晕电压。对于集尘极为圆管的管式电除尘器在放电极表面上的起晕电压按下式计算: V (5-7-1) 式中m——放电线表面粗糙度系数,对于光滑表面m=1,对于实际的放电线,表面较为粗糙,m=0.5~0.9; R ——放电导线半径,m; 1 ——集尘圆管的半径,m; R 2 δ——相对空气密度。 T 、P——标准状态下气体的绝对温度和压力; T、P——实际状态下气体的绝对温度和压力。 从公式(5-7-1)可以看出,起晕电压可以通过调整放电极的几何尺寸来实现。电晕线越细,起晕电压越低。 电除尘器达到火花击穿的电压称为击穿电压。击穿电压除与放电极的形式有关外,还取决于正、负电极间的距离和放电极的极性。 图(5-7-2)是在电晕极上分别施加正电压和负电压时的电晕电流—电压曲线。从图(5-7-1)可以看出,由于负离子的运动速度要比正离子大,在同样的电压下,负电晕能产生较高的电晕电流,而且它的击穿电压也高得多。因此,在工业气体净化用的电除尘器中,通常采用稳定性强、可以得到较高操作电压和电流的负电晕极。用于通风空调进气净化的电除尘器,一般采用正电晕极。其优点是,产生的臭氧和氮氧化物量较少。

静电除尘器的研究与应用新进展

静电除尘器的研究与应用新进展 摘要:静电除尘器是国际上使用广泛的除尘设备,具有效率高,处理烟气量大,运行成本低,维护方便等众多优点。本文介绍了静电除尘器的工作原理和实现的基本条件,阐述了静电除尘器的一些最新的技术应用。 关键词:静电除尘;基本原理;新技术应用 1.静电除尘的基本原理 1.1静电除尘器的工作原理 静电除尘是利用高压直流电源产生的强电场使气体电离,产生电晕放电,进而使悬浮尘粒荷电,并在电场力的作用下,将悬浮尘粒从气体中分离,并加以捕捉的除尘装置。其工作原理是在两个曲率半径相差较大的金属阳极和阴极上,通过高压直流电,维持一个足以使气体电离的静电场,气体电离后生成大量的电子、阴离子和阳离子向极性相反的电极运动。运动过程中,电子、阴离子和阳离子与通过电场的粉尘碰撞,碰撞后便吸附在粉尘上,使粉尘获得电荷[1]。带电粉尘在电场力作用下向电极相反的电极运动而沉积在电极上,同时放电,这些粉尘越积越多,当累积到一定程度时通过振打阴阳极使粉尘脱落,从而达到使粉尘和气体分离的目的。 1.2实现静电除尘的基本条件 由电晕极(阴极)和收尘极(阳极)组成的电场是极不均匀的电场,以实现气体的局部电离;具有在两极之间施加足够的电压,能提供足够大的电流的直流电源,为尘粒荷电和捕捉提供充足的动力;静电除尘器应具备密闭的外壳,保证含尘气流从电场内通过;气体中含有电负气体,以便在电场中产生足够的负离子,来满足尘粒荷电的需要;气体流速不能过高或者电场长度不能太短,以保证电荷尘粒向电极驱进所需的时间;具备保证电极清洁和防止二次扬尘的清灰和卸灰装置[2]。 2.静电除尘器的新应用及进展 2.1湿式静电除尘器 湿式静电除尘器对于颗粒物特别是亚微米颗粒具有很好的脱除效果,且可脱除酸雾等多种污染物,多年来受到国内外研究团队的广泛重视。国内外各学者针对如何高效脱除污染物方面开展了大量研究,主要集中于如何通过优化除尘器结

相关文档