文档库 最新最全的文档下载
当前位置:文档库 › 混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)
混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变

全曲线方程

混凝土受压应力-应变全曲线方程

混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin,P.T.Wang,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。

钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

1、混凝土单轴受压全曲线的几何特点

经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。

s

c c E E N f y x 0,,===

σ

εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特性可用数学条件描述如下: ①x=0,y=0; ②0≤x<1,

2

2

x y

d d <0,即上升段曲线

x

y d d 单调减小,无拐点;

③C 点x=1处,

x

y d d =0和y=1.0,曲线单峰;

④D 点

2

2x y

d d =0处坐标x D >1.0,即下降段曲线上有一拐点;

⑤E 点

3

3x y

d d =0处坐标x E (≥x D )为下降段曲线上曲率最大点;

⑥当x →∞,y →0时,

x

y d d →0;

⑦全部曲线x ≥0,0≤y ≤1.0。 这些几何特征与混凝土的受压变形和破坏过程完全对应,具有明确的物理意义。

2、混凝土单轴受压曲线

方程的比较和分析

对于混凝土在单轴受压下的应力应变关系,已经做了大量的试验研究工作,在此基础上不少学者提出了多种混凝土受压应力应变曲线方程。 (1) Hongnestad 的模型

0.002

0.0038

f

c

f c

模型的上升段为二次抛物线,下降段为斜直线。

上升段:22

00022,x x y f c -=????

?

???

????

?

??-=≤εε

εεσεε 下降段:115.085.015.01,0---=??

????

?---=≤≤u u o u o c u x x

x y f εεεεσεεε 式中,c f ——峰值应力(棱柱体抗压强度);

0ε——相应于峰值应力时的应变,取0ε=0.002; u ε——极限压应变,取u ε=0.0038。 混凝土受压应力应变曲线上升段,对x 求一阶导数:

x y 22-='

当x =1时,y '=0;当x =0时,y '=2。很容易得出曲线满足典型曲线的条件③。在Hongnestad 公式中y '=2是一个固定值,所以Hongnestad 公式只能在工程上作为一个近似公式使用。

对x 求二阶导数,得:

2-=''y

Hongnestad 公式满足条件②。受压应力应变曲线下降段的形状,更敏感地反映混凝土的延性和破坏过程的缓急,以往的曲线公式都不能很好的反映混凝土受压应力应变曲线的下降段,Hongnestad 公式不满足典型曲线下降段的要求。

Hongnestad 的模型一般可以作为钢筋混凝土简支梁的实例分析,采用三维模型,对矩形截面钢筋混凝土简支梁进行模拟分析。梁单元类型采用ANSYS 中的6面体8节点单元。在ANSYS 中需要输入的物理参数有弹性模量E 和泊松比μ,参考《混凝土结构设计规范》(GB50010--2002)规定的材料力学指标的标准值,查得相应的取值,对混凝土简支梁进行数值分析。Hongnestad 的模型已经纳入CEB-FIP MC90等混凝土结构设计规范。

(2) Saenz 的模型

表达式:2

)2(1x

x N Nx

y +-+=

在混凝土应力应变曲线上升段需要满足条件①②③⑦,显然Saenz 公式

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中, c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

常用混凝土受压应力—应变曲线的比较及应用

常用混凝土受压应力—应变曲线的比较及应用

σσ p 图1-2 Sargin曲线 式中:ε c1 为相应于压应力峰值σ0的压应变εc1 =-0.0022,ε c1 为从原点到压应力 峰值点的割线模量, 1c E =0σ/0.0022,0E 为混凝土初始弹性模量;εu 为混凝土极限 压应变, 其大小与1c E 、0E 及εc1 有关。 1.3 清华过镇海曲线 清华大学的过镇海教授在1982年结合自己多年的研究成果提出了自己的混 凝土受压应力-应变曲线表达式,如图1-3所示。第I 阶段中,OA 仍为二次抛物线,与德国人R üsch 提出的抛物线模式相同如下: ])(2 [20 00εε εεσσ-?= )(0εε≤ (1-1) 第II 阶段中,下降段AB 用有理分式表示如下: 0 200 )1(εεεεαεεσσ+-= )(0u εεε<< (1-5) σ ε ε 图1-3 过镇海曲线 ε A B 其中,α,0 ε见下表:

1.4 美国Hognestad 曲线 美国人E.Hognestad 在1951年提出的应力-应变全曲线方程分为上升段和下降段,上升段与德国人R üsch 所提出模型的上升段相同,但是下降段采用一条斜率为负的直线来模拟,如图1-4所示,上升段表达式如下: ])(2 [20 00εε εεσσ-?= )(0εε≤ (1-1) 下降段表达式为: )1(0 00 ε εε εασσ---=u ) (0 u εεε<< (1-6) 其中:α=0.015;εu =0.038经过化简以后,表达式变为如下: )() 012 .0014.0( u 00ε<ε<εε -σ=σ

ANSYS中混凝土的本构关系

一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W 破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)。 2 定义tb,concr后可否定义其它的应力应变关系 当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。 这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。 三、具体的系数及公式 1 定义tb,concr时候的两个系数如何确定 一般的参考书中,其值建议先取为~(江见鲸),原话是“在没有更仔细的数据时,不妨先取~进行计算”,足见此~值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取,(定要>)闭合的剪力传递系数取。支持此说法的还有现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。 2 定义混凝土的应力应变曲线

混凝土剪切应力-应变曲线的研究

混凝土剪切应力-应变曲线的研究 董毓利张洪源钟超英 摘要本文利用自行设计的混凝土剪切试件对混凝土剪切强度、剪切应力-应变曲线进行了研究,为混凝土结构的分析提供了必要的力学模型. 关键词剪切, 应力-应变曲线,剪切模量,混凝土 STUDY ON STRESS-STRAIN CURVES OF CONCRETE UNDER SHEAR LOADING DONG Yuli ZHANG Hongyuan ZHONG Chaoying (Qingdao Institute of Architecture and Engineering, Qingdao 266033, China) Abstract In this paper, the concrete strength under shear loading,shear stress-shear strain curve and the shear modulus are studied byusing the special designed Z shape specimens. The model proposed here may be used in structures analysis. Key words shear, shear stress-shear strain curve, shear modulus 1 引言 随着计算机的发展,有限元已广泛应用于工程计算中. 在对混凝土结构进行分析时,经常要用到混凝土的剪切模量,一般仍按弹性理论来计算,这样就给计算带来了误差. 较之抗压试验和抗拉试验,混凝土的抗剪试验要复杂得多,就所用试件来讲就有多种. 国外在这方面做了一些工作[1~3], 但都存在程度不同的缺点,文献[4]利用四点受力等高变宽梁对混凝土的剪切强度和变形进行了研究,而进行这种试验较为麻烦. 为此,本文设计了另一种抗剪试件,对混凝土的剪切强度和变形进行了研究. 2 试件制作和试验方法 在进行混凝土抗剪试验时,所用的抗剪试件有:矩形梁双剪试件、“Z”形试件、“8”形试件和薄壁圆筒试件等,文献[4]利用弹性有限元程序SAP-5对常用的前三种混凝土抗剪试件进行了应力分析,结果表明:矩形梁双剪面试件和“Z”形试件在剪切面上剪应力分布不均匀. 为克服上述缺点,我们对“Z”形试件进行了改进,设计了形如图1的抗剪试件,根据圣维南原理和混凝土单轴受压试验可知试件端部约束对剪切面影响已很小,经利用SAP-91程序对试件进行了应力分析,结果表明∶图1所示试件剪切面的剪应力分布较为均匀,y方 向的正应力较之“Z”形试件有较大的改善,其计算数值比剪应力小,比较接近剪切状态. 图1 试件形式和剪应力分布 混凝土配合比为水∶水泥∶砂∶碎石=1 ∶ 2.02 ∶ 3.24 ∶ 6,水泥为青岛产425# 硅酸盐水泥,砂为中砂,碎石最大粒径为10 mm. 试件是用专制的钢模浇筑的,振动台振 捣密实,24 h后脱模,浇水养护7 d以后自然养护,28 d后开始实验. 本次试验是在200 t试验机上进行的. 为防止试件突然破坏,在试件两侧各放置一10 t螺旋千斤顶. 试件的变形是由45°应变花来测定的,为避免试验过程中的偏心影响,应变花在试件两侧对称粘贴,而相应应变片串联后接入数据采集板,全部试验数据均由计算机采集,于是根据x、y 和45°方向的应变,便可得出剪应变 γ=2ε45°-(εx+εy) (1)

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

混凝土本构关系模型

一、混凝土本构关系模型 1.混凝土单轴受压应力-应变关系 (1)Saenz 等人的表达式 Saenz 等人(1964年)所提出的应力-应变关系为: ])()()( /[30 200εεεεεεεσd c b a E +++= (2)Hognestad 的表达式 Hognestad 建议模型,其上升段为二次抛物线,下降段为斜直线。所提出的应力-应变关系为: cu cu εεεσσεεσσεεεεεεεε≤≤-=≤-=--000 02,)]( 15.01[,])(2[0 (3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为: 1,)1(1 ,)1(2>+-=≤+-= x x x x y x x n nx y c n α r c x ,εε= ,r c f y ,σ= ,r c r c c r c c f E E n ,,,-=εε c α是混凝土单轴受压时的应力应变曲线在下降段的参数值,r c f ,是混凝土单轴抗压的 强度代表值,r c ,ε是与单轴抗压强度r c f ,相对应的混凝土峰值压应变。 2.混凝土单轴受拉应力-应变关系 清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线: 1 ],)1(/[)/(1 ,])(2.0)(2.1[7 .16≥+-?=≤-=t t t t t t t t t t εεεεεεεεεεεεασεεσσσ 3.混凝土线弹性应力-应变关系 张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E 和泊松比v 表达的应力应变关系为: ij kk E ij E ij ij kk E ij E ij δσσεδεεσν ν νννν-=+=+-++1)21)(1(1 用材料体积模量K 和剪变模量G 表达的应力应变关系为: ij K ij G ij ij kk ij ij kk s K Ge δεδεσσ9212+= += 4.混凝土非线弹性全量型本构模型 5.混凝土非线弹性增量型本构模型 各向同性增量本构模型: (1)在式

常用混凝土受压应力_应变曲线的比较及应用

常用混凝土受压应力—应变曲线的比较及应用 摘要:为了对受弯截面进行弹塑性分析及其他研究,在对各种混凝土受压应力应变曲线研究的基础上,总结出了四种常用曲线,这些曲线已经被广泛应用。对四种常用曲线进行简介,并指出了它们的适用围及优缺点。在进行受弯截面弹塑性分析时,介绍了运用四种常用曲线对其受力性能进行分析的计算模式,并且运用实际案例进行受弯截面弹塑性分析,方便工程师们参考和借鉴。 关键词:混凝土;受压应力应变曲线;本构关系;受弯截面 0 引言 混凝土受压应力—应变曲线是其最基本的本构关系,又是多轴本构模型的基础,在钢筋混凝土结构的非线件分析中,例如构件的截面刚度、截面极限应力分布、承载力和延性、超静定结构的力和全过程分析等过程中,它是不可或缺的物理方程,对计算结果的准确性起决定性作用。 近年来,国外学者对其进行了大量的研究及改进,已有数十条曲线表达式,其中部分具有代表性的表达式已经被各国规采纳。常用的表达式包括我国《混凝土结构设计规》(GB50010-2010)、CEB-FIP Model Code(1990)、清华过镇海以及美国学者Hognestad 建议的混凝土受压应力应变关系,在已有研究的基础上,本文将对各个表达式在实际运用中的情况进行比较,并且通过实际算例运用这些表达式进行受弯截面弹塑性分析,从而为工程师们在实际应用时提供参考和借鉴。 1 常用混凝土受压应力—应变曲线比较 至今已有不少学者提出了多种混凝土受压应力应变曲线,常用的表达式采用两类,一类是采用上升段与下降段采用统一曲线的方程,一类是采用上升段与下降段不一样的方程。 1.1 中国规 我国《混凝土结构设计规》(GB50010-2010)采用的模式为德国人R üsch1960年提出的二次抛物线加水平直线,如图1-1所示。上升阶段的应力应变关系式为: ) (])(2 [020 00ε≤εεε -εε?σ=σ (1-1)

如何用Origin画应力应变曲线

如何用Origin画应力应变曲线 edited by: jsphnee,2011-11-22 本文是作者从小白开始一步一步学着用excel和origin作应力应变曲线的经验分享,只适于初学者,有不对的地方还请高手多多指教。在此也一并感谢网上提供origin及excel相关技巧解答的同志们。 一、数据导出 1.用Access打开数据库,并将OriginalData导出到excel中(97-03版,否则ori打不 开); 2.打开导出的OriginalData.xls文件和试验报告文件(实验结果中另一个以日期命名的 excel文件,Tip:为方便统一打开与存放,可将试验报告文件复制到OriginalData的新工作表sheet中,可命名为report); 3.保存,并更改文件名,(Tip:每次更改后都点一下保存,以免程序卡死时丢失数 据。) 4.新建以试样编号命名的sheet,有几组试样就建几个sheet;

二、数据处理 1.筛选各个试样的拉伸数据 在OriginalData中,选中TestNo列,再点数据工具栏中的筛选。 点击列标题旁的下拉箭头,出现下面左图中的对话框。 取消全选,依次选中一个TestNo后确定,便能筛选出各次拉伸试验的数据,如上图中右边的对话框所示。(一个试样对应一个TestNo)

(虽然一组试样对应多个TestNo,但为后续处理的方便,个人认为此处还是一个一个筛选比较好。) 2、复制LoadValue及ExtendValue值 选中LoadValue及ExtendValue列,并将其复制到相应试验组的sheet中。 然后按照相同的步骤依次筛选该组的各个拉伸试样的数据拷贝到该sheet中。如下图:

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物

混凝土受压应力-应变全曲线方程(描述)备课讲稿

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin,P.T.Wang,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

混凝土的应力强度—应变曲线

12 9.4 混凝土的应力强度—应变曲线 混凝土的应力强度—应变曲线一般可按照图-9.4.1由式(9.4.1)计算得出。 σεεεσεεεεεε εc c c c cc cc des c cc cc c cu E E n c cc n =-≤≤--<≤? ????-{}() ()() ()1011 (9.4.1) n E E c cc c cc cc =-εεσ (9.4.2) σσαρσcc ck s sy =+38. (9.4.3) εβρσσcc s sy ck =+00020033.. (9.4.4) E des ck s sy =1122.σρσ (9.4.5) εεεσ cu cc cc cc des E =+?????02. (9.4.6) ρs h A sd =≤40018. (9.4.7) (类型I 的地震动) (类型II 的地震动)

其中: σc:混凝土应力强度(kgf/cm2) σcc:用横约束钢筋约束的混凝土强度(kgf/cm2) σck:混凝土的设计标准强调(kgf/cm2) ε :混凝土的应变 c ε :最大压应力时应变 cc ε :用横向束筋约束的混凝土的极限变形 cu E c:混凝土的扬氏摸量(kgf/cm2),根据I通论篇表-3.3.3。 E des:下降坡度(khf/cm2) ρs:横向束筋的体积比 A :横向束筋的断面面积(cm2) h s:横向束筋的间隔(cm) 13

d:横向束筋的有效长度(cm),取由箍筋、中间箍筋分别 束缚的混凝土芯的边长中最长的值。 σsy:横向束筋的屈服点(kgf/cm2) α,β:断面修正系数,圆形断面的情况下取α=1.0,β=1.0,矩形断面及空心圆形断面,空心矩形断面取α=0.2, β=0.4。 n:式(9.4.2)定义的常数。 解说: 14

混凝土本构关系总结

作业1:总结典型的混凝土本构模型类型,并就每种类型给出有代表性的几个模型 按照力学理论基础的不同,已有的本构模型大致分为以下几种类型:以弹性理论为基础的线弹性和非线性弹性本构模型;以经典塑性理论为基础的弹全塑性和弹塑性硬化本构模型;用内时理论描述的混凝土本构模型等。 1、 混凝土单轴受力应力—应变关系 1.1 混凝土单向受压应力—应变关系 1、 saenz 等人的表达式 saenz 等人(1964年)所提出的应力—应变关系为 023 0000 = 1(2)(21)()()S E E E ε σεεε αααεεε++---+ 1 E u u 1 E 图1 混凝土单轴 受压应力--应变关系 2、 Hognestad 的表达式 Hognestad 建议的模型,其应力—应变曲线的上升段为二次抛物线,下降段为斜直线,如图2所示,表达式为 2000 =[2 ()]εε σσεε- 0εε≤ 0 00 =[1-0.15( )]cu εεσσεε-- 0cu εεε≤≤

u u 图2 Hognestand 建议的应力--应变关系 3、 GB50010—2002建议公式 我国《混凝土结构设计规范》所推荐的混凝土轴心受压应力—应变关系为0 1ε ε≤(上升段) 3000 [(32)(2)()]a a a εε σααασεε=+-+- 01ε ε>(下降段) 0 0200 /(-+c εεσσεεαεε= 1) 式中,a α表示应力—应变曲线的上升段参数;c α为下降段参数。 4、 CEB —FIP 建议公式 CEB —FIP 模式规范建议的单轴受压应力—应变关系为 2 0000(/)(/)1(2)(/) k k εεεεσσεε-=+- 式中,k 为系数,00(1.1)(/)C k E εσ=,C E 为混凝土纵向弹性模量。 2、混凝土非线性弹性本构模型 1、 混凝土非线性弹性全量型本构模型 当材料刚度矩阵[]D 用材料弹性模量E 和泊松比ν表达,则为全量E-ν型;如果材料的刚度矩阵[]D 用材料模量K 和剪变模量G 表达,则为全量K —G 型。 在全量本构模型中,关键是要合理确定材料参数E 和ν随应力状态变化的规律。 Ottosen 本构模型的建立过程可分为四个步骤:建立强度和开裂准则;定义非线性指标 β;建议采用的割线模量S E ;建议采用的泊松比s ν。

混凝土结构设计原理第二章课堂笔记

《混凝土结构设计原理》第二章 材料的物理力学性能 课堂笔记 ◆ 学习要点: 钢筋砼的组成为非匀质的,又由于混凝土材料组成的非均匀性以及具有显著的非弹性性能,因此其力学性能与匀质弹性材料有很大的差异。对钢筋和砼材料力学性能的了解,包括其强度和变形性能,以及对二者相互作用的了解是掌握钢筋砼构件受力特点,确立计算方法,制定构造措施的基础。 ◆ 主要内容 混凝土及其力学性能 混凝土的组成、强度指标及其换算关系、变形性能、其它性能(疲劳、收缩、徐变)、钢筋及其力学性能。 钢筋品种、级别和型号、力学性能及性能要求。 钢筋与混凝土的粘结 ◆ 学习要求 1、掌握混凝土的立方体抗压强度、轴心抗压强度和轴心抗拉强度的测定方法和换算关系。 2、了解影响硷强度的因素,掌握砼应力一应变曲线特点,理解复合应力下硷强度和变形特点。 3、了解混凝土收缩、徐变现象及其影响因素;理解收缩、徐变对钢筋混凝土结构的影响。 4、了解钢筋的品种级别和使用范围。掌握钢筋的应力一应变曲线的特点和强度的取值标准:, ◆ 重点难点 混凝土的强度及其影响因素,复合应力状态下的强度。混凝土受压应力一应变关系的特征值。混 凝土的收缩与徐变及其影响因素, 一、混凝土 (一)混凝土的组成结构 砼是由水泥石(水泥胶结料)和骨料(石料)组成的一种内部结构复杂的复合材料。 从微观看:砼是不均匀的多相材料,存在许多内部微裂缝,这与其物理力学性能有密切的关系。 从宏观看:混凝土是粗骨料均匀分散在连续的砂浆基材中的两相材料,可视为各向同性的。 (二)混凝土的强度 混凝土的强度是混凝土力学.隆能中的主要指标。在工程中常用的混凝土强度指标有: ·立方体抗压强度fcu ·轴心抗压强度fc ·轴心抗拉强度ft 1、混凝土立方体抗压强度 砼立方体抗压强度是其力学性能中最基本的指标,也是评定fc 强度等级的标准。 砼强度等级是指按照标准方法制作养护的边长为150mm ,的立方体试件,在28天龄期用标准试验方法测得的具有95%保证率的立方体抗压强度标准值 。《规范》根据强度范围,从C15~C80共划分为14个强度等级,级差为5N/mm 2。以上为高强砼。 混凝土立方体抗压强度的影响因素: 混凝土的强度除受其组成材料的性能及其配合比的影响外,还与下列因素有关: (1)试块尺寸: (2)制作养护:制作方法和养护条件 (3)试验方法:受力条件 (4)荷载性质:加载速度 (5)加载龄期: 立方体混凝土强度的换算: 混凝土强度的尺寸效应指试件尺寸大,测试得到的强度偏小的现象。100mm3和200mm3立方体强度与标准立方体强度之间的换算关系为: 150100cu 1cu f f μ= 150100cu 2cu f f μ=

相关文档
相关文档 最新文档