文档库 最新最全的文档下载
当前位置:文档库 › 实验15 典型传感器特性研究

实验15 典型传感器特性研究

实验15 典型传感器特性研究
实验15 典型传感器特性研究

大学物理实验预习报告

电容式传感器特性实验

实验二:电容传感器性能测试实验 一.实验类型:验证型。 二.学时分配:2学时。 三.实验目的: 1.电容传感器原理及典型应用。 2.掌握用示波器测量振荡频率的方法 四.实验原理: 电容式传感器的基本原理可以从图中来说明。当忽略边缘效应时,其电容C为: C=ε S/δ=εrε0 S/δ 其中: S-极板相对覆盖面积; δ-极板间距离; εr-相对介电常数; ε0-真空介电常数; ε-电容极板间介质的介电常数。 实际应用时,常常仅改变δ、S、ε之中的一个参数使C变化。电容式传感器可以分为三种基本类型:变间距、变面积、变介电常数型。 电容/电压变换器是双T型标准变换电路,功能为将输入两个电容器电容的差值转换为电压信号输出。图中e为一对称方波的高频电压源;C1、C2为差动式传感器的电容;RL为负载电阻;V1,V2为两个二极管;R1,R2为固定电阻。 电路工作原理如下:当电源e为正半周时,V1导通,V2截止,电容C1很快被充电至电压E,电源E经R1以电流I1向负载RL供电。与此同时,电容C2经R2和RL放电,放电电流为I2(t)。流经RL的电流IL(t)的电流是I1(t)和I2(t)之和。当电源e为负半周时,V1截止,V2导通,

此时C2很快被充电至电压E,而流经RL的电流IL′(t)为由E供给的电流I2′和C1的放电电流I1′(t)之和。如果V1与V2的特性相同,且C1=C2,R1=R2=R则流经RL的电流IL(t)和IL′(t)的平均值大小相等,极性相反。因此,在一个周期内流经RL的平均电流为零,RL无输出信号。当C1、C2变化时,在RL产生平均电流不为零,因而有信号输出。 利用电路分析求得在电源E负半周内电路的输出为: I L′(t)=[E/(R+R L)](1-e-t/τ1) τ1=[R(2R L+R)C1]/(R+R L) 同理,在电源E负半周内电路的输出为: I L(t)=[E/(R+R L)](1-e-t/τ2) τ2=[R(2R L+R)C2]/(R+R L) 输出电流的平均值IL为:IL=(1/T)∫T0[I L′- I L ]dt IL=E[(R+2R L)/(R+R L)2]Rf(C1-C2-C1e-k1+C2e-k2) 式中:f—电源e的频率; k1—系数,k1=(R+R L)/[2RfC1(R+2R L)]; k2—系数,k2=(R+R L)/[2RfC2(R+2R L)]。 输出电压的平均值UL为: UL=ILR L 适当选择电路中元件的参数以及电源频率f,使IL中指数项误差小于1%,于是得

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN ORG 0020H MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0:

SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0 MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断 LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE LCALL READ MOV TEMP4,A ;读出温度的低字节存在TEMP4 LCALL READ MOV TEMP5,A ;读出温度的高字节存在TEMP5 SETB EA RET CHULI : MOV A,TEMP5 ;将温度的高字节取出 JNB ACC.7,ZHENG ;判断最高位是否为0,为0则表示温度为正,则转到ZHENG MOV A,TEMP4 ;否则温度为负,将温度的低字节取出

传感器实验参考资料解析

光电传感器测转速实验 实 验 指 导 书

简 介 一、本实验装置的设计宗旨: 本实验装置具有设计性、趣味性、开放性和拓展性,实验中大量重复的接线、调试和后续数据处理、分析、可以加深学生对实验仪器构造和原理的理解,有利于培养学生耐心仔细的实验习惯和严谨的实验态度。非常适合大中专院校开设开放性实验。本实验装置采用了性能比较稳定,品质较高的敏感器件,同时采用布局较为合理且十分成熟的电路设计。 二、光电传感器测转速实验实验装置 1.传感器实验台部分 2.九孔实验板接口平台部分:九孔实验板作为开放式和设计性实验的一个桥梁(平台); 3.JK-19型直流恒压电源部分:提供实验时所必须的电源; 4.处理电路模块部分:差动放大器、电压放大器、调零、增益、移相等模块组成。 三、主要技术参数、性能及说明: (1)光电传感器:由一只红外发射管与接收管组成。 (2)差动放大器:通频带kHz 10~0可接成同相、反相、差动结构,增益为100~1倍的直流放大器。 (3)电压放大器:增益约为5位,同相输入,通频带kHz 10~0。 (4)19JK -型直流恒压电源部分:直流V 15±,主要提供给各芯片电源: V 6 ,V 4 ,V 2±±±分三档输出,提供给实验时的直流激励源;V 12~0:A 1ax Im =作 为电机电源或作其它电源。 光电传感器测转速实验 【实验原理】 如图所示:光电传感器由红外发射二极管、红外接收管、达林顿出管及波形整形组成。

发射管发射红外光经电机转动叶片间隙,接收管接收到反射信号,经放大,波形整形输出方波,再经转换测出其频率,。 图1 【实验目的】 了解光电传感器测转速的基本原理及运用。 【实验仪器】 如图所示,光电式传感器、JK-19型直流恒压电源、示波器、差动放大器、电压放大器、频率计和九孔实验板接口平台。 图2 图3 【实验步骤】 1.先将差动放大器调零,按图1接线;

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

传感器作业(含答案)

一、选择题 1、回程误差表明的是在()期间输出——输入特性曲线不重合的程度。( D ) A、多次测量 B、同次测量 C、不同测量 D、正反行程 2、传感器的下列指标全部属于静态特性的是() ( C ) A、线性度、灵敏度、阻尼系数 B、幅频特性、相频特性、稳态误差 C、迟滞、重复性、漂移 D、精度、时间常数、重复性 3、()是采用真空蒸发或真空沉积等方法,将电阻材料在基底上制成一层各种形式敏感栅而形成应变片。这种应变片灵敏系数高,易实现工业化生产,是一种很有前途的新型应变片。 ( D ) A、箔式应变片 B、半导体应变片 C、沉积膜应变片 D、薄膜应变片 4、利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小()。 ( C ) A、两个桥臂都应当用大电阻值工作应变片 B、两个桥臂都应当用两个工作应变片串联 C、两个桥臂应当分别用应变量变化相反的工作应变片 D、两个桥臂应当分别用应变量变化相同的工作应变片 5、金属丝的电阻随着它所受的机械变形(拉伸或压缩)的大小而发生相应的变化的现象称为金属的()。 ( B ) A、电阻形变效应 B、电阻应变效应 C、压电效应 D、压阻效应 6、下列说法正确的是()。 ( D ) A、差动整流电路可以消除零点残余电压,但不能判断衔铁的位置。 B、差动整流电路可以判断衔铁的位置,但不能判断运动的方向。 C、相敏检波电路可以判断位移的大小,但不能判断位移的方向。 D、相敏检波电路可以判断位移的大小,也可以判断位移的方向。

7、随着人们对各项产品技术含量的要求的不断提高,传感器也朝向智能化方面发展,其中,典型的传感器智能化结构模式是()。 ( B ) A、传感器+通信技术 B、传感器+微处理器 C、传感器+多媒体技术 D、传感器+计算机 二、判断题 线性测量系统的灵敏度是时间的线性函数。 ( F ) 涡流传感器一般不能用来测量钢板厚度。 ( F ) 电感式传感器根据结构形式可分为自感式和互感式两种。 ( F ) 光生伏特效应属于内光电效应的一种。 ( T ) 引用误差反映了一个检测装置的综合性能指标,用来作为检测仪表的分类标准。( T ) 电涡流传感器可分为高频反射式和低频透射式。 ( T ) 相比于接触式的温度检测方式,红外测温往往相应较快。(T ) 三、如果你是一名工程师,需要为你设计的控制系统选择一款湿度传感器,该如何选择?或者说,需要考虑哪些因素? 相应湿度传感器的工作原理、应用场合、灵敏度等静态特性、动态特性、价格、体积、安装方式等。 四、利用铂铑-铂(S型)热电偶测量某一锅炉内部温度,冷端暴露在18℃的室内环境中。测得此时的热电势为10.048mv,试问通过热电偶分度表可以计算出锅炉内部温度是多少? C

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流 i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流 垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为U o+、3脚接+5V电源、4脚为Uo-;当P1>P2时,输出为正;P1

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

传感器动态特性的性能指标

传感器动态特性的性能指标 在检测控制系统和科学实验中,需要对各种参数进行检测和控制,而要达到比较优良的控制性能,则必须要求传感器能够感测被测量的变化并且不失真地将其转换为相应的电量,这种要求主要取决于传感器的基本特性。传感器的基本特性主要分为静态特性和动态特性,下面介绍反映传感器动态特性的性能指标。 动态特性是指检测系统的输入为随时间变化的信号时,系统的输出与输入之间的关系。主要动态特性的性能指标有时域单位阶跃响应性能指标和频域频率特性性能指标。传感器的输入信号是随时间变化的动态信号,这时就要求传感器能时刻精确地跟踪输入信号,按照输入信号的变化规律输出信号。当传感器输入信号的变化缓慢时,是容易跟踪的,但随着输入信号的变化加快,传感器随动跟踪性能会逐渐下降。输入信号变化时,引起输出信号也随时间变化,这个过程称为响应。动态特性就是指传感器对于随时间变化的输入信号的响应特性,通常要求传感器不仅能精确地显示被测量的大小,而且还能复现被测量随时间变化的规律,这也是传感器的重要特性之一。 传感器的动态特性与其输入信号的变化形式密切相关,在研究传感器动态特性时,通常是根据不同输入信号的变化规律来考察传感器响应的。实际传感器输入信号随时间变化的形式可能是多种多样的,最常见、最典型的输入信号是阶跃信号和正弦信号。这两种信号在物理上较容易实现,而且也便于求解。 对于阶跃输入信号,传感器的响应称为阶跃响应或瞬态响应,它是指传感器在瞬变的非周期信号作用下的响应特性。这对传感器来说是一种最严峻的状态,如传感器能复现这种信号,那么就能很容易地复现其他种类的输入信号,其动态性能指标也必定会令人满意。 而对于正弦输入信号,则称为频率响应或稳态响应。它是指传感器在振幅稳定不变的正弦信号作用下的响应特性。稳态响应的重要性,在于工程上所遇到的各种非电信号的变化曲线都可以展开成傅里叶(Fourier)级数或进行傅里叶变换,即可以用一系列正弦曲线的叠加来表

【人力资源】实验4-18用压力传感器和温度传感器资料

第五章 热学实验 热学实验是大学物理实验中的重要内容。在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。我们的实验内容设计了对空气的比热容比进行测定。 §5.1空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 0T 为止,此时瓶内气体压强也随之增大为2P 。则稳定后的气体状态为III (2P ,2V ,0T )。从 状态II →状态III 的过程可以看作是一个等容吸热的过程。由状态I →II →III 的过程如图5.1.2所示。 图5.1.1 试验装置简图 图5.1.2 气体状态变化及P-V

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

DS1621温度传感器实验

/*************** writer:shopping.w ******************/ #include #include #define uint unsigned int #define uchar unsigned char bit I2C_Busy, NO_Ack,Bus_Fault,point; uchar bdata a; sbit LSB = a^0; sbit MSB = a^7; sbit SDA = P3^3; sbit SCL = P3^2; uchar Array[] = {'0','1','2','3','4','5','6','7','8','9'}; uchar command_data[]= { 0xac,0x00,0xee,0xa1,0x00,0x00,0xa2,0x00,0x00,0xaa }; uchar Prompt[]="Waiting for a while...\r"; uchar i; void DelayMS(uint ms) { uchar i; while(ms--) { for(i=0;i<120;i++); } } void SendStop() { SDA = 0; SCL = 1; _nop_(); SDA = 1; I2C_Busy = 0; } void SendByte(uchar wd) { uchar i; a = wd; for(i=0;i<8;i++) { SCL = 0; _nop_(); _nop_(); SDA = MSB;

传感器基本特性

第2章传感器的基本特性(知识点) 知识点1 传感器的基本特性 传感器的基本特性是指传感器的输入-输出关系特性,是传感器的内部结构参数作用关系的外部特性表现。不同的传感器有不同的内部结构参数,决定了它们具有不同的外部特性。 传感器所测量的物理量基本上有两种形式:稳态(静态或准静态)和动态(周期变化或瞬态)。前者的信号不随时间变化(或变化很缓慢);后者的信号是随时间变化而变化的。传感器所表现出来的输入-输出特性存在静态特性和动态特性。 知识点2 传感器的静态特性 传感器的静态特性是它在稳态信号作用下的输入-输出关系。静态特性所描述的传感器的输入-输出关系式中不含时间变量。 衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。2.1.1 线性度 ; 线性度(Linearity)是指传感器的输出与输入间成线性关系的程度。传感器的实际输入-输出特性大都具有一定程度的非线性,在输入量变化范围不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段,这就是传感器非线性特性的“线性化”。所采用的直线称为拟合直线,实际特性曲线与拟合直线间的偏差称为传感器的非线性误差,取其最大值与输出满刻度值(Full Scale,即满量程)之比作为评价非线性误差(或线性度)的指标。 灵敏度 灵敏度(Sensitivity)是传感器在稳态下输出量变化对输入量变化的比值。 对于线性传感器,它的灵敏度就是它的静态特性曲线的斜率;非线性传感器的灵敏度为一变量。 分辨率 分辨率(Resolution)是指传感器能够感知或检测到的最小输入信号增量,反映传感器能够分辨被测量微小变化的能力。分辨率可以用增量的绝对值或增量与满量程的百分比来表示。 2.1.4 迟滞 迟滞(Hysteresis),也叫回程误差,是指在相同测量条件下,对应于同一大小的输入信号,传感器正(输入量由小增大)、反(输入量由大减小)行程的输出信号大小不相等的现象。产生迟滞的原因:传感器机械部分存在不可避免的摩擦、间隙、松动、积尘等,引起能

压阻式压力传感器的特性测试实验

压阻式压力传感器的特性测试实验 一、实验目的 了解扩散硅压阻式压力传感器测量压力的原理和标定方法。 二、实验内容 掌握压力传感器的压力计设计。 三、实验仪器 传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。 四、实验原理 扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。图13-1为压阻式压力传感器压力测量实验原理图。 + - 放大单元主台体上电压表 +4V 压阻式压力传感器Vo+ VS+ Vo- Vs- 图13-1 压阻式压力传感器压力测量实验原理 五、实验注意事项 1、严禁将信号源输出对地短接。 2、实验过程中不要带电拔插导线。 3、严禁电源对地短路。 六、实验步骤 1、将引压胶管连接到压力传感器上,其他接线按图13-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

电电电电 电电电电电电 Vin Vin Vout GND 电电电电电电±15V 电电 D5 C4++E2 C5 D4D6R29S1C1 R12 R13 R17R16 C2 R1 IC1 R14 R3 R5R4 R6 D1IC4 R7R20 R19 R9 C3 RW1 -15V GND +15V VCC GND Vout-Vout+R8R10 D2 R21电电电电电 D3E1D5R28IC2 IC3 R2 R18RW2 电电电电电电电电 电电电 电 电电 电电 电电电电电电电 R30 R31R21R21 1234567 810K 20K 51K 100K P1 +5V

实验十二集成电路温度传感器特性测量全解

实验十二集成电路温度传感器特性测量一.概述 温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。 二.用途 1.电流型集成温度传感器AD590的特性测量和应用: (1)测量AD590输出电流和温度的关系,计算传感器灵敏度及C 0时传感器输出电流 值。 (2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。 (3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性 使用范围的最小电压 U。 r 三.仪器组成与技术指标 1.仪器组成 如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。

图1 2.技术指标: A.温控仪 (1)温度计显示工作温度:0℃-100℃ (2)恒温控制温度:室温-80o C (3)控制恒温显示分辨精度:≤±0.1℃ B.直流数字电压表 (1)量程:0-19.999V (2)读数准确度:量程0.03%±5个字 (3)输出电阻:20Ω(为了防止长时间短路内接电阻) C.温度传感器DS18B20的结构与技术特性(控温及测温用): (1)温度测量范围:-55℃-125℃ (2)测温分辨率:0.0625℃ (3)引脚排列(如图2所示):

相关文档
相关文档 最新文档