文档库 最新最全的文档下载
当前位置:文档库 › 解析几何解答题

解析几何解答题

解析几何解答题
解析几何解答题

1.如图,已知21F F 、为双曲线)0,0(122

22>>=-b a b

y a x 的焦点,过2F 作垂直于x 轴的直

线交双曲线于点P ,且 3021=∠F PF ,求双曲线的渐近线方程.

2.抛物线x p y =2)0(>p 与圆3)2(22=+-y x 相交,它们在x 轴上方 的交点为B A 、

,当p 为何值时,线段AB 的中点M 在直线x y =

3.已知双曲线C 的两条渐近线的方程分别是032=--y x 和012=++y x ,两焦点在平行于y 轴

的直线上,且焦距为10,求此双曲线C 的方程.

4.若一直线与抛物线)0(22>=p px y 交于A 、B 两点,且OB OA ⊥,点O 在直线AB 上的射影

为)1,2(D ,求抛物线的方程.

5.设双曲线C :1:)0(1222

=+>=-y x l a y a

x 与直线相交于两个不同的点A 、B .

(1)求a 的取值范围:

(2)设直线l 与y 轴的交点为P ,且.12

5

PB PA = 求a 的值.

6.已知椭圆中心在原点,以抛物线)1(162+=x y 的焦点为其右焦点,并且椭圆的长轴长、短轴

长、焦距成等差数列,A 、B 是椭圆上两点,弦AB 中点M 在直线4=x 上. (1)求椭圆方程;

(2)求证: 弦AB 的垂直平分线l 与x 轴交于定点,并求此定点坐标.

7.从椭圆)0(122

22>>=+b a b

y a x 上一点M 向x 轴作垂线恰好通过椭圆的左焦点1F ,且它的长

轴右端点A 与短轴上端点B 的连线OM AB //. (1)求b a :的值;

(2)若Q 是椭圆上任意一点,2F 为右焦点,求21QF F ∠的取值范围;

(3)过1F 作AB 的平行线交椭圆于D C 、

两点,若3||=CD ,求该椭圆方程.

8.在平面直角坐标系xOy 中,设点(,),(,4)P x y M x -,以线段PM 为直径的圆经过原点O . (1)求动点P 的轨迹W 的方程;

(2)过点(0,4)E -的直线l 与轨迹W 交于两点,A B ,点A 关于y 轴的对称点为'A ,试判断直线

'A B 是否恒过一定点,并证明你的结论.

9.在平面直角坐标系xoy 中,动点(,)(0)P x y x ≥满足:点P 到定点1(,0)2

F 与到y 轴的距离之差

1

2

. 记动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程;

(2)过点F 的直线交曲线C 于A 、B 两点,过点A 和原点O 的直线交直线12

x =-于点D ,

求证:直线DB 平行于x 轴.

10. 如图,在平面直角坐标系xOy 中,过坐标原点的直线交椭圆22

142

x y +=于,P A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连结AC ,并延长交椭圆于点B ,设直线PA

的斜率为k .

(1)当2k =时,求点P 到直线AB 的距离; (2)对任意0k >,求证:PA PB ⊥.

11.已知椭圆C :

22

22

1x y a b +=(0a b >>)的焦距为4

,且过点A .

(1)求椭圆C 的方程;

(2)设()00,P x y (000x y ≠)为椭圆C 上一点,过点P 作x 轴的垂线,垂足为Q .

取点(B ,

连接BQ . 过点B 作BQ 的垂线交x 轴于点D ,点E 是点D 关于y 轴的对称点. 试判断直线

PE 与椭圆C 的位置关系,并证明你的结论.

解:(1)由题设,得2222423

1a b a

b ?=+??+=??,解得2

28

4a b ?=??=??

,故椭圆C 的方程为22184x y +=. (2)由题意知点()0,0Q x . 设点(),0D d

,则(,BD d =-

,又(0,BQ

x =-,

由BD BQ ⊥,得0BD BQ ?=,080dx +=,0

8

d x =-

. 由点E 是点D 关于y 轴的对称点,得点08,0E x ?? ???. 直线PE 的斜率为000

2000

88y x y x x x =-- 因点P 在椭圆C 上,故2200184

x y +=,即2

20028x y +=.

于是直线PE 的斜率为0

2x y -

,其方程为00082x y x y x ??=-- ???.

联立方程组22

00018

482x y x y x y x ?+=??????=-- ?????

,代入得 ()

2222000021664160x y x x x y +-+-=,

利用2

20

028x y +=,化简得220020x x x x -+=. 因0?=,故方程组有两组相同的实数解,

所以直线PE 与椭圆C 相切.

12.已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点

恰为一个正方形的四个顶点.过右焦点F 与x 轴不垂直的直线交椭圆于P ,Q 两点. (1)求椭圆的方程;

(2)当直线l 的斜率为1时,求△POQ 的面积;

(3)在线段OF 上是否存在点M(m , 0),使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,

求出m 的取值范围;若不存在,请说明理由.

解:(1)设椭圆为22x a +2

2y b

=1(a >b >0).b =c =1,a

所求椭圆方程为22x +y 2=1;

(2)右焦点F (1,0),直线l 的方程为y =x -1.设P (x 1,y 1),Q (x 2,y 2),

由???

x 2+2y 2

=2y =x -1

得,3y 2+2y -1=0,解得y 1=-1,y 2=13. ∴S △POQ =12|OF |·|y 1-y 2|=12|y 1-y 2|=23.

(3)假设在线段OF 上存在点M (m,0)(0

因为直线与x 轴不垂直,所以设直线l 的方程为y =k (x -1)(k ≠0).

由???

x 2+2y 2

=2y =kx -

可得,(1+2k 2)x 2-4k 2x +2k 2-2=0. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.

MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →

=(x 2-x 1,y 2-y 1).其中x 2-x 1≠0.

以MP ,MQ 为邻边的平行四边形是菱形?(MP →+MQ →)⊥PQ →?(MP →+MQ →)·PQ →

=0 ?(x 1+x 2-2m ,y 1+y 2)·(x 2-x 1,y 2-y 1)=0?(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0

?(x 1+x 2-2m )+k (y 1+y 2)=0?????4k 21+2k 2-2m +k 2????4k 2

1+2k 2-2=0

?2k 2-(2+4k 2)m =0?m =k 21+2k 2(k ≠0). ∴0

2.

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

解析几何试题库完整

解析几何题库 一、选择题 1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.2 2(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.2 2(1) (1)2x y -+-= D. 22(1)(1)2x y +++= 【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线 1y x =+与圆221x y +=的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 【解析】圆心(0,0)为到直线1y x =+,即10x y -+= 的距离2d = = ,而012 < <,选B 。 【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .2 2(2)1x y +-= B .2 2(2)1x y ++= C .2 2(1) (3)1x y -+-= D .2 2(3)1x y +-= 解法1(直接法):设圆心坐标为(0,)b 1=,解得2b =,故圆的方程为22(2)1x y +-=。 解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为2 2(2)1x y +-= 解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。 【答案】A 4.点P (4,-2)与圆2 24x y +=上任一点连续的中点轨迹方程是 ( ) A.2 2(2)(1)1x y -++= B.2 2(2) (1)4x y -++= C.2 2(4) (2)4x y ++-= D.2 2(2) (1)1x y ++-= 【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:? ??+=-=224 2y t x s ,代入圆方程,得(2x -4)2 +(2y +2)2 =4,整理,得:2 2(2) (1)1x y -++= 【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

近四年上海高考解析几何试题

近四年上海高考解析几何试题 近四年上海高考解析几何试题一(填空题:只要求直接填写结果,每题填对得4分,否则一律得零分. 5221 ( 2005春季7 ) 双曲线的焦距是 . 9x,16y,162 (2005年3) 直角坐标平面中,若定点与动点满足,则点P的A(1,2)P(x,y)xoyOP,OA,4轨迹方程是 __________。解答:设点P的坐标是(x,y),则由知OP,OA,4 x,2y,4,x,2y,4,0 3 (2005年5) 若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是,,y,,3x10,0 b__________。解答:由双曲线的渐近线方程为,知,它的一个焦点是,知,,y,,3x,310,0a 2y222,因此双曲线的方程是 a,1,b,3x,,1a,b,109 ,,,x12cos,4 (2005年6) 将参数方程(为参数)化为普通方程,所得方程是 __________。 ,,y,2sin,, 22解答: (x,1),y,4 2225 (2006春季5) 已知圆和直线. 若圆与直线没l:3x,y,5,0C:(x,5),y,r(r,0)Cl有公共 r 点,则的取值范围是 . (0,10) 6 (2006春季11) 已知直线过点,且与轴、轴的正半轴分别交于两点,为坐 P(2,1)yxlA、BO标原 点,则三角形面积的最小值为 . 4. OAB 227 (2006年2) 已知圆,4,4,,0的圆心是点P,则点P到直线,,1,0的距离yxxyx

是 ; |201|,,2 解:由已知得圆心为:,由点到直线距离公式得:; P(2,0)d,,211,8 (2006年7) 已知椭圆中心在原点,一个焦点为F(,2,0),且长轴长是短轴长的2倍,则3 该椭圆的标准方程是 ; 2b,4, 2,abc,,2,23,2y,,x2解:已知为所 求; ,,,,,,a161,,222164abc,,,,,F(23,0),,, ,5,9 (2006年8)在极坐标系中,O是极点,设点A(4,),B(5,,),则?OAB的面积是 ; 36 ,,,55 解:如图?OAB中, ,,,,,,,,OAOBAOB4,5,2(()),366 15, (平方单位); ,,,S45sin5,AOB26 210 (2006年11) 若曲线,||,1与直线,,没有公共点,则、分别应满足的条件yyxkxbkb

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

解析几何测试题

解析几何测试题 一、选择题 1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 2.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或- 2 3 D 、1或-3 3.直线经过点A (2,1),B (1,m 2 )两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4, 0[πππ ? C .]4 ,0[π D .),2 ()2,4[ ππ π π? 4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、0 53=-+y x 5.若直线42y kx k =++ k 的取值范围是 A .[1,+∞) B . [-1,-. .(-∞,-1] 6.椭圆1322=+ky x 的一个焦点坐标为)10(,, 则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 7.一动圆与圆O :x 2 +y 2 =1外切,与圆C :x 2 +y 2 -6x +8=0内切,那么动圆的圆心的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 8.如右图双曲线122 22=-b y a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P 点,且2130PF F ∠=?,则双曲线的渐近线是( ) A x y ±= B x y 2±= C x y 2±= D x y 4±= 9.设抛物线 x y 82 =的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

解析几何解答题专练

解析几何解答题专练

19.(本小题14分) 已知椭圆G 的中心在坐标原点,焦点在x 轴上,且经过点)20 P ,和点 212Q ?-- ?? ,. (Ⅰ)求椭圆G 的标准方程; (Ⅱ)如图,以椭圆G 的长轴为直径作圆O ,过直线2-=x 上的动点T 作圆O 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆G 交于不同的两点C ,D ,求CD AB 的取值范围. 解:(Ⅰ)设椭圆G 的标准方程为22 221x y a b +=(0a b >>), 将点)20 P ,和点21Q ? - ? ? , 代入,得 22 2 2 11 12a a b ?=??+=??,解得 2221 a b ?=??=??. 故椭圆G 的标准方程为2 212 x y +=. (Ⅱ)圆2 C 的标准方程为2 22 x y +=, 设()1 1 ,A x y ,()2 2 ,B x y , 则直线AT 的方程为1 1 2x x y y +=,直线BT 的方程为2 2 2x x y y +=, 再设直线2-=x 上的动点()2,T t -(t R ∈),由点()2,T t -在直线AT 和BT 上,得

设1s m =(1 04s <≤) ,则AB CD = 设()3 1632f s s s =+-,则()()2 269661160 f s s s '=-=-≥, 故()f s 在10,4 ?? ?? ? 上为增函数, 于是()f s 的值域为(]1,2,CD AB 的取值范围是(. 19.(本小题满分14分) 已知椭圆C : 22 22 1(0)x y a b a b +=>> 离心率2 e = ,短轴长为. (Ⅰ)求椭圆C 的标准方程; (Ⅱ) 如图,椭圆左顶点为A , 过原 点O 的直线(与坐标 轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别 与y 轴 交于M ,N 两点.试问以MN 为直径的圆是否经过 定点(与直线PQ 的斜率无关)?请证明你的结论.

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是 _______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→b 的坐标是 ________________. 3. 已知向量{ }{}3,2,,1,1,1x b a ==→→, 如果→→b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+= -3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线123z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线? ??=-+-=-+0201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线???+==-+1 022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的方程分别 是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是________________(请用 x y x ,,的一个方程表示). 10. 曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面.

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

高中数学立体几何解析几何常考题汇总

新课标立体几何解析几何常考题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又 1111 D B AD D ?= A 1 E D 1 C 1 B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

高考数学解析几何的解法

解析几何题怎么解 高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化. 例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0>=+b a b y a x 有且仅有一个交点Q ,且与x 轴、y 轴分别交于R 、 S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程, 由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得 .)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程 .02)(222222222=-+++b a m a mx ka x b k a 于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=?

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高中数学解析几何解答题)

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点, 问E 、F 两点能否关于过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分,故椭圆中心即为该四 点外接圆的圆心 …………………1分 故该椭圆中,22c b a == 即椭圆方程可为22222b y x =+ ………3分 设H (x,y )为椭圆上一点,则 b y b b y y x HN ≤≤-+++-=-+=其中,182)3()3(||22222…………… 4分 若30<

高等数学-空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习 一 填空题 5’x9=45分 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________ 3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 4、方程0242222=++-++z y x z y x 表示______________曲面. 5、方程22x y z +=表示______________曲面. 6、222x y z +=表示______________曲面. 7、 在空间解析几何中2x y =表示______________图形. 二 计算题 11’x5=55分 1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 3、求过点(1,2,3)且平行于直线 5 1132-=-=z y x 的直线方程. 4、求过点(2,0,-3)且与直线? ??=+-+=-+-012530742z y x z y x 垂直的平面方

5、已知:k i OA 3+=,k j OB 3+=,求OAB ?的面积。 参考答案 一 填空题 1、? ?????-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==- =γβα,3,43,32πγπβπα=== 3、14)2()3()1(222=++-+-z y x 4、以(1,-2,-1)为球心,半径为6的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、04573=-+-z y x 2、029=--z y 3、5 31221-=-=-z y x 4、065111416=---z y x 5 219== ?S

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

相关文档
相关文档 最新文档