文档库 最新最全的文档下载
当前位置:文档库 › 概率论习题试题集6

概率论习题试题集6

概率论习题试题集6
概率论习题试题集6

第六章 参数估计

一、填空题

1. 若一个样本的观测值为0,0,1,1,0,1,则总体均值的矩估计值为___________,总体方差的矩估计值为___________。

2. 设1,0,0,1,1是来自两点分布总体),1(p B 的样本观察值,则参数p q -=1的矩估计值为

___________。

3. 若由总体),(θx F (θ为未知参数)的样本观察值所求得95.0)9.355.35(=<

___________是θ的置信度为___________的置信区间。

4. 设由来自正态总体)9.0,(~2

μN X 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间为___________。

5. 设一批产品的某一指标),(~2σμN X ,从中随机地抽取容量为25的样本,测得样本方差2

210=S ,则总体X 的方差2

σ的置信区度为%95的置信区间为___________.

二、选择题

1. 设总体),(~2σμN X ,其中2

σ已知,则总体均值μ的置信区间长度l 与置信度α-1的关系是( ) (A )当α-1缩小时,l 缩短; (B )当α-1缩小时,l 增大; (C )当α-1缩小时,l 不变;

(D )以上说法都错。

2. 设总体),(~2

σμN X ,2

σ已知,若样本容量n 和α-1均不变,则对于不同的样本观测值,总体均值的置信区间的长度( )。 (A )变长;

(B )变短;

(C )不变;

(D )不能确定。

3. 设n X X X ,,21是来自总体的一个样本,2

,σμ==DX EX ,则方差2

σ的无偏估计值是( )

(A )当μ已知时,统计量∑=-n i i X n 12

)(1μ;(B )当μ已知时,统计量∑=--n i i X n 12)(11μ; (C )当μ未知时,统计量∑=-n i i X X n 12

)(1;(D )当μ已知时,统计量∑=--n i i X X n 1

2)(11。

4. 设θ为总体X 的未知参数,)(,2121θθθθ<为样本统计量,随机区间),(21θθ是θ的置信度为α-1

)10(<<α的置信区间,则有( )

(A )αθθθ=<<)(21P ;

(B )αθθ-=<1)(2P ; (C )αθθθ-=<<1)(21P ;

(D )αθθ=<)(1P

5. 从总体X 中抽取简单随机样本321,,X X X ,易证统计量32116

1

3121X X X ++=

μ, 3212414121X X X ++=∧μ;3213313131X X X ++=∧μ;32145

2

5251X X X ++=∧μ都是总体均值μ

=EX 的无偏估计量,则其中更有效的估计量是( ) (A )∧

1μ;

(B )∧

2μ;

(C )∧

3μ;

(D )∧

三、计算题

1. 设n X X X ,,,21 为来

X 的一个样本,X 服从均匀分布],1[θU ,其中θ未知。

(1)求θ矩估值.

2. 设某市的新生儿体重X (单位:克)服从正态分布),(2σμN ,现测量10名新生儿的体重如下: 3100, 3480, 2520, 3700, 2520, 3200, 2800, 3800, 3020, 3260. (1)求参数2

,σμ的矩估计;(2)求参数2

σ的无偏估计.

3. 某铁路局证实,一个扳道员在5年内所引起的严重事故次数服从参数为λ的泊松分布.设r 表示一扳道员在5年内引起的严重事故次数,t 表示观察到的扳道员人数,有

r 0 1 2 3 4 5 t

44

42

21

9

4

2

求未知参数λ的最大似然估计值以及求出一个扳道员在5年内引起严重事故的概率。

4. 设总体X 的概率密度????∈+=)1,0(,0

)1,0(,)1(),(x x x x f ααα,其中1->α。

求:(1)α的矩估计量;(2)α的最大似然估计量。 5. 某种清漆的9个样品,其干燥时间(单位:小时)如下: 6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0

若干燥时间X 服从正态分布),(2

σμN ,求μ的置信度为0.95的置信区间:(1)由以往经验知6.0=σ小

时;(2)σ未知.

6. 设某地旅游者消费额服从正态分布),(2σμN ,且标准差12=σ元。今对该地区旅游者的日平均消费额进行估计,为了能以95%的置信度相信这种估计误差的绝对值会小于2元,问至少要调查多少人?

7. 为确定某种溶液中的甲醛浓度,取得4个独立测量值的样本,并算得样本均值%34.8=X ,样本标准为%03.0=S 。设被测总体近似地服从正态分布,05.0=α,试分别求2,σμ的置信区间。

8. 某手表厂生产的丽达牌手表,它的走时误差(单位:秒/日)服从正态分布,检验员从装配线上随机地抽取9只进行检测,检验的结果如下:-4.0, 3.1, 2.5, -2.9, 0.9, 1.1, 2.0, -3.0, 2.8 设置信水平为0.95,求该手表的走时误差的均值μ和2

σ的置信区间.

9. 设总体X 服从正态分布),(2σμN ,已知2

02σσ=,要使总体均值μ对应置信水平α-1的置信区间的长度不大于l ,问应抽取多大容量的样本?

10.总体~(,2)X U θθ,其中0θ>是未知参数,又1,,n x x ???为取自该总体的样本,x 为样本均值。

(1)证明2

?3

x θ

=是参数θ的无偏估计和相合估计. (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?

11. 设123,,x x x 是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?

(1)1123111?236x x x μ

=++;(2)2123111?333x x x μ

=++;(3) 3123112

?663

x x x μ=++;

12.某厂生产的化纤强度服从正态分布,长期以来其标准差稳定在0.85σ=,现抽取了一个容量为25n =的样本,测定其强度,算得样本均值为 2.25x =,试求这批化纤平均强度的置信水平为0.95的置信区间。 13.总体2

~(,)X N μσ,2

σ已知,问样本容量n 取多大时才能保证μ的置信水平为95%的置信区间的长度不大于k 。

14. 0.50,1.25,0.80,2.00是取自总体X 的样本,已知ln Y X =服从正态分布(,1)N μ。 (1)求μ的置信水平为95%的置信区间;

(2)求X 的数学期望的置信水平为95%的置信区间。

15. 用一个仪表测量某一物体量9次,得样本均值56.32x =,样本标准差0.22s =。

(1)测量标准差σ大小反映了测量仪表的精度,试求σ的置信水平为0.95的置信区间; (2)求该物理量真值的置信水平为0.99的置信区间。

16.已知某种材料的抗压强度2~(,)X N μσ,现随机地抽取10个试件进行抗压试验,测得数据如下: 482 493 457 471 510 446 435 418 394 469 。 (1)求平均抗压强度μ的置信水平为95%的置信区间

(2)如已知30σ=,求平均抗压强度μ的置信水平为95%的置信区间; (3)求σ的置信水平为95%的置信区间。

17.在一批货物中随机抽取80件,发现有11件不合格品,试求这批货物的不合格率的置信水平为0.90的置信区间。

18.某商店某种商品的月销售量服从泊松分布,为合理进货,必须了解销售情况。现记录了该商量过去的一些销售量,数据如下:

月销售量 9 10 11 12 13 14 15 16 月分数 1

6

13

12

9

4

2

1

试求平均月销售量的置信水平为0.95的置信区间。

19. 为估计某台光谱仪测量材料中金属含量的测量误差,特置备了5个金属试块,其成分、金属含量、均匀性都有差别,设每个试块的测量值都服从正态分布,现对每个试块重复测量6次,计算得其样本标准差分别为123450.09,0.11,0.14,0.10,0.11s s s s s =====,试求σ的0.95置信区间。 参考答案:

一、填空题:1)4

1,21;2)52

=∧q ;3)(35.5,35.9), (0.95);4)4.412,5.588;

5)60.969,193.533。

二、选择题:1)A :2)C ;3) D ; 4)C ;5)C 。

三、计算题:

1.9633.1,12-=∧

X θ;

2.178320,3140

2

==∧

σμ;198133。 3. X =∧λ,1230.1=∧

λ,3253.0)0(123

.1===-e X P 。

4.X

X --=∧

21

2α; 1ln 1

--

=∑=∧n

i i

X

n

α。

5.(5.608,

6.392),(5.558,6.442)。 6.至少要调查139人。

7.4

1000029.0-?,4

100125.0-?。 8.(-1.865,2.425); (3.588, 28.624)。

9. 2

2

22

04ασu l n ≥。

10.解: (1)总体~(,2)X U θθ,则2

3(),()212E X D X θθ==,从而 2

3(),()212E x D x n θθ== 于是,2?()()3E E x θ

θ==,这说明2?3

x θ=是参数θ的无偏估计。进一步,

2

2

4?()091227D n n

θθθ

=?=→。这就证明了?θ也是θ的相合估计。 (2)似然函数为(1)(){2}1

()()n n

x x L I θθθθ

≤≤≤=,显然()L θ是θ的减函数,且θ的取值范围为

()

(1)2n x x θ<<,因而θ的最大似然估计为()

?2

n mle x θ=。

下求?mle

θ的均值与方差,由于()n x 的密度函数为 111

()(

)(),2n n n

x n

f x n x x θ

θθθθ

θ

θ

---=?

=

-<<,

21

1()0

21

()()()1

n n n n

n

n

n

n x x

x dx t t dt n θ

θ

θ

θθθθ

θ--+=-=+=

+∑??

, 222

2

1

2

()

482()()

(2)(1)

n n n

n

n n x

x

x dx n n θ

θ

θθθ

-++=-=++∑?,

2

()2

()(2)(1)n n D x n n θ=++,从而()

121?()()22(1)n n E Ex n n θθθ+==→→+∞+, 这说明?mle

θ不是θ的无偏估计,而是θ的渐近无偏估计。 又

2

()21?()()0()44(1)(2)

n n D D x n n n θθ==→→+∞++,因而?mle θ是θ的相合估计。 11. 解: 先求三个统计量的数学期望,

1123111111

?()()()()236236E E x E x E x μ

μμμμ=++=++=, 2123111111

?()()()()333333E E x E x E x μ

μμμμ=++=++=, 3123112112

?()()()()663663E E x E x E x μ

μμμμ=++=++=。 这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为2

σ,则

222211*********

?()()()()4936493618D D x D x D x μ

σσσσ=++=++=, 222221*********

?()()()()9999993D D x D x D x μ

σσσσ=++=++=, 222231231141141?()()()()36369363692D D x D x D x μσσσσ=++=++=,

不难看出213???()()()D D D μ

μμ<<,从而3?μ的有效性最差。

12.解:这是方差已知时正态均值的区间估计问题。有题设条件10.95a -=,0.05a =,查表知

0.975 1.96u =,于是这批化纤平均强度的置信水平为0.95的置信区间为

1/21/2[/,/][2.25 1.960.85/25,2.25 1.960.85/25][2.250.3332,2.250.3332]

a a x u n x u n σσ---+=-?+?=-+,

即这批化纤平均强度的置信水平为0.95的置信区间为[1.9168,2.5832]。 13.解:由已知条件得μ的0.95的置信区间为1/21/2[/,/]a a x u n x u n σσ---+

其区间长度为1/22/a u n σ-,若使1/22/a u n k σ-≤,只需222

1/2(2/)a n k u σ-≥。

由于1/2 1.96a u -=,故22

22

3.92(

2/)1.96()

n k k

σσ≥=,即样本容量n 至少取2

3.92(

)k

σ时,才能保证μ的置信水平为95%的置信区间的长度不大于k 。

14. 解: (1)将数据进行对数变换,得到ln Y X =的样本值为0.6931,0.2231,0.2231,0.6931--。它可看作是来自正态总体(,1)N μ的样本,其样本均值为0y =,由于1σ=已知,因此,μ的置信水平为95%的置信区间为1/21/2[/,/][0.9800,0.9800]a a y u n y u n ---+=-。

(2)由于12

EX e

μ+

=是μ的严增函数,利用(1)的结果,可算得X 的数学期望的置信水平为95%的

置信区间为0.980.50.980.5[,][0.6188,4.3929]e e -++=。

15. 解 (1)此处22(1)80.220.3872n s -=?=,查表知0.0252(8) 2.1797χ=,2

0.975

(8)17.5345χ=,2

σ的1σ-置信区间为

22221/2/2(1)(1)0.38720.3872[,][,][0.0221,0.1776](1)(1)17.5345 2.1797

a a n s n s n n χχ---==-- 从而σ的置信水平为0.95的置信区间[0.1487,0.4215]。 (2)当σ未知时,μ的1σ-置信区间为

1/21/2[(1)/,(1)/]a a x t n s n x t n s n ----+-。查表得10.005(8) 3.3554t -=,因而μ的置信水平为0.99

的置信区间为[56.32 3.35540.22/9,56.32 3.35540.22/9]

[56.0739,56.5661]

-?+?=

16.解 (1)经计算得,457.5,35.2176x s ==,在σ未知时,μ的置信水平为95%的置信区间为1/21/2[(1)/,(1)/]

a a x t n s n x t n s n ----+-。 查表得,10.025(9) 2.2622t -=,因而μ的置信水平为95%的置信区间为

[457.5 2.262235.2176/10,457.5 2.262235.2176/10]-?+?

[432.3064,482.6936]=

(2)在30σ=时,μ的置信水平为95%的置信区间为 1/21/2[/,/]a a x u n x u n σσ---+。

查表得,1/2 1.96a u -=,因而μ的置信水平为95%的置信区间为

[457.5 1.9630/10,457.5 1.9630/10][438.9058,476.0942]-?+?=。

(3)此处,2(1)11162.5141n s -=,取0.05a =,查表得,20.025(9) 2.7004χ=,2

0.975(9)19.0228χ=,因而2

σ的置信水平为95%的置信区间为

11162.514111162.5141[,][586.7966,4113.6521]19.0228 2.7004

= 由此可以得到σ的置信水平为95%的置信区间为[24.2239,64.1378]。

17. 解 此处80n =较大,可用正态分布求其近似置信区间。不合格品率的1a -近似置信区间为

1/2

1/2(1)(1)

[,]a a x x x x x u x u n n

-----+。 此处11

0.137580

x =

=,0.95 1.645u =,因而不合格品率的置信水平为0.90的置信区间为 0.13750.86250.13750.8625

[0.1375 1.645

,0.1375 1.645]8080

??-+

[0.0742,0.2008]=。

18.解: 平均月销售量88

1

1

575

/11.979248

i i i i i x n x n ===

=

=∑∑ ,此处0.05a = ,1/2 1.96a u -=,48n =较大,利用上一题结果,平均月销售量的近似0.95的置信区间为

[11.9792 1.9611.9792/48,11.9792 1.9611.9792/48]-+[11.0000,12.9584]=。

若用较为精确的近似公式,所得置信区间为[11.0392,12.9992],二者相差不大。

19.解 从题意可知,这里i s 可以看作来自正态分布总体2

(,)i N μσ的容量为6n =的样本标准差,

1,2,,5i =???,由此可知222(1)/~(1)i n s n σχ--,即2225/~(5)i s σχ。由于各试块的测量可认为相互

独立的,故有

2

5

22

2

1

5~(55)(25)i i s χχσ

=?=∑,从而5

222/2

1/22

1

1

((25)5(25))1a i a i P s

a χχσ

-=≤

≤=-∑,即

5

5

2

2

2

2

11

1/2/255[]1(25)(25)i i i i a a P s s a σχχ==-≤≤=-∑∑,故σ的1a -置信区间为 5522

22

111/2/255[,](25)(25)i i i i a a s s χχ==-∑∑,现算出5

21

0.0619i i s ==∑,对0.05a =,查表知 220.0250.975(25)13.1197,(25)40.6465χχ==,代入可算得σ的0.95置信区间为

50.061950.0619

[

,][0.0873,0.1536]40.646513.1197

??=。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论试题(答案)

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B)

概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。 12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭 蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。 13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随 意将这些油漆发给顾客。问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少? 14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求: (1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。 15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。 16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次; (3)三个数字中8至少出现一次;(4)三个数字之和等于6。 (利用事件的关系求随机事件的概率) 17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少? 18. 甲、乙两人先后从52张牌中各抽取13张, (1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率; (2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。 19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。试求下列事件的概率: (1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

学校概率论习题集答案

概率练习答案 第一章练习一 一、填空: 1、b 表示不中,z 表示中(1) zzz,zzb,zbz,bzz,zbb,bzb,bbz,bbb (2)0,1,2,3,4,5 (3)1,2,3,4,5,(4)z,bz,bbz,bbbz,bbbbz. … 2、(1)A B ?(2)AB (3)AB AB ?(4)AB (5)_ _B A AB ? 3、(1)A B C ?? (2)ABC ABC ABC ABC ??? 4、(1)成立(2)不成立(3)不成立(4)成立 5、(1)?(2)]2,5.1[)1,5.0()25.0,0[??(3)B (4) A 6、(1) 11,279 (2)1 21 二、解答题: 1、不相容A 与D ,B 与D ,C 与D 。相容B 与C , 对立事件B 与D 2、(1){奇奇,奇偶,偶奇,偶偶} (2)1C AB AB =?、2C AB AB =? 3、a/a+b 第一章练习二 一、1-5 1、 ( A ) 2、(C ) 3、 ( B) 4、 ( B ) 二、1、p -1, 2、0.82 3、1-p-q 4、c-b,(c-b)/(1-b) 三、1、(1)0.4 (2)0.2 2、0.99 3、52.0)(,7.0)/(,7.0)/(=?==B A P A B P B A P 第一章练习三 一、1、1 3 2、0.84 3、31P - 4、0.684 二、1、0.55 2、0.18;49 3、 4 7 4、 (1) 0.0125 (2) 0.64 5、05.0)99.0(95.0)99.0(1≤?≥-x x 三、事件A 、B 独立,当且仅当()()()()P AB P AB P AB P AB = 必要性易证 充分性:[()()][()()]()[1()()()]P B P AB P A P AB P AB P A P B P AB --=--+

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

概率论习题及答案

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率 . 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为 .. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11 ()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2 (),1,2,3,3 i P A i == 则123,,A A A 最多出现一个的概 率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) .()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A --=-?=??=? ?-=-?=若且则

概率论模拟试题(附答案)

模拟试题(一) 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立 (C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立 的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π , 则=η( ))1,0(~N (A) 2 3 +ξ (B) 2 3 +ξ(C) 2 3-ξ(D) 2 3 -ξ 5.若随机变量ηξ ,不相关,则下列等式中不成立的是( ) (A) 0),(=ηξCov (B) ηξηξD D D +=+)( (C) ηξξηD D D ?= (D) ηξξηE E E ?= 6.设样本n X X X ,,,21???取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X (B) )1,0(~N X n (C) ) (~21 2n X n i i χ∑= (D) )1(~-n t S X 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量

相关文档