文档库 最新最全的文档下载
当前位置:文档库 › 测距边长改正计算

测距边长改正计算

测距边长改正计算
测距边长改正计算

测距边长改正计算

测距仪测距的过程中,由于受到仪器本身的系统误差以及外界环境影响,会造成测距精度的下降。为了提高测距的精度,我们需要对测距的结果进行改正,可以分为三种类型的改正:仪器常数的改正、气象改正和倾斜改正。

仪器常数改正

仪器常数包括加常数和乘常数。

加常数改正:加常数K产生的原因是由于仪器的发射面和接收面与仪器中心不一致,反光棱镜的等效反射面与反光棱镜的中心不一致,使得测距仪测出的距离值与实际距离值不一致。因此,测距仪测出的距离还要加上一个加常数K进行改正。

乘常数改正:光尺长度经一段时间使用后,由于晶体老化,实际频率与设计频率有偏移,使测量成果存在着随距离变化的系统误差,其比例因子称乘常数R。我们由测距的公式

可以看出,如果光尺长度变化,则对距离的影响是成比例的影响。所以测距仪测出的距离还要乘上一个乘常数R进行改正。

对于加常数和乘常数,我们在测距前先进行检定。目前的测距仪都具有设置常数的功能,我们将加常数和乘常数预先设置在仪器中,然后在测距的时候仪器会自动改正。如果没有设置常数,那么可以先测出距离,然后按照下面公式进行改正:

气象改正

测距仪的测尺长度是在一定的气象条件下推算出来的。但是仪器在野外测量时的气象条件与标准气象不一致,使测距值产生系统误差。所以在测距时应该同时测定环境温度和气压。然后利用厂家提供的气象改正公式计算改正值,或者根据厂家提供的对照表查找对应的改值。对于有的仪器,可以将气压和温度输入到仪器中,由仪器自动改正。

倾斜改正

由于测距仪测得的是斜距,应此将斜距换算成平距时还要进行倾斜改正。目前的测距仪一般都与经纬仪组合,测距的同时可以测出竖直角α或天顶距z,然后按上面公式计算平距。

测距仪的标称精度

测距误差可以分为两类:一类是与待测距离成比例的误差,如乘常数误差,温度和气压等外界环境引起的误差;另一类是与待测距离无关的误差,如加常数误差。所以一般将测距仪的精度表达为下面两种形式:

m D= ±(A+B·10-6D) 或m D= ±(A+B·ppm·)

式中:A为固定误差,即测一次距离总会存在这么多的误差;B为比例误差系数,表示每测量一公里就会存在这么多误差。1ppm=1mm/1km=1×10-6;D为所测距离,单位km。

举例:如某台测距仪的标称精度为±(3mm+5ppm),那么固定误差为3mm,比例误差系数为5。

二、全站仪测距的温度和气压改正

通常是开机后将观测时的温度和气压输入全站仪,仪器自动对距离进行温度和气压改正。测定气温通常使用通风干湿温度计,测定气压通常使用空盒气压表。气压表所用单位有mb (102Pa)和mmHg(133.322Pa)两种,而1mb=0.7500617mmHg。气温读数至1度,气压读数至1mmHg。

小知识:《温度和气压对测距的影响》

在一般的气象条件下,在1Km的距离上,温度变化1度所产生的测距误差为0.95mm,气压变化1mmHg所产生的测距误差为0.37mm,湿度变化1mmHg所产生的测距误差为0.05mm。湿度的影响很小,可以忽略不计,当在高温、高湿的夏季作业时,就应考虑湿度改正。

注意:

1、只要温度精度达到1度,气压精度达到27mmHg,则可保证1Km的距离上,由此引起的距离误差约在1mm左右。

2、当气温t=35度,相对湿度为94%,则在1Km距离上湿度影响的改正值约为2mm。由此可见,在高温、高湿的气象条件下作业,对于高精度要求的测量成果,这一因素不能不予以考虑。

3、由于地铁轨道工程测量以“两站一区间”分段进行,从导线复测到控制基标测量,再到加密基标测量所涉及的距离测量都属短距离测量,上述改正值较小,只要正确设置温度值和气压值即可满足规范要求。

三、全站仪测距的精度问题

测距精度,一般是指经加常数K、乘常数R改正后的观测值的精度。虽然加常数和乘常数分别属于固定误差和比例误差,但不是测距精度的表征,而是需要在观测值中加以改正的系统误差,故从某中意义上来说,与标称误差中的A和B是有区别的。因为测距的综合精度指

标,一般以下式表示:MD=±(A+B×10-6D)

每台仪器出厂前就给了A和B之值,再行检验的目的,一方面是通过检验看某台仪器是否符合出厂的精度标准(标称精度),另一方面是看仪器是否还有一定的潜在精度可挖。这与加常数K、乘常数R的检验目的是不一样的。前者是为了检验仪器质量,后者是为了改正观测成果,决不能用检定精度的指标A与B去改正观测成果

小知识:《标称精度》

测距仪都有一个标称精度,他是仪器出厂的合格精度指标,仅一般地说明仪器的性能,而决不能理解为只能达到这样的测距精度,尤其是不能代表现场作业时的边长实测精度。

注意:

1、加常数K、乘常数R改正值从仪器的检测结果得来。加常数K与实测距离大小无关,乘常数R应与实测距离相乘得到改正值,乘常数R单位为mm/Km,实测距离单位为Km,所得改正值单位为mm。

2、外业作业时应进行加常数K、乘常数R改正。

电缆故障测距方法.

电缆故障测距方法 在线测距方法 故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。 其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。 单端行波法 是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。 双端行波测距 是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。 电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了

电力系统输电线路故障测距研究方法

电力系统输电线路故障测距方法研究 摘要:本文首先全面地介绍了故障测距在国内外发展历程和研究现状。根据各测距算法采用的原理不同,将现有的各种测距算法分为行波法、阻抗法、故障分析法以及智能法,然后逐类对各种算法的理论基础和应用条件上进行了分析、对比和讨论,并在此基础上总结得出了各测距算法的优点及存在的问题,指出了每种测距算法的适用范围和应用局限性。 其次设计了一套高压输电线路新型故障测距装置,该测距装置采用专门设计 的高速采样单元捕获暂态电流行波信号,采用全球定位系统GPS为线路两端提供精度高达s 1的统一时标,从而可实现高精度的双端行波法测距。 为了验证本论文提出的故障定位方法的可行性,通过分析研究,其结果说 明本系统的实验方案确实可行。理论和仿真结果表明,本文所作的工作提高了行波故障测距在不同线路结果情况下的适应性、精度和可靠性。 关键词:输电线路;故障测距;电力系统;行波;全球定位系统(GPS) Research about the measure of fault

location in power system transmission line Abstract:The development and general situation of the research in this field in China and in other countries is introduced in this paper. All the existing algorithms can be classified into 4 main methods those are traveling wave location, impedance location, fault analysis location and Intelligence location .Then the principle and application condition of each algorithm are presented and discussed. Based on the analysis and comparison of each algorithm, the corresponding merits and application limitation are concluded. In this article, a new design scheme of the fault locator for HV transmission lines is presented. By using high-speed data acquisitioning unit designed specially to capture traveling waves of transient current, using Global Positioning System (GPS) to supply high precise time tagging for both ends and using wavelet transform theories to identify the head of the traveling waves, the fault locator can realize high precise double-ended traveling waves location. At the same time, using two-terminal voltages and currents sampled by the medium-speed sampling and processing unit synchronized by the Pulse Per Second (1PPS) of GPS, can realize accurate double ended steady state location. In order to verifying the feasibility of the fault location method, which is presented in this thesis, the experiment is performed based on the locale condition. The result shows that the experimental scheme of this thesis is feasible. The analysis and simulation results indicate that the studies in this dissertation can improve the accuracy, reliability and adaptability of traveling wave fault location. Keywords: power transmission line; Traveling wave; power system;Global Positioning System (GPS) ;fault location 第1章绪论

回收率包括绝对回收率和相对回收率

回收率包括绝对回收率和相对回收率。 绝对回收率也称提取回收率,包括萃取回收率。提取回收率在最新的“化学药物临床药代动力学研究的技术指导原则"z中是这样定义的”从生物样品基质中回收得到分析物质的响应值除以标准品产生的响应值即为分析物的提取回收率。也可以说是将供试生物样品中分析物提取出来供分析的比例。”其具体做法是取标准品,以流动相(最好同样品进样溶剂)溶解,做一个5点的标准曲线,另取三个浓度的标准品,加入到空白生物基质中,处理后进样测定,每浓度5个样品,这样来计算绝对回收率。 相对回收率的做法和上面不同的是标准曲线也是加入到基质中配成的。 如果做绝对回收率时,如果标准曲线不是直接进样,而是同样品处理,只是不加基质是不对的,因为这样会使操作和系统的其它一些影响因素被掩盖。比如有机相的转移不完全,处理容器的吸附等。绝对回收率的目的就是要看你能将分析物从样品中提取出来用于分析的比例。 之所以用标准曲线,而不是单点相比,是因为萃取回收率小于100%,有的只有百分之二三十或更低,依药物性质和方法而定,这样一来峰面积只有标准品峰面积的百分之几十,如果峰面积浓度的关系不是过原点的直线,而是有截距或线性不好,那么就有偏差了,这个好理解。另外单点也是需要进几次样来重复的,不然也有误差。既然进几次,不如换成几个点做标准曲线,几种误差都可以消去。 峰面积与浓度是对应关系的,我不认为这两者的比有什么差别。实际也是拿峰面积代进去算。 to lydialydia 比如有一个药绝对回收率设三个点20、100、500ng/ml,取相应标准品加入空白基质中,使成此三个浓度(每浓度5个样品),处理后进样。另取标准品以回收率样品进样溶剂溶解,5个点分别为10、50、100、250、500ng/ml。样品峰面积代入标准曲线算出浓度,与理论浓度比即得回收率。相对回收率只是将标准曲线的5个点也是加入空白基质处理。 1)绝对回收率(萃取回收率或提取回收率) 反映方法的萃取效率,与样品检测灵敏度有关。例如:分别取一定量被测药物标准品两份,其中一份加到空白样品中,按设定方法处理、进样测定,测定色谱峰面积A测,另一份用纯品溶剂溶解并稀释至同浓度,进样测得峰面积A真,回收率=A测/A真×100% 应考察高、中、低三个浓度,高浓度在标准曲线上限附近,低浓度在定量限附近,中间取一个浓度。 对于回收率的大小与变异不宜苛求,一般添加量在10-6~10-9g,绝对回收率达50%~80%令人满意。 内标法:分别取相同量的药物标准品和内标物两份,其中一份加到空白样品中,按设定方法处理,测定药物和内标峰面积,求出比值R测=A药/A内。另一份用纯溶剂溶液进样,测得药物和内标峰面积,计算其比值,回收率=R测/R真×100%。 内标法中要求药物与内标物各自用外标法测得的绝对回收率应相近,两者相差小于10%,否则回收率偏离100%太远。 2)方法回收率 取一系列浓度的药物标准品加到空白体液中,按设定的分析方法测定,根据标准品浓度及相应的测定信号绘制标准曲线,然后取高、中、低浓度的药物标准品加到空白体液中,按标准曲线制备方法同法测定,每个浓度至少平行测定5份,测得值代入方程,与加入量比较,即为方法回收率,除定量限外,各浓度测得的平均值偏离实际加入量应小于15%,定量限这点应小于20%。 回收率测定时,不管采用何种方法,要求添加的药物量必需与实际测量相近;必须与实际存在的状态相似;必须同时做空白实验。否则测得结果不可靠,因此报道方法的回收率时,必须说明添加量。

设备完好率设备利用率设备故障率设备开动率OEEMTTRMTTFMTBF

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系统正常、 设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各种不同类 型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率; 设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率

农残回收率计算

回收率的计算方法 有机磷类 国标: 假设取5PPM某农药0.5毫升加入到10克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其10克蔬菜样品中农药浓度为X=(5×0.5)/10=0.25PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)和V2(分取体积)应该一样均为100毫升二氯甲烷,因为有机磷农药前处理未进行分取,是100%浓缩的。注ρ=5PPM。 所以,ρ×100×2×1×A1 ρ×A1 W(含量)= = 10×100×1×A 5A W(含量)ρA1 回收率= ×100% = X X×5A 农业部行标: 假设取5PPM某农药0.5毫升加入到25克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其25克蔬菜样品中农药浓度为X=(5×0.5)/25=0.1PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) ρ×50×5×1×A1 ρ×A1 W(含量)= = 25×10×1×A A W(含量)ρA1 回收率= ×100% = X X×A

菊酯类 国标: 假设取5PPM某农药0.5毫升加入到20克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其20克蔬菜样品中农药浓度为X=(5×0.5)/20=0.125PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)为30毫升正己烷加30毫升丙酮,总计为60毫升。V2(分取体积)为3毫升过柱体积。注ρ=5PPM。 所以,ρ×60×1×1×A1 ρ×A1 W(含量)= = 20×3×1×A A W(含量)ρA1 回收率= ×100% = X X×A 农业部行标: 同有机磷计算方法。 注:以上W(含量)即为准确测量的蔬菜样品农药残留浓度,单位为PPM或mg/kg ,若换算成μg/kg 则需要乘以1000。

输电线路故障测距系统现状及发展趋势综述

输电线路故障测距系统现状及发展趋势综述 发表时间:2016-10-18T15:34:19.453Z 来源:《电力技术》2016年第8期作者:关昕[导读] 本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状。 贵州电网公司都匀供电局贵州都匀 558000摘要:本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状,分析了工程应用中存在的问题。针对上述问题,并结合近年来电力科技发展,本文提出了行波故障测距系统的后续技术发展方向。 关键词:输电线路;行波法;故障测距 1.引言 输电线路是电网中较容易故障的部分,输电线路故障后,快速、精确的定位故障点位置对缩短线路停电时间、快速恢复供电、降低停电带来的经济损失具有重要意义。从长期运行的角度看,精确的故障点定位信息有助于运行单位的事故分析,及时地发现故障隐患,采取有针对性的措施,提高线路运行的长期可靠性。 输电线路故障测距方法(故障定位)从原理上可分为阻抗法、行波法、时域法、频域法等。目前,获得实际应用的主要是阻抗法和行波法,保护/录波装置中主要应用的是阻抗法,行波故障测距装置则一般是单独组屏。相对而言,阻抗法受过渡电阻、系统运行方式、互感器等因素影响,在长线路、高阻故障情况下,定位误差较大,因此,输电线路行波故障测距装置是目前国内电力运营单位最主要的故障定位手段。本文首先阐述了输电线路行波故障测距系统在国内发展及应用现状,介绍了存在的问题,并对后续技术发展进行了分析。 2.输电线路行波故障测距技术原理及发展历程 2.1 输电线路行波故障测距原理 输电线路行波测距法(也称为行波故障定位),根据需要的电气量的不同,可分为单端法、双端法、脉冲法。目前,现场运行装置基本上都是采用采用双端法,其原理是利用故障产生的暂态行波,通过计算暂态行波到达线路两端的时间差来计算故障位置。故障测距计算中主要解决以下两个问题:①行波在传输过程中的衰减及波形畸变(即信号色散);②不同线路类型中行波波速的确定。 图1 双端行波测距原理 2.2 输电线路行波故障测距技术发展历程 在上世纪70年代,国外相关研究单位就提出了行波故障定位概念,但受采样、授时等技术的限制一直未能实用化。在行波测距技术实用化之前,电力系统主要通过保护/录波装置数据利用阻抗测距法完成故障定位,但受故障过渡电阻、互感器误差等因素的影响,测距精度和可靠性较低,并且不适用直流输电、T阶等类型线路。上世纪80年代以后,随着GPS、数字信号处理技术的成熟,行波故障测距装置技术上逐渐成熟。而在行波故障测距理论研究领域也取得了突破,中国电科院、山东科汇等单位采用小波变换、模量变换、自适应滤波器等手段[1~7]的综合应用解决了色散、波速确定等问题,行波故障测距装置进入实用化阶段。 3.输电线路故障测距系统发展现状 3.1 应用规模 目前,基于行波原理的输电线路故障测距装置在我国电网已经获得了广泛应用,安装厂站数量超过3000个,全面覆盖500kV/330kV以上电压等级线路,距离较长的220kV电压等级线路也基本安装有行波故障测距装置。在国内,从事该领域产品研制与开发的主要厂家是:南京南瑞集团公司,山东科汇公司、山大电力等,由于国内在此领域的应用水平较高,在装置开发和相关技术研究方面与国外机构差距较小。 3.2 应用效果 实际运行统计表明,输电线路行波故障测距装置的精度基本上达到500米~1000米,在现场运行中主要发挥了以下作用: 1)输电线路行波故障测距装置的应用有效缩短了线路停电时间,仅在辽宁电网,根据2006年~2009年统计,挽回停电损失上亿元。 2)对于四川、青海、云贵等地电网,由于输电线路多跨越山区、林地,巡线困难,行波故障测距装置的应用大大降低了巡线工作量。 3)输电线路故障点的准确定位有助于运营单位采取预防性措施,这也间接降低了输电线路后续故障发生的概率。 但需要指出的是,输电线路行波故障测距装置的应用效果与现场的运行维护情况相关。以辽宁电网为例,2014年上半年,220kV线路故障的定位成功率超过95%,平均误差在2级杆塔以内(不到500米误差);而运行维护不力的地区,故障定位成功率甚至不及50%。 3.3 存在的问题 (1)故障测距装置可靠性相对较低。 这是影响行波故障测距装置应用效果的最主要因素。由于行波故障测距装置系统构成较为复杂,包括装置采样、通讯、GPS授时(精度要求较高)多个环节,其中一个环节出现问题,即可能导致故障失败。根据各网省公司统计,由于通讯、GPS原因导致的故障定位失败占据故障总原因的70%以上。

直供线路故障测距修正方法

直供线路故障测距修正说明 1.测距原理 直供测距定值说明: 表测距定值表(针对直供线路有效) 注意单位电抗和总电抗都是二次换算值. 测距分段数:测距时将此馈线根据不同的电抗区段分成的测距分段的个数。 单位电抗:在此分段内接触网的单位电抗值,为二次值,x2=x1*K U/K I,单位Ω/Km. 总电抗:保护安装处到此分段末端的总电抗,为二次值,单位Ω。 距离:保护安装处到此分段末端的总距离,单位Km。 以4段分段的故标定值设置举例如下: 变电所 供电线区间线路站场区间线路 设馈线压互变比27.5/0.1,流互变比800/5, 供电线单位电抗0.65Ω/Km,接触网线路单位电抗0.42Ω/Km,站场单位电抗0.2Ω/Km,L1=1Km,L2=10Km,L3=12Km,L4=25Km。则故障测距定值设置如下:

2.测距修正方法 具备原始测距整定数据,现场保护动作数据,实际短路位置数据等相关参数 主要有:整定数据:N,x1,X1,L1,x2,X2,L2,……. 动作数据: Xs,Lj 所在段K, 实际故障距离Ls 设修正后的测距定值:N,x1’,X1’,L1,x2’,X2’,L2,……. 3.计算原理 1)第一段内故障,测距定值修正方法: X1’=L1/Ls*X1 x1’=X1’/L1,其他段根据此参数重新计算 2)第二段内故障,测距定值修正方法: X2’=X1+(L2-L1)*(X-X1)/(Ls-L1) x2’=(X2’-X1)/(L2-L1),后续分段根据此参数重新计算 3)第I段(I≠1) XI’=X I-1+(L I-L I-1)*(X-X I-1)/(L S-L I-1) x i’=(X I’-X I-1)/(L I-L I-1), 后续分段根据此参数重新计算 4.验算为保证正确性,最好按照计算结果划出线性分段图,将故障时的Xs通过坐标及计算,检验是否对应结果为Ls.

电力电缆的故障测距与定点方法探讨

电力电缆的故障测距与定点方法探讨 摘要:电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行。因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。文章分析了电力电缆故障的原因及分类,探讨了电力电缆的故障测距与定点方法,并对电力电缆故障在线监测的发展进行了探讨。 关键词:电力电缆;故障测距;故障定点;在线监测;脉冲 随着我国经济建设的高速发展,我国的城市电网改造工作大力地开展。由于电力电缆应用成本的下降,以及电力电缆自身所具有的供电可靠性高、不受地面、空间建筑物的影响、不受恶劣气候侵害、安全隐蔽耐用等特点,因而获得了越来越广泛的应用。然而,与架空输电线路相比,虽然电力电缆的上述优点却为后期电缆的维护工作特别是故障测距与定位带来了较大的难度,尤其电缆长度相对较短、线路故障不可观测性等特点都决定了电缆线路要求有更精确的故障测距方法。另一方面,电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行,并且如故障发现不及时,则可能导致火灾、大规模停电等较大的事故后果。因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。 一、电力电缆故障原因及类型 (一)电力电缆故障原因 随着电缆数量的增多及运行时间的延长,由于电缆绝缘老化特性等因素,故障发生概率大大增加。电缆故障点的查找与测量是通讯和电力供应畅通的有力保障,但是因为电缆线路的隐蔽性、个别运行单位的运行资料不完善以及测试设备的局限性,使电缆故障的查找非常困难。尤其是在狂风、暴雨等恶劣天气中,给故障的查找、维修带来了很大不便。了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。 电缆发生故障的原因是多方面的,常见的几种主要原因包括: 1.机械损伤。主要由于电缆安装敷设时不小心造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。 2.绝缘老化变质。主要是由于电缆绝缘内部气隙游离造成局部过热,从而使绝缘炭化。 3.化学腐蚀。电缆路径在有酸碱作业的地区通过,或煤气站的苯蒸汽往往造成电缆铠装和铅(铝)护套大面积长距离被腐蚀。 4.设计和制作工艺不良。拙劣的技工、拙劣的接头,电场分布设计不周密,材料选用不当,不按技术要求敷设电缆往往都是形成电缆故障的重要原因。 5.过电压。过电压主要是指大气过电压(雷击)和电缆内部过电压。 (二)电力电缆故障类型 根据故障电阻与击穿间隙情况,电缆故障可分为低阻、高阻、开路与闪络性故障。

加标回收率计算方法

加标回收率 有空白加标回收和样品加标回收两种 空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。 加标回收率的测定,是实验室内经常用以自控的一种质量控制技术.对 于它的计算方法,给定了一个理论公式: 加标回收率=(加标试样测定值—试样测定值)加标量X 100%. 理论公式使用的约束条件 加标量不能过大,一般为待测物含量的0.5?2.0倍,且加标后的总含量不应超过方法的测定上限;加标物的浓度宜较高,加标物的体积应很小,一般以不超过原始试样体积的1%为好。加标后引起的浓度增量在方法测定上 限浓度C的0.4~0.6(C)之间为宜。对分光光度计来说,吸光度A在0.7以下,读数较为准确。 回收率计算结果不受加标体积影响的几种情况 F列情况下,均可以采用公式(2)计算加标回收率 (1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,尽

管因加标而增大了试样体积,但样品经处理后重新定容并不会对分析结果产生影响?比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287),样品及加标样品经水浴蒸干后,需要重新定容到50 mL再行测定。 ⑵样品分析过程中可以预先留出加标体积的项目,比如采用离子选择电 极法分析水中的氟化物(GB7484287),当样品取样量为35 mL、加标样取 5.0mL以内时,仍可定容在50 mL ,对分析结果没有影响。 (3)当加标体积远小于试样体积时,可不考虑加标体积的影响?比如采用4- 氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为 1.0 mL ,而取样体积为250 mL时,加标体积引起的误差可以忽略不计。 理论公式约束条件的含义 加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V 0.只有这样,分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。 对加标量的规定: 1. 加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的 影响 2. 当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的 低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作 为待测物质的含量加标

电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真

电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真

————————————————————————————————作者:————————————————————————————————日期:

燕山大学 课程设计说明书题目:输电线路双端故障测距仿真 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称: 燕山大学课程设计(论文)任务书

院(系):电气工程学院基层教学单位:电力工程系学号学生姓名专业(班级) 设计题目输电线路双端故障测距仿真 设计技术参数 测距方法大致分3大类:行波法、阻抗法和故障分析法,其中建立在工频电气量基础之一的阻抗算法目前得到了广泛的工程应用。在掌握双端测距基本原理的基础上,搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响。具体参数见参考资料。 设计要求1.搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响; 2.遵守实训期间的纪律要求,独立完成实训任务,; 3.撰写实训总结报告一份(不少于五千字),要求有理论分析和仿真结果,文字符号符合国家现行标准。 工作量1.学会使用MATLAB/SIMULINK电力系统仿真工具箱;2.独立完成仿真电路设计、连接与调试; 3.参加答辩并完成实训报告。 工作计划1.学习使用MATLAB/SIMULINK电力系统仿真工具箱,下发任务书;2.完成实训内容的原理分析与电路设计; 3.在MA TLAB仿真平台上进行电路连接、调试并验收。 4.参加答辩并撰写实训报告。 参考资料1.吴天明. MA TLAB电力系统设计与分析. 国防工业出版社 2.毕潇, 李学农, 陈延枫, 等. 一各双端故障测距算法的仿真及现场实例分析. 高电压技术, 2006, 32(3):105-107 3.自查资料 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日燕山大学课程设计评审意见表

高压架空输电线路的故障测距方法 叶锡元

高压架空输电线路的故障测距方法叶锡元 发表时间:2018-12-21T10:20:33.443Z 来源:《电力设备》2018年第23期作者:叶锡元 [导读] 摘要:架空线路是目前电力能源供应的主要方式,随着高压架空输电线路日益增多,输电线路故障问题也频繁出现,对电力系统运行造成影响。 (广东电网有限责任公司东莞西区供电局广东东莞 523960) 摘要:架空线路是目前电力能源供应的主要方式,随着高压架空输电线路日益增多,输电线路故障问题也频繁出现,对电力系统运行造成影响。由于输电线路分布广及穿越复杂地形,容易出现故障;且当架空线路出现故障时,如逐条线路实施排查,效率低,不能对故障及时排除,容易引发一系列连锁反应。实施有效措施对故障进行快速诊断可有利于故障排除,对保障电力系统正常运行将发挥重要作用。高压架空输电线路故障测距方法的使用可快速对故障点进行诊断,有利于故障排除。 关键词:高压架空输电线路的故障测距方法 一、架空输电线路故障概况及分析 具体来讲,关于高压架空输电线路的故障类型主要包括单相、两相等短路故障。就发生频率来讲,单相短路故障的发生率约占据总故障事件的65%以上,其中,三相故障发生概率最小,约占5%左右,但该类故障一旦发生,将对整个电路系统造成严重影响,如烧毁电力元件等,故障不能及时排除,容易引起较大经济损失。关于输电线路发生故障的原因主要是绝缘子被外力等因素击穿而引起接地故障所致。除此之外,天气原因、地理因素也是常见的故障原因,如雷电、大风等引发线路及电气元件损坏而引发故障。此外,腐蚀也是线路故障发生的主要原因,实际线路保护中应引起重视。 二、架空输电线路故障测距原理及方法 对于架空输电线路,故障类型主要包括单相接地故障、相间短路故障、两相短路接地故障等。长期以来,对于故障的诊断主要依靠人为巡检方式发现故障及排除。而随着微机及微处理技术的应用,一些架空线路故障测距装置的使用很大程度上解决了故障无法及时发现及排除的现状。关于故障测距,方法主要有阻抗法及行波法,具体如下。 (一)阻抗法 阻抗法主要是依据电路在故障时所测量所得的电压、电流计算故障回路阻抗,以便确定其故障位置及实施处理,其主要原理是利用线路长度与阻抗成正比的原理所得。该种测量方法原理简单、造价低及不受通行条件限制等优点,一直是各学者关注的重点。但,该种方式主要缺点在于精度不高,无法准确对故障点实施定位。而基于现有技术,如通信技术、GPS技术的应用,使得采用阻抗法实现输电线路故障测距精度的提升提供了技术保证。 (二)行波法 行波法测距主要是依据行波理论实现故障测距的方法,主要有单端算法及双端算法。如当电路发生故障后,从母线向故障点传播的行波实现折返,从而可以利用传播实现与故障距离成正比而实现测距的目的。测试原理如公式(1)所示。由于该方法测试较为准确,且可以实现对故障点的快速判断,可在实际高压架空输电线路故障测距中使用。 (1) 其中,XS为故障距离;v为波速度,Ts1为故障点初始行波到达母线时间,Ts2为故障点发射波到达母线时间。 双端行波法测距原理与单端行波法测距原理存在不同,即双端算法测距主要是依靠故障点所产生的行波第一次到达两端的时间差实现测距,测距原理见公式(2)所示: (2) 其中,XS为故障距离,v为波速度;Ts1为故障点到达母线一端的时间;Ts2为故障点到达母线另一端时间,L为线路长度。 (三)固有频率法测距 (1)固有频率法测距的基本原理 最早在1979年,Swift发现故障行波的频谱与故障距离及线路终端的结构有关,即:在一系列频率成分组成的行波频谱中,这一系列频率成分称为故障行波的固有频率,其中最低频所占的比重最大,称为行波频谱的主成分。在线路终端为理想的开路或者短路状态的情况下,行波频谱的主成分与故障距离之间有确定的函数关系。该研究局限于线路终端两种极特殊的情况下的故障定位,所以Swift的研究结论仅仅是固有频率法测距的雏形。线路终端为任意阻抗值条件下的故障距离和系统终端阻抗、行波固有频率之间的关系,使得利用行波固有频率的测距方法得到了完善。 (2)固有频率法测距的研究现状 利用固有频率法测距,无论应用场景是交流线路还是直流线路,都需要提取出精确的固有频率,目前提取行波固有频率的算法主要有傅里叶变换、多信号分类算法、小波变换,在此基础上,利用信号的时频相关性,先在频域确定行波频谱的主成分,再在该频率的邻域内确定行波信号的周期来得到更为准确的频率值。文献[43]先利用经验模态分解算法处理信号得到故障测距所需的行波成分,再在该成分中提取固有频率,减弱了频谱混叠对测距的影响。 直流输电线路的边界比较复杂,因此对终端阻抗的处理方式对测距精度有比较大的影响。将固有频率法应用于直流输电线路的故障定位中,该文献对线路终端阻抗的处理是把线路终端对高频分量而言看作是开路的,线路终端对低频分量的作用看作使其发生偏移。没有对线路终端的作用进行理论分析,而是利用神经网络的方法训练得到了测距结果。对线路终端阻抗的影响进行了量化分析,计算得到了行波主频率下的终端反射角,通过行波主频率和反射角计算出故障距离。在柔性直流输电线路中固有频率法的适应性。 三、故障测距方法比较及应用趋势分析 前面,对架空输电线路测距方法及原理进行分析。对于高压架空输电线路及现有测距技术而言,利用微分方程直接在时域中求解是最为直接的方式,这是现有高压架空电线故障测距的主要方式。(1)具体来讲,如利用电感、电容及电阻等参数,并用线路两边的电气量计算沿线电压分布而实现对故障距离的测试属于单回线时域测试法的一种。利用双同线环流网及两侧系统无关及电压为零的点而对线路两侧

输电线路故障测距资料

输电线路故障测距的研究 入学年级:2014秋 学生姓名:范晓晨 电气工程及其自动化 学号:142512********* 所学专业:电气化及其自动化 东北农业大学 中国·哈尔滨 2016年11月

摘要:对高压架空输电线路进行准确的故障测距是保障电力系统安全稳定运行的有效途径之一。为此,文章全面地介绍了国内外在此方面的研究现状。根据各种测距算法采用的原理不同,将现有的各种测距算法分为阻抗法、故障分析法、和行波法。阻抗法是根据故障时测量到的电压、电流量而计算出故障回路的阻抗,由于线路长度与阻抗成正比,因此便可求出由装置装设处到故障点的距离;故障分析法是利用故障时记录下来的电压、电流量,通过分析计算,求出故障点的距离;行波法是根据行波传输理论实现输电线路的故障测距方法,按其原理可分为A、B、C型3种方法,然后利用小波变换对输电线路故障测距进行模拟仿真。最后,对高压架空输电线路故障测距的研究及应用前景进行了展望。 关键词:故障测距;行波;输电线路;小波变换 1. 概述 高压输电线路是电力系统的命脉,它担负着传送电能的重任。同时,它又是系统中发生故障最多的地方,并且极难查找。因此,在线路故障后迅速准确地把故障点找到,不仅对及时修复线路和保证可靠供电,而且对电力系统的安全稳定和经济运行都有十分重要的意义。 根据故障测距装置的作用,对它提出以下几点基本要求[1]。 1)可靠性 2)准确性 3)经济性 4)方便性 目前已有的输电线故障测距装置按其工作原理可以分为以下几种。 1)阻抗法 2)故障分析法 3)行波法 本论文的主要工作如下: 1)对基于电气量的输电线路故障测距进行研究。 2)了解输电线路行波的产生和传播原理、电力系统故障分析。 3)具体掌握基于行波法的输电线路故障测距原理,利用小波变换对行波突变点检测进行研究,并对输电线路故障测距进行模拟仿真。 4)总结并对输电线路故障测距应用前景进行了展望。 2 阻抗法

回收率

准备两份:一份待测样品A,一份加入一定量标准B,然后用加标测的结果减去理论值,回收率等于B-A/B*100% 4.6. 5. 回收率 4.6. 5.1. 在检测的样品中添加一定量的标准物质,测试添加进去的标准物质的回收率,可以衡量前处理或测试过程中的基体干扰、样品的交叉污染、样品损失、仪器性能等,故回收率试验一直是化学实验室质量控制中重要的手段之一。 4.6. 5.2. 进行回收率测试时,应选择具有代表性的样品,样品应均匀性良好,目标测试物质具有一定的含量。 4.6. 5.3. 回收率测试时,称取上述选择的经预处理的样品两份,其中一份中加入目标测试物质,加入量是样品中目标测试物质量的50%-150%。两份样品同时经过前处理后,同时上机测试,计算回收率。 4.6. 5.4. 回收率=(V2c2-V1c1)×100%/V0c0 其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL 本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不一致,则应折算为一致的质量。 4.6. 5.5. 回收率的范围一般控制为80%-120%,根据项目的不同,由实验室技术指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。 4.6. 5. 6. 回收率测试的另外一种形式是,如果怀疑样品溶液基体对测试结果有影响,则可以直接在样品溶液中加入一定体积的标准溶液,测试此加标液的浓度,计算加标回收率,此时可以衡量溶液基体对测试有无影响。 以上摘自我们公司的程序文件中关于结果质量保证中关于加标回收率测定, 回收率试验它也叫加标回收,即在测定样品的同时,于同一样品的子样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,除以加入量,计算回收率。它可以反映测试结果的准确度。 目的就是控制实验的准确度。加标回收衡量准确度,做平行样是用来衡量精密度的.这两个手段是实验室质量保证上经常用到的措施. 测量方法确认技术分成以下几类。 (1)准确度试验(标准物质分析试验、回收率试验、不同方法的比对试验)。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验)。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。

设备故障率计算方法

设备运行参数管理办法 为规范设备管理程序,提高设备利用率和使用寿命,监控设备运行情况特制定以下设备运行参数管理办法。设备运行参数的定义方式不同表示的含义不同,我们采用以下方式定义,能同时反映出关键设备与一般设备故障对设备运行率的影响以及整体平均设备故障率和设备故障对生产的影响程度大小: 一 . 运行参数注解 1.日单生产线运行率α: %1008?=小时计) 生产线计划开机(按生产线实际运行时间i α 备注:运行率反应单线整体设备利用率及运行情况 当α>1时表示设备运行时间超过8小时; 当α<1时包含设备闲置,设备故障,无计划停机,模具更换调试等情况; 当α=1时表示符合正常计划生产,各设备运行正常,利用率高; 2.日单生产线故障率β: %1008?=小时计) 和(一般按各单台设备计划时间之和各单台设备故障时间之β 备注:此故障率利用平均值方式按故障发生时间仅反应单线平均设备故障情况;与日单 生产线运行率结合能一定程度反映出关键设备与一般设备对生产的影响程度。 3.设备日总运行率Α1: Α=n i ∑? (即当天所运行的各线运行率的平均值) 备注:能反映整体设备平均利用率情况。 4.设备日总故障率Β1: Β=∑i β (即当天各线故障率之和) 备注:利用求和方式能反映各设备故障对生产的影响程度大小 5.设备年或月运行率A=日运行率平均值;设备年或月故障率B=日故障率平均值; 月故障率采用单线平均值,各线求和的方式即反映出整体平均设备故障率又反映出设备 故障对生产的影响程度大小:其值高低能从一定程度反映一段时间内设备故障的控制情况。 月运行率高低仅能从一定程度上反映一段时间内开线的生产线的利用率(影响因素包括 一般和关键设备停机的影响,细小停机及生产准备等)不能反映全厂整体设备产能的发挥程度,产能发挥由产量总值反映; 6.非计划停机时间:分为设备故障停机时间、模具故障停机时间、细小停机时间、物料短缺 及其他突发情况时间总和。 7.保养计划完成率:时间完成保养项数/计划保养项数 (一定程度反映保养计划的完成情况) 8.维修频次:日平均维修频次 (结合故障率和非计划停机时间反映出设备故障的种类和次数,值越大一定程度反映小修次数越多) 按以上定义举例: 假如月平均故障率2.56% ;对应日维修时间约3.4小时;月故障时间约3.4*25=85 小时;非计划停机时间110-125小时; 维修频次3.5次相当于每次维修1小时; 运行率87%对于单线平均有效工作时间8h*87*=6.96小时

牵引供电故障测距说明

牵引供电系统故障测距说明资料 1.概述 牵引供电系统根据不同供电方式,接触网故障测距原理不同。当采用AT供电方式,根据线路及通信条件可采用不同测距原理。主要包括“吸上电流比”,“上下行电流比”和“吸馈电流比”测距原理。对直供加回流线供电方式,国内一般采用拟合的分段线性电抗法进行故障测距。 2.测距原理及适用条件 2.1 AT牵引网故障测距原理 针对AT牵引供电系统,由于线路的非线性,主要采用“吸上电流比”,“上下行电流比”和“吸馈电流比”测距原理进行故障测距。 这三种测距原理适用于不同线路条件。 1)吸上电流比 供电臂有故标专用通信通道,各所亭均安装故障测距单元, 线路可为单线或复线。适用于T-R、F-R短路故障,不适用 T-F故障。

上图表示故障发生在第n 个AT 和第n+1个AT 之间 测距公式:)100(1001 11 11n n n n n n n n n n n Q I K I K I K Q Q D L L -+?--+ =+++++ 式中:L :故障点距变电所的距离 L n :变电所距第n 个AT 的距离 D n :第n 个AT 与第n +1个AT 之间的距离 I n ,I n+1:分别为第n 个AT 与第n+1个AT 中性点的吸上电流和 Q n ,Q n+1:整定值 K n ,K n+1:电流分布系数,范围根据站场情况可调整。对 标准区间线路K=1.0。 通信通道一般建议采用以供电臂为单元的2M 光纤环形通道。 2) 上下行电流比 无需通信通道,供电臂必须为复线,且末端必须并联闭环供电。重合闸时测距无效。适合各种短路形式。 故障测距公式如下: L Ldn Lup Idn Iup Idn Iup L ?++?+= )() ,min( up up f I t I up I -= dn dn f I t I dn I -= Lup 、Ldn :上、下行供电臂长度 Iup 、Idn : 上下行供电臂电流 ΔL :修正参数

相关文档
相关文档 最新文档