文档库 最新最全的文档下载
当前位置:文档库 › fnl气象格式数据说明

fnl气象格式数据说明

fnl气象格式数据说明
fnl气象格式数据说明

摘要:查了一顿也没找到fnl数据到底包含多少气象数据,这是用wgrib从fnl数据里面读出来的,自己整理的。希望哪位大侠给指导下,fnl数据。 1 PRES=Pressure 气压 2 HGT=Geopotential height [gpm] 位势高度 3 TMP=Temp. [K] 温度 4 VVEL=Pressure vertical velocit

-

查了一顿也没找到fnl数据到底包含多少气象数据,这是用wgrib从fnl数据里面读出来的,自己整理的。希望哪位大侠给指导下,fnl数据。

1 PRES=Pressure 气压

2 HGT=Geopotential height [gpm] 位势高度

3 TMP=Temp. [K] 温度

4 VVEL=Pressure vertical velocity [Pa/s] 气压垂直速度

5 RH=Relative humidity [%] 相对湿度

6 ABSV=Absolute vorticity [/s] 绝对涡度

7 O3MR=Ozone mixing ratio [kg/kg] 臭氧混合比

8 CLWMR=Cloud water [kg/kg] 云水

9 5WAVH=5-wave geopotential height [gpm]

10 UGRD=u wind [m/s] 纬向风

11 VGRD=v wind [m/s] 经向风

12 SPFH=Specific humidity [kg/kg] 比湿

13 PWAT=Precipitable water [kg/m^2] 降雨量

14 VWSH=Vertical speed shear [1/s] 垂向风切变

15 LFTX=Surface lifted index [K] 地面举升指数

16 CAPE=Convective Avail. Pot. Energy [J/kg] 对流可用位能

17 CIN=Convective inhibition [J/kg] 对流抑制能

18 4LFTX=Best (4-layer) lifted index [K]

19 PRMSL=Pressure reduced to MSL [Pa]

20 POT=Potential temp. [K 位温

21 TOZNE=Total ozone [Dobson] 总臭氧

22 CWAT=Cloud water [kg/m^2] 云水

23 SOILW=Volumetric soil moisture [fraction]

24 WEASD=Accum. snow [kg/m^2] 雪深

25 LAND=Land cover (land=1;sea=0) [fraction]土地标示

26 ICEC=Ice concentration (ice=1;no ice=0) [fraction] 冰密集度

27 HPBL=Planetary boundary layer height

行星边界层高度

28TCDC=Total cloud cover [%] 总云水

29 GPA=Geopotential height anomaly [gpm] 位势高度异常

30 5WAVA=5-wave geopot. height anomaly [gpm]

grads处理多个ctl

(2010-07-29 15:02:41)

标签:

杂谈

先生成一个ctl

grib1:

C:\Program Files\PCGrADS\win32>grib2ctl grib_file > grib_file.ctl or

gs>!grib2ctl grib_file > grib_file.ctl

grib2:

For analyses:

$ g2ctl -O grib2_file >grib2_file.ctl

$ gribmap -O -i grib2_file.ctl

$ grads

Landscape mode? (no for portrait):

ga-> open grib2_file.ctl

For forecasts:

$ g2ctl grib2_file >grib2_file.ctl

$ gribmap -i grib2_file.ctl

$ grads

Landscape mode? (no for portrait):

ga-> open grib2_file.ctl

用grads处理多个相同格式的数据时若单个单个处理非常麻烦,当文件非常多的时候是单个处理是不实际的。下面介绍一种方法;

第一步,在这种情况下可以重新写一个ctl描述文件,其文件变量都和已知的ctl 相同,若原来的n文件只是时间不同,那么新描述文件的时间维数是所有原文件的时间的和。同样,若其他维数不同时也用同样的方法处理。

第二步,在第一行之后添加一行: options template 表示多个时间序列原始数据文件想用一个描述文件统一地描述。这些原数据的原文件名由dset定义的形势命名文件名。

第三步,修改dset 的文件名。原路径不变,把文件名用%表示。其中:

%y2 代表两位数年

%y4 代表四位数年

%m1 代表一位或者两位数的月

%m2 代表两位数月(用0补齐1位数)

%mc 3个字符月份的缩写

%d1 1或2位天

%d2 两位天

%h1 1或者2位时

%h2 2位时

例如:

原文件其中之一的文件名为gdas2006050812f00,且所有文件只有天和时的变化那么新描述文件的文件名为:gdas200605%d2%h2f00

另外如果源文件里有index项的话,需要修改其idx的文件名,假设改成fnl.idx。并用在dos下用gribmap函数生成一个新的idx文件。gribmap -e-i fnl.ctl(加绝对路径)

open fnl.ctl就可以打开所有文件。

安装WRF及其组件

2010-09-16 17:53:54 来源:NoBodY 【大中小】评论: 条

摘要:网上有很多指导安装WRF及其组件的文章,也有很多帮助解决安装过

程中各种困难的帖子,但大多分散且不系统,下面我就以过来人的身份把我在PC 上安装WRF的步骤及遇到的各种问题和答案放在模式联盟论坛上,希望能帮助那些正在挣扎于安装WRF泥淖中的各位,同时也纪

网上有很多指导安装WRF及其组件的文章,也有很多帮助解决安装过程

中各种困难的帖子,但大多分散且不系统,下面我就以过来人的身份把我在PC上安装WRF的步骤及遇到的各种问题和答案放在模式联盟论坛上,希望能帮助那

些正在挣扎于安装WRF泥淖中的各位,同时也纪念下我之前所经历的这种痛苦

1,安装平台fedora 8

2,所需的各种组件:

(1) PGI 7.15 netcdf4.0 NCL(== ncarg) # 其实ifort的性能比PGI更好,但是其他的都过了,只在安装WRFDA

# 的过程中一直编译不过去,因此暂不介绍用ifort 编译WRF的过程

(2) WRFV3.1 WPSV3.0.1 WRFDAV3.0.1(if needed)

(3) RIP4

在安装前需要说明的是,我在linux下自己建了两个目录,一个是Model,这是放源程序的(上述所有组件),另一个是Program,这个是放安装好的程序的3, 安装PGI

(1)解压缩PGI压缩包

$cd /home/name/Model

$mkdir PGI

$tar -xvf pgilinux-715.tar.gz -C PGI

$cd PGI

$./install 出现提示信息

Do you accept these terms?[accept,decline]

accept

1,single system install

2,Network install

1

Install the ACML?[y/n]

n

Installation directory?[/opt/pgi]

/home/name/Program/pgi

Do you wish to install MPICH1?[y/n]

n

Do you want the files in the install directory to be read-only?[y/n] n

install complete

把与安装版本相适应的license.dat拷贝到你安装的目录下

配置.bashrc里的环境变量

export PGI=/home/name/Program/pgi/linux86/7.1-5/

export MANPATH=$MANPATH: $PGI/man

export LM_LICENSE_FILE=/home/name/Program/pgi/license.dat export PATH=$PATH: $PGI/bin

$source .bashrc

为了试验pgi是否安装成功,可以打如下命令

$pgf90

如果有如下提示信息,说明已安装成功

$pgf90-Warning-No files to process

如果大家是在更高版本的fedora下装pgi,估计pgi的版本也会相应的升高,这里是一个在fedora11下安装pgi_9.0-1的步骤

https://www.wendangku.net/doc/b611173612.html,/thread-68-1-1.html

4,安装netcdf

(1)解压netcdf-4.0压缩包

$mkdir /home/name/Program/netcdf

$cd /home/name/Model

$tar -xvf netcdf-4.0

$cd netcdf-4.0

$./configure --prefix=/home/name/Program/netcdf FC=pgf90 $make

$make install

配置.bashrc里的环境变量

export NETCDF=/home/name/Program/netcdf

export NETCDF_LIB=$NETCDF/lib

export NETCDF_INC=$NETCDF/include

export PATH=$PATH: $NETCDF/bin

$source .bashrc

试验netcdf安装是否成功

$ncdump

如果出现使用说明则说明安装成功

5,安装ncl(目前的ncl已经集合了ncarg,所以大家没必要装ncarg)

在安装ncl之前,需要装三个外部库

下载地址:

https://www.wendangku.net/doc/b611173612.html,/viewthread.php?tid=31&extra=page=1&frombbs= 1

$su

password: 如果以root身份登陆可跳过此步

#rpm -i *.rpm *代表库名

#exit

安装好之后,开始安装ncl,如果从论坛ftp下载的ncl,解压出来的bin,include,lib可以直接放到/home/name/Program/ncl下即可

配置.bashrc中关于ncl和ncarg的环境变量

export NCARG_ROOT=/home/name/Program/ncl

export NCARG_LIB=/home/name/Program/ncl/lib

export NCARG_INC=/home/name/Program/ncl/include

export PATH=$PATH:/home/name/Program/ncl/bin

$source .bashrc

如想试验安装是否成功

$ncl 如进入程序就说明已经成功

6,安装WRF

在安装之前,请在.bashrc中配置环境变量

export WRFIO_NCD_LARGE_FILE_SUPPORT=1

$source .bashrc

然后按照https://www.wendangku.net/doc/b611173612.html,/thread-13-1-1.html里关于libg2c.so的解决办

法(2)修改(务必)

解压WRFV3.1压缩包

$ tar -xvf WRFV3.1.TAR.gz -C /home/name/Program/

$cd /home/name/Program/WRFV3

$./configure

7

$./compile em_real (这时要用到csh,如果PC上还没有安装,可以从这里下载https://www.wendangku.net/doc/b611173612.html,/thread-46-1-1.html)

如果/WRFV3/test/em_real里有real.exe和wrf.exe说明WRF安装成功了

7,安装WPS

安装WPS前要先安装三个外部库,在以后识别GRIB2格式的数据时会用得到这三个库的下载地址:

https://www.wendangku.net/doc/b611173612.html,/viewthread.php?tid=31&pid=49&page=1&extra=p age=1

分别解压缩这三个压缩包

$tar -xvf jasper-1.701.0.tar.gz

$tar -xvf libpng-1.2.12.tar.gz

$tar -xvf zlib-1.2.3.tar.gz

然后开始安装

$su

password: 输入密码,如一开始就以root进入可跳过这步

#cd jasper-1.701.0

#./configure

#make

#make install

#cd ..

#cd libpng-1.2.12

#./configure

#make

#make install

#cd ..

#cd zlib-1.2.3

#./configure

#make

#make install

#exit

现在可以安装WPS了

$cd /home/name/Model

$tar -xvf WPSV3.0.1.TAR.gz -C /home/name/Program/

$cd /home/name/Program/WPS

$cd arch

$vi configure.defaults

找到跟PGI compiler有关的那几项,分别是serial NO GRIB2, serial, DM parallel NO GRIB2, DM parallel

修改其中的NCARG_LIBS2项,修改后的结果是:

NCARG_LIBS2 = -L$(PGI)/lib -lpgftnrtl -lpgc \

-L/usr/lib/gcc/i386-redhat-linux/4.1.2 -lg2c

需要说明的是,并不是所有的系统都要这么改,修改的原则是与用户系统的路径一致即可,具体可通过进入/usr/lib后找关于gcc及子目录

如果安装前已经打算以后只编译上述四项中的一项或几项,可相应修改,或者一次性全部改过来,一劳永逸

$vi preamble

修改NCARG_LIBS选项,修改后结果如下:

NCARG_LIBS = -L$(NCARG_ROOT)/lib -lncarg -lncarg_gks

-lncarg_c \

-L/usr/lib -lX11

如/usr目录下有X11R6则无须做任何改动

这样安装WPS前的准备工作就做完了,下面开始正式安装

$cd ..

$./configure

1

$./compile

当目录下出现geogrid.exe, ungrib.exe, and metgrid.exe时,说明安装成功了

8,安装WRFDA

安装WRFDAV3前要先装三个外部库bufr(如不用bufr格式的数据,可以不用装,这是3.1版本之前的WRFDA所不允许的),lapack,和blas

前一个的可在论坛ftp中下载,后两个的下载地址:

https://www.wendangku.net/doc/b611173612.html,/viewthread.php?tid=31&pid=50&page=1&extra=p age=1

$cd /home/name/Model

$tar -xvf WRFDAV3.TAR.gz -C /home/name/Program

$cd /home/name/Program

$mkdir BUFR

$tar -xvf /home/name/Model/bufrlib.tar -C BUFR

$cd BUFR

$cpp -traditional -I. -C -DRECL1 wrdlen.F>wrdlen.f

$cpp -traditional -I. -C -DRECL1 irev.F>irev.f

$ksh

/home/name/Program/WRFDA/var/scripts/compile_external/pgi_i 386/setup_bufr

(这时要用到ksh,如果PC上还没有安装,可以从这里下载

https://www.wendangku.net/doc/b611173612.html,/thread-46-1-1.html)

$cd ..

此时bufr安装成功

$tar -xvf /home/name/Model/blas.tar ./

$cd BLAS

$ksh

/home/name/Program/WRFDA/var/scripts/compile_external/pgi_i 386/setup_blas

$cd ..

blas安装成功

$tar -xvf /home/name/Model/lapack-3.1.1.tar ./

$cd lapack-3.1.1

$cp INSTALL/make.inc.LINUX ./make.inc

修改make.inc,把其中g77或关于fortran的文字全部改成pgf90,把OPT 改成-O2 -r8

$ksh

/home/name/Program/WRFDA/var/scripts/compile_external/pgi_i 386/setup_lapack

lapack安装成功

配置.bashrc环境变量

export BLAS=/home/name/Program/BLAS

export LAPACK=/home/name/Program/lapack-3.1.1

export BUFR=/home/name/Program/BUFR

export WRF_DA_CORE=1

$source .bashrc

现在开始安装WRFDA

$cd /home/name/Program/WRFDA

$./configure wrfda

$./compile all_wrfvar

如果/home/name/Program/WRFDA/var/da 里面有da_wrfvar.exe, da_update_bc.exe及它共26个.exe文件,那就说明WRFDA安装成功了9,安装RIP4

解压缩RIP4压缩包

$tar -xvf /home/name/Model/RIP4 -C /home/name/Program/

$cd /home/name/Program/RIP4

$vi Makefile

把linux(第94行)项中的NETCDFLIB和NETCDFINC和LIBS改成相应目录

$make linux

如果生成rip, ripdp_mm5, ripdp_wrfarw等11个.exe文件则说明安装成功了。

配置.bashrc环境变量

export RIP_ROOT=/home/name/Program/RIP4

export PATH=$PATH: $RIP_ROOT

$source .bashrc

到此为止,WRF组件全部安装完成,剩下的就是设置各个组件的namelist并运行可执行程序了

需要说明的是,不同的Linux版本可能略有不同,所以步骤上也可能有差别,如果有如此问题可以发帖,共同讨论

WRF物理过程参数化方案简介(WRF V2)

2010-07-12 22:03:49 来源:未知【大中小】评论:条

摘要:作者:胡向军, 陶健红,郑飞,王娜,张铁军,刘世祥,尚大成1 辐射过程参

数化1.1 RRTM长波辐射方案来自于MM5模式,采用了Mlawer等人的方法。它是利用一个预先处理的对照表来表示由于水汽、臭氧、二化碳和其他气体,以及云的光学厚度引起的长波过程。1.2 Dudhi

作者:胡向军, 陶健红,郑飞,王娜,张铁军,刘世祥,尚大成

1辐射过程参数化

1.1RRTM长波辐射方案

来自于MM5模式,采用了Mlawer等人的方法。它是利用一个预先处理的对照表来表示由于水汽、臭氧、二化碳和其他气体,以及云的光学厚度引起的长波过程。

1.2Dudhia 短波辐射方案

来自于MM5模式,采用Dudhia的方法,它是简单地累加由于干净空气散射、水汽吸收、云反射和吸收所引起的太阳辐射通量。采用了Stephens的云对照表。

1.3Goddard短波辐射方案

它是由Chou和Suarez发展的一个复杂光学方案。包括了霰的影响,适用于云分辨模式。

1.4 Eta Geophysical Fluid Dynamics Laboratory(GFDL)长波辐射方案

这个辐射方案来自于GFDL。它将Fels和Schwarzkopf的两个方案简单的结合起来了,计算了二氧化碳、水汽、臭氧的光谱波段。

1. 5 Eta Geophysical Fluid Dynamics Laboratory(GFDL) 短波辐射方案

这个短波辐射方案是Lacis和Hansen参数化的GFDL版本。用Lacis和Hansen 的方案计算大气水汽、臭氧的作用。用Sasamori等人的方案计算二氧化碳的作用。云是随机重叠考虑的。短波计算用到时间间隔太阳高度角余弦的日平均。

2微物理过程参数化

2.1Kessler暖云方案

来自于COMMAS模式,是一个简单的暖云降水方案,考虑的微物理过程包括:雨水的产生、降落以及蒸发,云水的增长,以及由凝结产生云水的过程,微物理过程中显式预报水汽、云水和雨水,无冰相过程。

2.2Purdue Lin方案

微物理过程中,包括了对水汽、云水、雨、云冰、雪和霰的预报,在结冰点以下,云水处理为云冰,雨水处理为雪。所有的参数化项都是在L in等人以及Rutledge和Hobbs的参数化方案的基础上得到的,某些地方稍有修改,饱和修正方案采用Tao的方法。这个方案是WRF模式中相对比较成熟的方案,更适合于理论研究。

2.3Eta Ferrier方案

此方案预报模式平流项中水汽和总凝结降水的变化。程序中,用一个局域数组变量来保存初始猜测场信息,然后从中分解出云水,雨水,云冰,以及降冰的变化的密度(冰的形式包括雪、霰或冰雹) 。降冰密度是根据存有冰的增长信息的局域数组来估计,其中,冰的增长与水汽凝结和液态水增长有关。沉降过程的处理是将降水时间平均通量分离成格点单元的立体块。这种处理方法,伴随对快速微物理过程处理方法的一些修改,使得方案在大时间步长时计算结果稳定。根据Ryan的观测结果,冰的平均半径假定为温度函数。冰水混合相仅在温度高于-10℃时考虑,而冰面饱和状态则假定在云体低于-10℃。

2.4WRF Single_Moment_3_class (WSM3) 方案

该方案来自于旧的NCEP3方案的修正,包括冰的沉降和冰相的参数化。和其它方案不同的是诊断关系所使用冰的数浓度是基于冰的质量含量而非温度。方案包括三类水物质:水汽、云水或云冰、雨水或雪。在这种被称为是简单的冰方案里面,云水和云冰被作为同一类来计算。它们的区别在于温度,也就是说当温度低于或等于凝结点时冰云存在,否则水云存在,雨水和雪也是这样考虑的。该方案对于业务模式来说已足够有效。

2.5WSM5 方案

与WSM3类似的对NCEP5方案进行了修正,它代替了NCEP5版本。

2.6WSM6 方案

该方案扩充了WSM5方案,它还包括有霰和与它关联的一些过程。这些过程的参数化大多数和Lin等人的方案相似,在计算增长和其它参数上有些差别。为了增加垂直廓线的精度,在下降过程中会考虑凝结/融化过程。过程的顺序会最优化选择,是为了减少方案对模式时间步长的敏感性。和WSM3、WSM5一样,饱和度调节按照Dudhia和Hong等人的方案分开处理冰和水的饱和过程。

2.7Thompson方案

该方案改进了较早的Reisner方案,还作了广泛的测试。该方案还被用来做理想试验研究和中纬度冬季观测资料的比较。这个方案被设计用来提高冻雨天气情况下航天安全保障的预报。

3边界层参数化方案

3.1MM5相似理论近地面层方案

这个方案用了Paulson、Dyer和Webb稳定性函数来计算地面热量、湿度、动力的交换系数。用Beljaars提出的对流速度来加强地面热量和湿度通量。常与MRF 或YSU边界层方案联合使用。

3.2ETA相似理论近地面层方案

基于Monin-Obukhov理论,在水面上,粘性下层显式参数化,在陆地近地面层上,粘性下层则考虑了变化的位势高度对温度和湿度的作用,近地面通量通过迭代途径进行计算,并用Beljaars修正法来避免在不稳定表面层和无风时出现的奇异性。常与ETAM-Y-J TKE边界层方案联合使用。

3.3Eta Mellor-Yamada-Janjic TKE边界层方案

此方案用边界层和自由大气中的湍流参数化过程代替Mellor-Yamada的2. 5阶湍流闭合模型。这是将用于Eta模式中的Mellor-Yamada-Janjic方案引入该模式的一种边界层方案,它预报湍流动能,并有局地垂直混合。该方案调用SLAB (薄层)模式来计算地面的温度;在SLAB之前,用相似理论计算交换系数,在SLAB之后,用隐式扩散方案计算垂直通量。

3.4Medium Range ForecastModel (MRF) 边界层方案

该方案在不稳定状态下使用反梯度通量来处理热量和水汽。在行星边界层中使用增强的垂直通量系数,行星边界层高度由临界Richardson 数决定。它利用一个基于局地自由大气Ri的隐式局地方案来处理垂直扩散项。

3.5YonseiUniversity (YSU) 边界层方案

YSU是MRF边界层方案的第二代。对于MRF增加了处理边界层顶部夹卷层的方法。

4积云对流参数化

4.1浅对流EtaKain-Fritsch方案

在Eta模式中对Kain-Fritsch 方案进行了调整,利用了一个简单的云模式伴随水汽的上升和下沉,同时包括了卷入和卷出,以及相对粗糙的微物理过程的作用。

4.2Betts-Miller-Janjic方案

对Betts-Miller方案进行了调整和改进,在一给定的时段,对热力廓线进行张弛调整,在张弛时间内,对流的质量通量可消耗一定的有效浮力。此方案为对流调整方案,浅对流调整是该方案的重要部分。

4.3Kain-Frisch方案

此方案是KF方案的修正方案。与老的KF方案一样,此方案也用了一个简单的包含水汽抬升和下沉运动的云模式,包括卷出、卷吸、气流上升和气流下沉现象。

4.4Grell-Devenyi集合方案

该方案是质量通量类型,用不同的上升、下沉、卷入、卷出的参数和降水率。静态控制的不同结合了动态控制的不同,这是决定云质量通量的方法。

5陆面过程参数化

5.1热量扩散方案

基于MM5的5层土壤温度模式,分别是1、2、4、8和16cm,在这些层下温度固定为日平均值。能量计算包括辐射、感热和潜热通量,同时也允许雪盖效应。

5.2Noah 方案

Noah陆面过程参数化是OSU的后继版,与原先的相比,可以预报土壤结冰、积雪影响,提高了处理城市地面的能力,考虑了地面发射体的性质,这些是OSU所没有的。

5.3Rapid Update Cycle (RUC) 方案

这个方案有六个土壤层和两个雪层。它考虑了土壤结冰过程、不均匀雪地、雪的温度和密度差异,以及植被效应和冠层水。

6讨论

1)参数化的选取与模式的分辨率有关,应根据模式网格设计情况选取相适应的参数化方案。如在高分辨率情况下,对流已不再完全是次网格尺度现象,这时应考虑选择合理的纯显式云物理方案。对于格距小于5km的情况,一般建议不采用积云参数化方案。

2)由于各种参数化方案在设计原理、复杂程度、计算耗费机时和成熟程度等方面存在差异,研究者应根据研究目的和计算条件等情况来综合判断、对比选择。如对中尺度系统的考察,积云参数化需包括湿下沉气流、中上层的云卷出和非降水性浅对

流,显式云物理方案则需同时加入含有水相和冰相的预报方程, 以计入水负荷、凝结蒸发、冻结融化和凝华升华的影响。

3)由于模式在区域预报的效果与参数化方案的适应性至关重要,目前很多参数化方案对中小尺度系统描述能力不足,所以开发适合本地域特点的参数化方案意义重大。

anusplin软件操作说明及气象数据处理

气象数据处理方法:spss和Excel 一、下载原始txt数据中的经纬度处理:将度分处理成度,Excel处 理 首先除以100,处理成小数格式,这里第一个实际是52度58分, 在Excel中用公式:=LEFT(O2,FIND(".",O2)-1)+RIGHT(O2,LEN(O2)-FIND(".",O2))/60 需注意: 当为整数时,值为空,这时需查找出来手动修改,或者将经纬度这一列的小数位改成两位再试试,可能好使(这个我没尝试) 第二步: 将经纬度转换成投影坐标,在arcgis实现 将Excel中的点导入arcgis,给定坐标系为wgs84地理坐标,然后投影转换成自己定义的等面积的albers投影(因为anusplina软件需要投影坐标,这里转换成自己需要的坐标系)

第三步:spss处理 将下载的txt数据导入spss之后,编辑变量属性,删掉不需要的列,然后将最后需要的那些变量进行数据重组 本实验下载的数据是日均温数据,全国800+个站点2012年366天的数据。相当于有800+ * 366行数据 1.变量 变量属性:变量属性这里的设置决定了在SPLINA这个模块中输入数据的格式,本实验spss处理的气象数据的格式统一用这个:(A5,2F18.6,F8.2,F8.2),一共5列。

即:台站号,字符串,5位; 经纬度:都是浮点型,18位,6个小数位海拔:浮点型,8位,2个小数位 日均温:浮点型,8位,2个小数位 2.数据重组,将个案重组成变量: 后几步都默认就行:

重组之后结果:变成了800+行,370列,就相当于数据变成了:行代表每个站点,列是代表每一天的数据。 3. 因为anusplin这个软件需要的是投影坐标,在重组完的基础上,将经纬度这两列替换成投影之后的经纬度。 方法1:直接复制粘贴即可 方法二:用合并文件,添加变量功能

气象mic数据格式

A1.1 第一类数据格式: 地面全要素填图数据 文件头: diamond 1 数据说明(字符串)年月日时次总站点数(均为整数) 注:此类数据用于规范的地面填图 数据: 区站号(长整数)经度纬度拔海高度(均为浮点数)站点级别(整数)总云量风向风速海平面气压(或本站气压) 3小时变压过去天气1 过去天气 2 6小时降水低云状低云量低云高露点能见度现在天气温度中云状高云状标志1 标志2(均为整数) 24小时变温 24小时变压 注: 缺值时用9999表示,以后相同。 站点级别表示站点的放大级别,即只有当图象放大到该级别时此站才被填图。以后相同。 当标志1为1,标志2为2时,说明后面有24小时变温变压。否则说明后面没有24小时变温变压。 例子: diamond 1 99年06月15日08时地面填图 99 06 15 08 3016 50468 127.45 50.25 166 16 7 340 6 975 4 8 0.1 38 7 600 9.1 25.0 0 14.7 9999 9999 1 2 1 -3 52533 98.48 39.77 1478 1 8 0 0 98 7 8 0.01 30 8 2500 10.7 30.0 60 16.8 27 9999 1 2 2 3 52652 100.43 38.93 1483 4 8 270 3 115 11 6 0.5 30 4 2500 12.6 15.0 61 16.0 24 17 1 2 1 2 注意:地面自动站数据如果写为该类格式,可以在文件说明中加入可以识别的文字,默认使用“自动”作为识别文字,但自动站文件名定义可以使用8.3格式的“年月

气象数据集说明文档

气象数据集说明文档 1.数据集信息 数据集中文名称:中国地面降水月值0.5°×0.5°格点数据集(V2.0) 数据集代码:SURF_CLI_CHN_PRE_MON_GRID_0.5 数据集版本:V2.0 数据集建立时间: 2.数据来源:该数据集的数据来源包括2个部分:由国家气象信息中心基础资料专项收集、整理的1961年至最新的全国国家级台站(基本、基准和一般站)的降水月值资料;由GTOPO30数据(分辨率为0.05°×0.05°)经过重采样生产的中国陆地0.5°×0.5°的数字高程模型DEM。 3.数据集实体 3.1.数据集实体内容说明 3.1.1.数据集实体文件名称: 中国地面降水月值0.5°×0.5°格点数据集文件命名由数据集代码(SURF_CLI_CHN_PRE_MON_GRID_0.5)、年份、月份标识(YYYYMM)组成。 具体形式:SURF_CLI_CHN_PRE_MON_GRID_0.5 3.1.2.数据集实体文件的内容描述: 数据集存储格式为ARCGIS标准格式,数据集实体包括1961年1月-至最新的逐月数据文件,每个文件中包括的前6行为头文件信息,其中: 第一行"ncols 128"表示实体数据有128列; 第二行"nrows 72"表示实体数据有72行; 第三行"xllcorner 72"表示数据最左下方格点单元的经度范围是72°-72.5°E; 第四行"yllcorner 18"表示数据最左下方格点单元的纬度范围是18°-18.5°N; 第五行"cellsize 0.5"表示网格是0.5°×0.5°的; 第六行"NODATA_value -9999.0"表示中国区域以外的值用-9999.0表示。 从第七行开始是对应网格的降水值,第七行(降水数据第一行)第一列数据网格中心为(72.25°E ,53.75°N),第七行第二列数据网格中心为(72.75°E ,53.75°N),……,数据最后一行最后一列网格中心为(135.75°E ,18.25°N)。降水值保留1位小数。经度单位:度,纬度单位:度,格点降水单位:mm。 3.1.3.特征值说明:中国区域以外的值用-9999.0表示。 3.2.数据存储信息 3.2.1.存储格式和读取:数据集存储格式为ARCGIS标准格式,文本文件,固定长记录,按行读取。 3.2.2.数据集在介质中的放置 存储介质及数量:光盘,1张 存储目录结构: datasets:存放数据集实体文件。共包括1961年1月到2012年5月间的617个月值网格点降水数据文件。 metadata:元数据文档(SURF_CLI_CHN_PRE_MON_GRID_0.5_META_C.doc)。 description:说明文档

NCEP中FNL全球分析资料的解码及其图形显示

NCEP FNL全球分析资料的解码及其图形显示 作者:邓伟, 陈海波, 马振升, 田宏伟, 张永涛, 申占营, Deng Wei, Chen Haibo, Ma Zhensheng, Tian Hongwei, Zhang Yongtao, Shen Zhanying 作者单位:邓伟,陈海波,田宏伟,申占营,Deng Wei,Chen Haibo,Tian Hongwei,Shen Zhanying(河南省气象科学研究所,郑州,450003;中国气象局农业气象保障与应用技术重点开放实验室,郑州 ,450003), 马振升,Ma Zhensheng(河南省气象培训中心,郑州,450003), 张永涛,Zhang Yongtao(河南省气象局,郑州,450003) 刊名: 气象与环境科学 英文刊名:METEOROLOGICAL AND ENVIRONMENTAL SCIENCES 年,卷(期):2009,32(3) 参考文献(14条) 1.徐影;丁一汇;赵宗慈美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析[期刊论文] -应用气象学报 2001(03) 2.苏志侠;吕世华;罗四维美国NCEP/NCAR 40年全球再分析资料及其初步分析[期刊论文]-高原气象 1999(02) 3.赵天宝;艾丽坤;冯锦明NCEP再分析资料和中国站点观测资料的分析和比较[期刊论文]-气候与环境研究 2004(02) 4.苏爱芳;周毓荃;吴蓁一次典型降水层状云的结构特征和增雨潜势分析[期刊论文]-气象与环境科学 2007(01) 5.李戈;寿绍文;张广周2006年4月11~12日平顶山市沙尘天气中尺度动力机制分析[期刊论文]-气象与环境科学2007(01) 6.郑永光;张春喜;陈炯用NCEP资料分析华北暖季对流性天气的气候背景[期刊论文]-北京大学学报(自然科学版) 2007(05) 7.闫小利;余锦华;刘谦河南省一次强寒潮天气诊断分析[期刊论文]-气象与环境科学 2008(01) 8.闫淑莲;周淑玲;刘澈山东半岛一次区域性暴雪天气过程分析[期刊论文]-气象与环境科学 2007(zk) 9.鲁坦;乔春贵;谷秀杰河南省一次区域暴雪和雾凇天气分析[期刊论文]-气象与环境科学 2007(zk) 10.张广周;李戈;白家惠不同高度急流耦合在2007年7月中旬河南省区域暴雨中的作用[期刊论文]-气象与环境科学 2008(02) 11.王君;康雯瑛;张霞一次台风倒槽暴雨过程的螺旋度分析[期刊论文]-气象与环境科学 2008(02) 12.王金兰;寿绍文;刘泽军河南省一次大雾的数值模拟及生消机制分析[期刊论文]-气象与环境科学 2008(01) 13.周青;赵凤生;高文华NCEP/NCAR逐时分析与中国实测地表温度和地面气温对比分析[期刊论文]-气象 2008(02) 14.施晓辉;徐祥德;谢立安NCEP/NCAR再分析风速、表面气温距平在中国区域气候变化研究中的可信度分析[期刊论文]-气象学报 2006(06) 本文链接:https://www.wendangku.net/doc/b611173612.html,/Periodical_hnqx200903017.aspx

气象数据处理流程

气象数据处理流程1.数据下载 1.1.登录中国气象科学数据共享服务网 1.2.注册用户 1.3.选择地面气象资料 1.4.选择中国地面国际交换站日值数据 选择所需数据点击预览(本次气象数据为:降水量、日最高气温、日最低气温、平均湿度、辐射度、积雪厚度等;地区为:黑龙江省、吉林省、辽宁省、内蒙古) 下载数据并同时下载文档说明 1.5.网站数据粘贴并保存为TXT文档 2.建立属性库 2.1.存储后的TXT文档用Excel打开并将第一列按逗号分列 2.2.站点数据处理 2.2.1.由于站点数据为经纬度数据 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。

2.2.2.利用VBA程序 Sub we() i = 6 For j = 1 To 30 Windows("").Activate Rows("1:1").Select Field:=5, Criteria1:=i Field:=6, Criteria1:=j Windows("").Activate Rows("1:1").Select Windows("book" + CStr(j)).Activate Range("A1:n100").Select Range("I14").Activate ChDir "C:\Documents and Settings\王\桌面" Filename:="C:\Documents and Settings\王\桌面\6\" & InputBox("输入保存名", Title = "保存名字", "20070" + CStr(i) + "0" + CStr(j)), _ FileFormat:=xlDBF4, CreateBackup:=False SaveChanges:=True Next j End Sub 将数据库按照日期分为365个文件 3.建立回归模型增加点密度 由于现有的日辐射值数据不能覆盖东三省(如图),需要对现有数据建模分析,以增加气象数据各点密度。 已有数据10个太阳辐射站点,为了实现回归模型更好拟合效果,将10个样本全部作为回归参数。利用SPSS软件建模步骤:

气象站实时地面气象数据传输文件格式

气象站实时地面气象数据传输文件格式 本目录下的所有自动站实时报文数据格式均遵循以下说明; 由于国家气象信息中心更改了文件名规范,但文件内容格式未做更改! 文件名更改参见文件:“附件:自动站观测资料传输文件名调整方案.doc” 2、地面气象要素数据文件 地面气象要素数据文件包括正点地面气象要素数据和加密地面气象要素数据文件,该文件为顺序数据文件,共4条记录,第1条记录为本站基本参数,共34个字节;第2条记录为器测项目,共262字节;第3条记录为小时内分钟降水量,120个字节;第4条记录为目测项目和天气报、加密天气报有关的编报项目,共134字节,当某观测时间无此条记录内容时,该条记录省略;最后一条记录的后面加上“=”,表示单站数据结束,其他记录尾用回车换行“”结束;文件结尾处加“NNNN”,表示全部记录结束。 ⑴第1条记录:包括区站号、纬度、经度、观测场拔海高度、气压传感器拔海高度和观测方式共6组,每组用1个半角空格分隔,排列顺序及长度分配如下表: ⑵第2条记录共52个要素值,每组用1个半角空格分隔,排列顺序及长度分配如下表:

⑶第3条记录为小时内分钟降水量,120个字节,每分钟2个字节,即1~2位为第1分钟的记录,3~4为第2分钟的记录……,如此类推,119~120位为第60分钟的记录;每分钟内无降水时存入“00”,微量存入“,,”,降水量≥10.0mm时,一律存入99,缺测存入“//”。 ⑷第4条记录共23个要素值,每组用1个半角空格分隔,排列顺序及长度分配如下

地面气象要素数据文件格式V

地面气象要素数据文件格式(V1.0) 1. 文件名 国家级站单站文件名: Z_SURF_I_IIiii_yyyyMMddhhmmss_O_AWS_FTM[-CCx].txt 国家级站多站打包文件名: Z_SURF_C_CCCC_yyyyMMddhhmmss_O_AWS_FTM.txt 区域级站单站文件名: Z_SURF_I_IIiii-REG_YYYYMMDDHHmmss_O_AWS_FTM[-CCx].txt 区域级站多站打包文件名: Z_SURF_C_CCCC-REG_YYYYMMDDHHmmss_O_AWS_FTM.txt 在文件名中: Z:固定代码,表示文件为国内交换的资料; SURF:固定代码,表示地面观测; I:固定代码,指示其后字段代码为测站区站号; C:固定代码,指示其后字段代码为编报中心代码; IIiii:测站区站号; CCCC:编报中心代码; REG:区域站资料标志,固定代码。区域站资料标志为可选标志,如果文件名包含此标志,则表示文件内容为区域级测站观测资料;如果文件名未包含

此标志,则表示文件内容为国家级测站(包括基准站、基本站、一般站)观测资料;2012年地面气象观测资料传输方式调整暂不涉及区域站。 yyyyMMddhhmmss:文件生成时间“年月日时分秒”(UTC,国际时); O:固定代码,表示文件为观测类资料; AWS:固定代码,表示文件为自动气象站地面气象要素资料; FTM:固定代码,表示定时观测资料; CCx:数据更正标识,可选标志,对于某测站(由IIiii指示)已发观测数据进行更正时,文件名中必须包含资料更正标识字段。CCx中:CC为固定代码;x取值为A~X,x=A时,表示对该站某次观测的第一次更正,x=B时,表示对该站某次观测的第二次更正,依次类推,直至x=X。 txt:固定代码,表示文件为文本文件。 说明:IIiii与R字段间的分隔符为减号“-”,其它字段间的分隔符为下划线“_”。

气象数据处理流程

气象数据处理流程 1.数据下载 1.1. 登录中国气象科学数据共享服务网 1.2. 注册用户 1.3. 1.4. 辐射度、1.5. 2. 2.1. 2.2. 2.2.1. 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标 并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。 2.2.2.利用VBA程序 Sub we() i = 6

For j = 1 To 30 Windows("chengle.dbf").Activate Rows("1:1").Select Selection.AutoFilter Selection.AutoFilter Field:=5, Criteria1:=i Selection.AutoFilter Field:=6, Criteria1:=j Cells.Select Selection.Copy Workbooks.Add ActiveSheet.Paste Windows("chengle.dbf").Activate ", Title = " 3. 利用 3.1. 3.2. 选择分析→回归→非线性回归 3.3. 将辐射值设为因变量 将经度(X)和纬度(Y)作为自变量,采用二次趋势面模型(f=b0+b1*x+b2*y+b3*x2+b4*x*y+b5*y2)进行回归,回归方法采用强迫引入法。 如图,在模型表达式中输入模型方程。 在参数中设置参数初始值

气象大数据资料

1 引言 在气象行业内部,气象数据的价值已经和正在被深入挖掘着。但是,不能将气象预报产品的社会化推广简单地认为就是“气象大数据的广泛应用”。 大数据实际上是一种混杂数据,气象大数据应该是指气象行业所拥有的以及锁接触到的全体数据,包括传统的气象数据和对外服务提供的影视音频资料、网页资料、预报文本以及地理位置相关数据、社会经济共享数据等等。 传统的”气象数据“,地面观测、气象卫星遥感、天气雷达和数值预报产品四类数据占数据总量的90%以上,基本的气象数据直接用途是气象业务、天气预报、气候预测以及气象服务。“大数据应用”与目前的气象服务有所不同,前者是气象数据的“深度应用”和“增值应用”,后者是既定业务数据加工产品的社会推广应用。 “大数据的核心就是预测”,这是《大数据时代》的作者舍恩伯格的名言。天气和气候系统是典型的非线性系统,无法通过运用简单的统计分析方法来对其进行准确的预报和预测。人们常说的南美丛林里一只蝴蝶扇动几下翅膀,会在几周后引发北美的一场暴风雪这一现象,形象地描绘了气象科学的复杂性。运用统计分析方法进行天气预报在数十年前便已被气象科学界否决了——也就是说,目前经典的大数据应用方法并不适用于天气预报业务。 现在,气象行业的公共服务职能越来越强,面向政府提供决策服务,面向公众提供气象预报预警服务,面向社会发展,应对气候发展节能减排。这些决策信息怎么来依赖于我们对气象数据的处理。

气象大数据应该在跨行业综合应用这一“增值应用”价值挖掘过程中焕发出的新的光芒。 2 大数据平台的基本构成 2.1 概述 “大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘(SaaS),但它必须依托云计算的分布式处理、分布式数据库(PaaS)和云存储、虚拟化技术(IaaS)。 大数据可通过许多方式来存储、获取、处理和分析。每个大数据来源都有不同的特征,包括数据的频率、量、速度、类型和真实性。处理并存储大数据时,会涉及到更多维度,比如治理、安全性和策略。选择一种架构并构建合适的大数据解决方案极具挑战,因为需要考虑非常多的因素。 气象行业的数据情况则更为复杂,除了“机器生成”(可以理解为遥测、传感设备产生的观测数据,大量参与气象服务和共享的信息都以文本、图片、视频等多种形式存储,符合“大数据”的4V特点:Volume(大量)、Velocity(高速)、

气象 micaps-数据格式

数据格式说明第一类数据格式: 用于地面填图diamond 1屏幕上需显示的内容____年__月__日时次总站点数区站号经度纬度拔海高度站点级别总云量风向风速海平面气压(本站气压)3小时变压过去天气1过去天气2 6小时降水低云状低云量低云高露点能见度现在天气温度中云状高云状船向船速第二类数据格式: 用于高空填图diamond 2屏幕上需显示的内容____年__月__日时次层次总站点数区站号经度纬度拔海高度站点级别高度温度露点差风向风速第三类数据格式: 用于通用填图和离散点等值线diamond 3屏幕上需显示的内容____年__月__日时次,层次,线条数等值线值1等值线值2 ......平滑系数,加粗线值,裁剪框的点数,经纬度值1,经纬度值2,......单站内容长度总站点数区站号经度纬度拔海高度量值第四类数据格式: 用于格点等值线diamond 4屏幕上需显示的内容____年__月__日时次时效层次经度格距纬度格距起始经度终止经度起始纬度终止纬度X-DIM Y-DIM等值线间隔等值线起始值终止值平滑系数加粗线值第五类数据格式: 用于TLOGP和剖面图diamond 5屏幕上需显示的内容____年__月__日时次总站点数区站号经度纬度跋海高度单站内容长度百帕高度温度露点风向风速百帕第六类数据格式: 用于传真图1728 X 2400的点阵文件名按国际电码规定命名第七类数据格式: 用于台风路径diamond 7屏幕上需显示的内容台风名称台风编号发报中心总项数____年__月__日时次时效中心经度中心纬度中心最低气压风速七级风圈半径十级风圈半径移向移速最大第八类数据格式: 用于城市站点预报diamond 8屏幕上需显示的内容____年__月__日时次时效总站点数区站号经度纬度拔海高度天气现象风向风速最低温度最高温度天气现象风向风速第九类数据格式:

全国地面气象资料数据模式 A格式

四、地面气象观测数据文件格式 1、总则 1.1地面气象观测数据是认识和预测天气变化、探索气候演变规律、进行科学研究和提供气象服务的基础,是我国天气气候监测网收集的最重要的资料之一。为适应地面气象观测业务的发展,有必要对2001年版的“全国地面气象资料数据模式”(简称2001 年版A格式)进行补充、修改。 1.2 本格式以中国气象局2003年版《地面气象观测规范》中的“地面气象记录月报表”为依据,对2001年版A格式作了必要的修改和补充,并将格式命名为“地面气象观测数据文件格式”,作为原“全国地面气象资料数据模式”的2003年版。 1.3本格式由一个站月的原始观测数据、数据质量控制标识及相应的台站附加信息构成,包括A文件和J 文件两个文件,附加信息即2001年版的“气表-1封面、封底V文件”,作为A文件的一部分。因此本格式涵盖了气表-1的全部内容。 1.4 根据2003年版的《地面气象观测规范》,本格式在2001年版A格式基础上增加了相关的要素项目;

为了更好地表述数据质量,增加了数据质量控制标识。观测数据部分历史资料中的技术规定可参照“全国地面气象资料信息化基本模式暂行规定”和“补充规定”,本格式不再赘述。 1.5 根据2003年版《地面气象观测规范》的规定,本格式将2001年版单要素分钟降水量J文件更改为多要素分钟观测数据文件,作为A文件的补充,简称J文件。 1.6 2001年版与2003年版A、J格式具体变动内容见附件“2001年版与2003年版格式变动对照表”。 1.7 本格式适用于我国现行各类地面气象台站和不同观测仪器采集的数据。 2、A文件 2.1 文件名 “地面气象观测数据文件”(简称A文件)为文本文件,文件名由17位字母、数字、符号组成,其结构为“AIIiii-YYYYMM.TXT”。

一种气象数据采集传输系统的设计.

一种气象数据采集传输系统的设计 近年来,我国气象灾害频发,严重影响人民群众的生活,尤其在交通方面有着较大的影响。依靠人工观测来采集气象数据不仅时效性差,而且无法适应偏僻、恶劣的环境条件,不能将采集到的各区域数据实时上传给决策控制中心,因而有必要研制一种便携、低功耗、数据通信稳定的气象数据采集系统。 随着传感器向着智能化、网络化方向的发展,无线网络技术在自动气象数据采集中得到了应用。利用ZigBee技术近距离、组网能力强、成本低及可靠性高的特点,使得气象站中传感器网络部署的有效时间得到延长,增强了网络的实用性,测量节点具有更长的生命周期。ZigBee技术自有的无线电标准,以接力的方式在多个测量节点之间相互协调实现通信,通信效率非常高,满足了交通气象参数采集传输的需要[1]。同时随着移动通信发展的宽带化、数据化、多应用化,手机作用的领域已经扩展到人们生活的很多方面。因此,将手机移动监测和ZigBee无线传输网络结合起来,并利用手机所具有的GPRS通信能力研制气象数据采集传输系统具有一定的意义。 1 系统设计与实现原理 本设计利用手机、ZigBee无线传输网络、气象数据采集检测等设备开发出一个能实现气象数据采集、存储并实时上传数据到上位服务器端的数据采集系统。其中手机负责接收来自ZigBee网络的数据,并对数据做出相应的判断和处理;ZigBee无线传输网络负责手机和数据采集检测部分的通信;气象数据采集检测部分负责所在区域内气象参数的检测、分析及处理。整个系统工作原理如图1所示。 系统的手机开发平台采用MTK架构套件,它集成了32位嵌入式ARM7处理器,支持GPRS、GSM消息传输,并具有128个引脚外部扩展接口,可以连接各种功能外设,还支持用J2ME Java来控制硬件。通过在此手机平台嵌入无线ZigBee射频模块,实现系统主控制器和各网络子节点的数据采集传输。 数据采集系统的硬件结构图如图2所示。 无线网络化传感器RFD(精简功能器件)模块采集数据信息,并通过ZigBee通信协议传输到FFD(全功能器件)模块;FFD模块将数据信息做简单处理、编码打包后通过串口将数据上传到手机平台;手机数据处理功能程序对气象数据进行进一步的补充描述,在手机上实现气象参数的显示、存储,并可通过手机的GPRS功能模块以文本形式将数据实时上传到服务器端。服务器端接收到现场数据进行进一步的处理后,提供决策支持,采取预防措施。 所采集的气象数据包括温度、湿度、风速、降水、能见度、大气压力等。 2 系统硬件设计 系统的硬件主要由基于CC2430的数据采集模块和手机平台两部分组成。手机平台要实现的硬件设计主要有:手机与CC2430的串口通信电路及GPIO电源控制设计;数据采集检测部分主要由CC2430芯片、传感器及外围部件构成。

《农业气象观测数据XML格式》编制说明

气象行业标准《农业气象观测数据XML格式》编制说明 一、工作简况 1.任务来源 本标准由全国气象基本信息标准化技术委员会提出并归口。2019年4月中国气象局政策法规司下发《2019年第二批气象行业标准制修订项目计划》(气法函〔2019〕25号),本标准正式立项,立项名称《农业气象观测数据XML格式》,项目编号QX/T-2019-86,起草单位为国家气象信息中心。 2.协作单位 国家气象中心。 3.主要工作过程 (1)成立起草组 2019年6月,成立标准起草组,制定编制计划,认真学习了预报司和观测司在2019年6月下发的《预报司关于开展农业气象数据格式标准化扩大试点工作的通知》及《农业气象观测数据XML格式(试用)》,在6个试点省11个试点站积极开展试用版的农业气象观测XML格式的试点工作,收集试点工作中运行的问题。 (2)组织起草,完成征求意见稿 2019年12月,根据试点工作中发现的问题,修改农业气象观测数据XML格式,形成初稿,并在标准起草组内部进行了讨论。 2020年4月,根据《气象数据元时间》和《农业气象和生态气象数据二级分类与编码》,对初稿进行修改,形成征求意见稿。 4.标准主要起草人及其所做的工作 本标准主要起草人为王颖、李轩、庄立伟、张苈、梁剑虹,分工如下: 王颖,负责组织本标准的编制工作,以及标准的起草、修改和完善。 李轩,负责本标准中元素对应的数据元代码确认。 庄立伟,参与本标准的农气二级分类与编码,以及试点试验工作。 张苈,参与本标准前期农气资料调研和XML格式试用稿确认。 梁剑虹,参与本标准前期农气资料调研和XML格式试用稿确认。 二、编制原则和确定标准主要内容的论据 1.编制原则 (1)科学性原则

气象数据处理流程

气象数据处理流程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气象数据处理流程1.数据下载 1.1.登录中国气象科学数据共享服务网 1.2.注册用户 1.3.选择地面气象资料 1.4.选择中国地面国际交换站日值数据 选择所需数据点击预览(本次气象数据为:降水量、日最高气温、日最低气温、平均湿度、辐射度、积雪厚度等;地区为:黑龙江省、吉林省、辽宁省、内蒙古) 下载数据并同时下载文档说明

1.5.网站数据粘贴并保存为TXT文档 2.建立属性库 2.1.存储后的TXT文档用Excel打开并将第一列按逗号分列 2.2.站点数据处理 2.2.1.由于站点数据为经纬度数据 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标 并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库(注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。 2.2.2.利用VBA程序 Sub we() i = 6 For j = 1 To 30 Windows("").Activate Rows("1:1").Select Field:=5, Criteria1:=i

Field:=6, Criteria1:=j Windows("").Activate Rows("1:1").Select Windows("book" + CStr(j)).Activate Range("A1:n100").Select Range("I14").Activate ChDir "C:\Documents and Settings\王\桌面" Filename:="C:\Documents and Settings\王\桌面\6\" & InputBox("输入保存名", Title = "保存名字", "20070" + CStr(i) + "0" + CStr(j)), _ FileFormat:=xlDBF4, CreateBackup:=False SaveChanges:=True Next j End Sub 将数据库按照日期分为365个文件 3.建立回归模型增加点密度 由于现有的日辐射值数据不能覆盖东三省(如图),需要对现有数据建模分析,以增加气象数据各点密度。 已有数据10个太阳辐射站点,为了实现回归模型更好拟合效果,将10个样本全部作为回归参数。利用SPSS软件建模步骤:

气象领域的GIS应用

气象领域的GIS应用 1 GIS在气象领域的应用 我国地域辽阔,地形地貌复杂,气象的时空分布差异大,自然灾害频繁。从古到今我国人民既受益于天气,也受害于天气,与自然灾害进行了长期的斗争。随着经济的增长、人口的增加、环境的变化,气象问题越来越受到各级政府及人民的重视。因此在传统调查、规划、管理技术的基础上引进先进的技术,将更有助于加快信息的获取、更新,促进气象行业的发展。 地理信息系统(GIS),作为一门重要的空间信息技术,在越来越多的信息系统建设中发挥了重要作用。气象信息既包括空间地理信息,又包括大量与空间密不可分的气象属性信息。气象数据本质上也是地理信息,因为气象中的风速、温度、气压等都是相对于具体的空间域和时间域而言,没有地理位置的气象要素是没有任何意义的。GIS技术优势在于可以海量管理和查询气象信息,可以对地理空间数据进行分析处理,与数值模型计算相结合,还可以形象直观的可视化表达模型计算结果;GIS空间分析能力还可以与气象信息技术相结合,提供空间和动态的地理信息,并采用一定模型为决策服务提供科学依据。因此,在气象领域中引入GIS系统具有非常重要的意义。 GIS在气象领域的应用非常广泛,并不觉限于空间数据的管理发布,它辐射到整个系统的各个环节,从数据组织、存储、管理到功能的实现与应用,能够与气象业务充分结合,为整个气象信息化系统提供一个全面的解决方案。GIS是一个功能强大的平台,针对气象领域的特点,提供数据组织策略、强大的GIS功能集成、丰富的Web展现、三维渲染和遥感处理等功能。 2 基于GIS的数据组织 GIS平台数据管理机制能够克服异构和分布式带来的气象数据使用障碍,建立一个理想的应用环境,既可以保留数据异构和分布性的优势,同时也可以为更多资源共享、处理协同与任务合作方面的用户提供一致化的服务接口和方式。 2.1 分布式数据管理 基于GIS的气象数据可以实现分布式数据管理,采取“纵向多级、横向网格”的组网方案。分布式数据的存取操作、增量式订阅和发布技术均采用面向“服务”方式进行,充分体现“面向服务”的最新设计思想。通过面向“服务”设计思想和面向“地理实体”的数据模型相结合,增量式订阅和发布技术使网络节点之间、父节点与子节点之间,因不同操作系统、不同数据库平台、不同数据大小而产生的“异构数据库”可实现增量更新与同步。 图2-1 气象GIS平台分布式数据管理原理图

气象数据文件和记录簿表格式

数据文件和记录簿表格式全部试题 一、填空: 1、自动气象站采集数据文件是指由数据采集器处理后,通过通讯接口直接存储到计算机硬盘中的数据文件。它是自动气象站与地面气象测报业务软件的接口数据文件 2、自动气象站采集数据文件由正点地面气象要素数据文件分钟地面气象要素数据文件、实时地面气象要素数据文件、大风数据文件、正点气象辐射数据文件、实时气象辐射数据文件、正点气象辐射补充数据文件等文件组成 3、Z文件(ZIIiiiMM.YYY)中,Z为指示符;IIiii为区站号;MM 为月份,不足两位时,前面补“0”;YYY为年份的后3位。 4、Z文件为随机文件,每月一个,记录采用定长类型,每一条记录218个字节,记录尾用回车换行结束,ASCII字符存盘,每个要素值高位不足补空格。 5、Z文件第一次生成时应进行初始化,初始化的过程是:首先检测Z 文件是否存在,如无当月Z文件,则生成该文件,将全月逐日逐时各要素的位置一律存入相应字长的“-”字符。 6、Z文件按北京时计时,以北京时的00分数据作为正点定时数据。 7、Z文件的第1条记录为本站当月基本参数,每项参数长为5个字节。 8、Z文件中的自动站型号标识:milos系列自动站存入“3”、I型自动站存入“1”、Ⅱ型自动站存入“2”。

9、Z文件中的干湿表通风系数Ai值:扩大107倍后存入。 10、Z文件中每一时次为一条记录,每日24条记录。记录号的计算方法:N=D 24+T-19 。 上式中,N:记录号;D:北京时日期(月末一天21~23时的日期D 取0);T:北京时。 11、Z文件中第1条后的每一条记录,存54个要素的正点值,以ASCII 字符写入,除能见度和最小能见度为5个字节外,其他每个要素长度为4字节,最后两位为回车换行符。 12、Z文件中的气压,当气压值≥1000.0hPa时,先减去1000.0,再乘以10后存入。 13、Z文件中若要素缺测,除有特殊规定外,则均应按约定的字长,每个字节位均存入一个“/”字符。 14、Z文件中的降水量,无降水时存入空格(4位),微量降水存入“0000”,雨量缺测或雨量传感器停止使用期(含冬季停用或长期故障停用)一律存“----”。 15、当使用湿敏电容测定湿度时,除在湿敏电容数据位写入相应的数据值外,同时应将求出的相对湿度值存入相对湿度数据位置,在湿球温度位置一律存“****”作为识别标志。 16、ZZ.TXT为实时地面气象要素数据文件,简称ZZ文件。 17、ZZ文件中存入54个要素的每分钟瞬时值,以ASCII字符存入,共218个字节。

自动气象站数据文件格式1

自动气象站数据文件格式 一、自动气象站数据接口文件格式设计 自动气象站数据文件需满足气象观测规范要求,在原自动气象站相关数据文件基本上,并考虑今后功能扩展,以及数据文件的可读性,对原Z文件、FJ.TXT文件的格式做出如下调整,增加了辐射要素数据H文件。 1.Z文件格式调整: 原Z文件中每条记录为240个字节,现在每条记录后,增加回车(13)换行(10)符号,即每条记录为242个字节。 原Z文件的第一条记录作为文件头,在原定义内容中取消“总辐射遥测登记、净辐射遥测登记、直接辐射遥测登记、散射辐射遥测登记、反辐射遥测登记”,以“-” 填充相应位置;在第236~240位置处写入版本号“V2.00”,以利于今后的版本升级 和功能扩展。 原规定的正点数据是在56分采集,现改为00分采集的数据,即00分为正点。 原规定的日照采用真太阳时,现改为地方平均太阳时。 2.大风遥测数据文件FJ.TXT格式调整: 原来规定存放10条记录,现改为存放20条记录。 原FJ.TXT文件每条记录为16个字节,现在每条记录后,增加回车(13)换行(10)符号,即每条记录为18个字节。 3.为适应辐射观测要求,增加了辐射要素数据H文件。 二、基本文件格式描述 根据以上原则,自动气象站接口数据文件由以下文件组成: 文件名称文件说明简介 ZIIiiiMM.YYY 地面常规要素定时数据文件保存全月每天正点时刻的地面常规要素值ZZ.TXT 地面常规要素实时数据文件保存每分钟的地面常规要素值 FJ.TXT 大风遥测数据文件保存达到大风标准的数据,只保留最近20次的记录 HIIiiiMM.YYY 辐射定时数据文件保存全月每天每个定时的辐射要素值HH.TXT 辐射实时数据文件保存每分钟的辐射要素值 三、地面常规要素定时数据文件ZIIIiiiMM.YYY 1. (文件名中“Z”、为指示符、IIiii为站号、MM为月份、YYY为年份的后3位)该文件为随机文件,每月一个,记录采用定长类型,每一条记录242个字节,记录尾用回车换行结束,ASCII字符存盘,每个要素值高位不足补空格。 2. 第一次生成时应进行初始化,初始化的过程是:首先检测盘上原先有

NOAA系列极轨气象卫星数据格式

NOAA系列极轨气象卫星 数据格式

目录 1卫星介绍 (1) 2有效载荷介绍 (2) 3NOAA 1B数据格式 (4) 3.1 压缩形式的1B格式 (4) 3.2 NOAA_K/L/M/N(15,16,17..)卫星1B数据格式 (7) 3.3 NOAA-16/17A TOVS L EVEL 1数据文件格式 (13)

1卫星介绍 目前我国接收、存档和使用的NOAA系列卫星主要分为美国第四代(NOAA-9--NOAA-14)和第五代(NOAA-15--NOAA-17)极轨气象卫星,它们的共同点是卫星姿态为三轴稳定,扫描率为6条扫描线/秒,对地扫描角±55.4度,星下点分辨率1.1公里,卫星轨道是太阳同步轨道,高度在800-850.0公里之间,倾角为98.6-99.1度之间,偏心率小于10E-4。周期101-102分。24小时内卫星绕地球运行14圈左右。回归周期9天左右,所不同的第五代卫星在AVHRR探测器安装改进的甚高分辨率辐射计3型(AVHRR/3),增加CH3A(同CH3B进行时间切换),同时TOVS变为ATOVS,增加微波探测器等先进仪器,并且预处理生成的1B文件由压缩形式改变成二进制长字节文件。现将卫星某些轨道参数介绍如下: NOAA-11卫星: 发射日期1988年9月24日,正式运行日期1988年11月8日 轨道高度:841公里轨道倾角:98.9度轨道周期:101.8分 NOAA-12卫星: 发射日期1991年5月14日,正式运行日期1991年9月17日 轨道高度:804公里轨道倾角:98.6度轨道周期:101.1分 NOAA-14卫星: 发射日期1994年12月30日,正式运行日期1985年4月10日 轨道高度:845公里轨道倾角:99.1度轨道周期:101.9分 NOAA-15卫星: 发射日期1998年5月13日,正式运行日期1998年12月15日 轨道高度:808公里轨道倾角:98.6度轨道周期:101.2分 NOAA-16卫星: 发射日期2000年9月12日,正式运行日期2001年3月20日 轨道高度:850公里轨道倾角:98.9度轨道周期:102.1分 NOAA-17卫星:

地面气象要素数据文件格式

附件5: 地面气象要素数据文件格式(V1.0) (中国气象局2012年3月5日) 1. 文件名 国家级站单站文件名: Z_SURF_I_IIiii_yyyyMMddhhmmss_O_AWS_FTM[-CCx].txt 国家级站多站打包文件名: Z_SURF_C_CCCC_yyyyMMddhhmmss_O_AWS_FTM.txt 区域级站单站文件名: Z_SURF_I_IIiii-REG_YYYYMMDDHHmmss_O_AWS_FTM[-CCx].txt 区域级站多站打包文件名: Z_SURF_C_CCCC-REG_YYYYMMDDHHmmss_O_AWS_FTM.txt 在文件名中: Z:固定代码,表示文件为国内交换的资料; SURF:固定代码,表示地面观测; I:固定代码,指示其后字段代码为测站区站号; C:固定代码,指示其后字段代码为编报中心代码; IIiii:测站区站号; CCCC:编报中心代码; REG:区域站资料标志,固定代码。区域站资料标志为可选标志,如果文

件名包含此标志,则表示文件内容为区域级测站观测资料;如果文件名未包含此标志,则表示文件内容为国家级测站(包括基准站、基本站、一般站)观测资料;2012年地面气象观测资料传输方式调整暂不涉及区域站。 yyyyMMddhhmmss:文件生成时间“年月日时分秒”(UTC,国际时); O:固定代码,表示文件为观测类资料; AWS:固定代码,表示文件为自动气象站地面气象要素资料; FTM:固定代码,表示定时观测资料; CCx:数据更正标识,可选标志,对于某测站(由IIiii指示)已发观测数据进行更正时,文件名中必须包含资料更正标识字段。CCx中:CC为固定代码;x取值为A~X,x=A时,表示对该站某次观测的第一次更正,x=B时,表示对该站某次观测的第二次更正,依次类推,直至x=X。 txt:固定代码,表示文件为文本文件。 说明:IIiii与R字段间的分隔符为减号“-”,其它字段间的分隔符为下划线“_”。

常用气象格式的数据读取及可视化

常用气象格式的数据读取及可视化 hzwjy 2012-11-1 本文介绍了气象研究(非业务使用)中的常用的数据格式,读写操作和数据可视化方法。 目录 常用气象格式的数据读取及可视化 (1) 目录 (1) 1. 常用编程语言和工具 (2) 2. 常用的数据格式 (2) 2.1. 普通二进制格式 (2) 2.2. 文本数据 (5) 2.3. NetCDF (6) 2.4. HDF、HDF-EOS、HDF5和HDF-EOS5 (7) 2.5. GRIB和GRIB2 (8) 3. 数据可视化 (8) 3.1. 变量与经纬度 (8) 3.2. 绘制等值线图 (11) 3.3. 绘制填色图 (13) 3.4. 绘制矢量箭头 (15) 3.5. 绘制流线 (17) 3.6. 绘制卫星数据 (18) 3.7. 绘制站点数据 (20) 3.8. 看图工具 (23) 附录: (24) NCL的安装 (24) NetCDF库的安装 (24) GMT的编译 (24) 参考资料 (26)

1.常用编程语言和工具 气象研究中常用的编程语言包括C语言、FORTRAN语言,其中FORTRAN为"FORmula TRANslator"的缩写,意为"公式翻译器",在数值计算、工程计算等领域有着广泛的应用,使用FORTRAN编写程序也是气象研究最基本的技能之一。 此外还会用到IDL、MatLab、NCL、GrADS等工具进行数据分析和可视化。IDL和MatLab 可用于数值计算和数据可视化,直接使用其内置的函数可以很方便地完成用户所需的各种计算,与FORTRAN相比,其码也更简洁。NCL与GrADS也可以完成数据分析以及数据的可视化,而且它们都是专为气象领域开发的软件,对气象数据的支持较好,绘图也更为方便,经过简单的设置就可以读取数据并绘制各种图像。在平时的使用中,可以以其中的一种工具为主,再稍微了解另外的几种工具,配合使用达到效率的最大化。IDL和MatLab都是商业软件,可以使用GDL (GNU Data Language)和SciLab等作为替代。 除了上面提到的编程语言,也可以使用Python (SciPy)计算机语言进行数据分析和绘图,也可以尝试GMT (Generic Mapping Tools)、ncview、Panoply等工具。 下面的实际操作中主要以FORTRAN (使用gfortran编译器)和NCL (NCL 6.1.0)来实现,本文仅对数据处理和绘图进行简单的介绍,相关语法请参考其它资料。 2.常用的数据格式 2.1.普通二进制格式 由于计算机存储文件都采用二进制形式,所以从广义上讲,所有的存储在设备中的文件都是二进制文件,包括ASCII及扩展ASCII字符中编写的数据或程序指令的文件。这里用"二进制格式"指除文本数据外的文件格式,而"普通"则是为了区分下面将提到的标准科学数据格式。这种文件的数据的存放序列与其在内存中的存放非常相似,所以在输入输出时几乎不需作转化。由于去掉了格式控制,与有格式文件相比,在使用数据信息时所做的处理更简洁迅速;同样也是这个原因使得无格式文件中即使存放着数字,也不能用文本编辑软件打开并看到。FORTRAN的无格式文件便是这种普通二进制格式。 比如将1~10的整形数据存入一个直接存储的无格式文件中:

相关文档
相关文档 最新文档