文档库 最新最全的文档下载
当前位置:文档库 › VVT凸轮轴目标轮与曲轴的相位关系

VVT凸轮轴目标轮与曲轴的相位关系

VVT凸轮轴目标轮与曲轴的相位关系

凸轮轴位置传感器

曲轴和凸轮轴位置传感器 1、功用与类型 曲轴位置传感器(Crankshaft Position Sensor,CPS)又称为发动机转速与曲轴转角传感器,其功用是采集曲轴转动角度和发动机转速信号,并输入电子控制单元(ECu),以便确定点火时刻和喷油时刻。 凸轮轴位置传感器(Camshaft Position Sensor,CPS)又称为气缸识别传感器(Cylinder Identification Sensor,CIS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用CIS表示。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便ECU识别气缸1压缩上止点,从而进行顺序喷油控制、点火时刻控制和爆燃控制。此外,凸轮轴位置信号还用于发动机起动时识别出第一次点火时刻。因为凸轮轴位置传感器能够识别哪一个气缸活塞即将到达上止点,所以称为气缸识别传感器。 2.光电式曲轴与凸轮轴位置传感器 (1)结构特点 日产公司生产的光电式曲轴与凸轮轴位置传感器是由分电器改进而成的,主要由信号盘(即信号转子)、信号发生器、配电器、传感器壳体和线束插头等组成。 信号盘是传感器的信号转子,压装在传感器轴上,如图2-22所示。在靠近信号盘的边缘位置制作有均匀间隔弧度的内、外两圈透光孔。其中,外圈制作有360个透光孔(缝隙),间隔弧度为1。(透光孔占0.5。,遮光孔占0.5。),用于产生曲轴转角与转速信号;内圈制作有6个透光孔(长方形孑L),间隔弧度为60。,用于产生各个气缸的上止点信号,其中有一个长方形的宽边稍长,用于产生气缸1的上止点信号。 信号发生器固定在传感器壳体上,它由Ne信号(转速与转角信号)发生器、G信号(上止点信号)发生器以及信号处理电路组成。Ne信号与G信号发生器均由一个发光二极管(LED)和一个光敏晶体管(或光敏二极管)组成,两个LED分别正对着两个光敏晶体管。 (2)工作原理 光电式传感器的工作原理如图2-22所示。信号盘安装在发光二极管(LED)与光敏晶体管(或光敏二极管)之间。当信号盘上的透光孔旋转到LED 与光敏晶体管之间时,LED发出的光线就会照射到光敏晶体管上,此时光敏晶体管导通,其集电极输出低电平(0.1~O.3V);当信号盘上的遮光部分旋转到LED与光敏晶体管之间时,LED发出的光线就不能照射到光敏晶体管上,此时光敏晶体管截止,其集电极输出高电平(4.8~5.2V)。 如果信号盘连续旋转,透光孔和遮光部分就会交替地转过LED而透光或遮光,光敏晶体管集电极就会交替地输出高电平和低电平。当传感器轴随曲轴和配气凸轮轴转动时,信号盘上的透光孔和遮光部分便从LED与光敏晶体管之间转过,LED发出的光线受信号盘透光和遮光作用就会交替照射

可变气门(连续)正时系统的原理

连续可变气门正时系统的原理 现代引擎多采用DOHC的缸盖设计,两根凸轮轴被设置在引擎顶部,通过齿形带轮或链条从曲轴端取力,并以2:1的速度驱动凸轮轴,此时凸轮轴商凸轮的旋转推动气门进行上下往复运动,从而控制气门的开启和闭合。而我们今天要关注的,其实就是气门开合的问题。 什么是“可变气门行程”? 活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺 扭矩... 所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极 大的突破。 80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。一系列可变气门技术虽然商品名各异,但其 设计思想却极为相似。 可变气门正时技术之一:保时捷Variocam 保时捷911跑车引擎采用的可变气门正时技术Variocam. 当引擎在低转速工况时,气门座顶端的黄色的控制活塞落在气门座内。这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。反之当发动机在高转速工况时,控制活塞在液压的驱动下从气门座推入到气门顶中,把气门座和气门刚性的连接,高速凸轮驱动气门座时就能带动气 门向下行程获得较大的气门开度。 可变气门正时技术之二:本田VTEC 凸轮轴上依然布置有高速凸轮与低速凸轮,但由于本田引擎的气门由摇臂驱动,所以不能像保时捷一样紧凑。控制高低速凸轮切换的是一组结构复杂的摇臂,通过传感器测出引擎转速,传送到ECU进行控制,并由ECU发出指令控制摇臂。简单地说,就是这套摇臂能够根据转速不同自动选取1进1排的2气门工作或者2进2排的4气门工作,从而让发动机在 高低速工况下都能顺畅自如。 通常,转速低于3500rpm时,各有一支进气、排气凸轮工作,此时发动机近似为一台2气门发动机,这样的好处是,能够增加负压,利于进气;转速超过3500rpm时,液压系伺服系统接到发动机中央控制器ECU指令,对摇臂内机油加压,压力机油推动定时柱塞移动,

凸轮轴工作原理介绍

凸轮轴需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高,一般要求是碳钢和合金钢锻造,凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。下面带大家简单了解一下凸轮轴工作原理。 【凸轮轴工作原理】 凸轮轴介只是活塞发动机里面的一个配件,主要是通过他来进行气门的开启和关闭的。需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高。制造的材料一般都是好的碳钢和合金钢锻造,还有是使用合金铸铁或者是球墨铸铁铸造而成的,凸轮轴工作表面还会进行热处理和磨光处理。 凸轮轴构造:凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。上置式一般处于的位置在气缸盖上,中置式一般处于的位置在机体的上面,下置式一般处于的位置在曲轴箱内部。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。

一、凸轮轴单顶置:直列形式的4缸或者6缸使用的这种,工作的原理主要是通过摇臂控制气门的开启,内置弹簧让其气门回到关闭的位置。由于气门的速度很快,所以在弹簧的选择时追求的是材质够强劲,气门一定好和弹簧与摇臂相连接。如果弹簧不够强劲造成的后果就是过多的磨损,使其缸体损坏。主要是通过皮带驱动。 二、凸轮轴双顶置:也就是每一个缸体内有两个凸轮,一些直列的发动机一般就会有两个凸轮。也是由于一个凸轮提供的做功不够而增加的一个,也是尽量的满足进气和排气的需求。工作原理其实和单顶置一样,带来的进出气更加的顺畅。主要是通过皮带驱动。 三、凸轮轴顶置:刚刚有说到这种形式的使用是广泛的,工作原理也是和前面两种一样。他主要是位于气缸的头上,没有位于发动机的缸体内部。由于上面两种是通过顶杆,在工作的过程中还增加了惯性的动力,这样也使得弹簧的负荷也相应的增加,这样也会限制发动机的转速。顶置形式的出现使其发动机的高速成为了可能,然而顶杆发动机又是通过齿轮或者短链进行驱动的。从驱动方式来看就比前面两种更稳固、更高速。

电子凸轮参数说明

电子凸轮功能使用说明 电子凸轮是指根据从轴的同步参数设定,从轴位置与主轴位置同步的功能。根据设定的凸轮曲线、离合器、各种补偿等来运算从轴相对于主轴的位置。 时间 ISD210电子凸轮型伺服支持最大8192点的凸轮表,凸轮表数量可以设定为1、2或者4个,不同凸轮表在运行过程中可以动态切换。电子凸轮的主轴来源可以选择位置脉冲输入、全闭环输入、内部定位指令或者时间轴。多台伺服通过主轴脉冲的级联,可以实现针对同一个主轴的多轴联动电子凸轮。 凸轮曲线的生成规则支持整体曲线生成,这种模式下曲线各个点二次连续;也支持指定顶点后的分段生成,用户可根据自己的需要选择等速度、等加速度、简谐等多生成规则。 电子凸轮运行过程中,支持对主轴和凸轮输出的动态调整,支持对主轴的速度补偿,支持可变齿轮,解决运行过程中各种误差调整和跟随问题。 0>电子凸轮结构图

1>全局开关 Pn[837] 电子凸轮开关 电子凸轮开关Pn[837] 电子凸轮使能开关 0‐不使能 1‐使能 只有凸轮开关使能时,才能使用电子凸轮的各项功能。凸轮开关关闭时,当前主轴位置、当前凸轮相位将被复位。 2>主轴 Pn[838] 主轴来源选择 Pn[839] 时间轴周期脉冲量 Pn[840]、Pn[841] 当前主轴位置 主轴来源选择Pn[838] 选择电子凸轮的主轴 0‐位置指令脉冲,可以来自低速脉冲口,也可以来自高速脉冲口,由参数 Pn[407]‐Pn[416]配置 1‐全闭环口脉冲,可以来自CN6上的全闭环脉冲,RS422电平标准,AB相 2‐定位指令,可以来自PLC内部定位指令,主轴来源选择定位指令时,电子凸

凸轮轴和配气相位:配气机构精髓所在

凸轮轴和配气相位:配气机构精髓所在对于四冲程汽油机来说,发动机能够良好工作的基础有四点:一是需要良好的气缸密封性,保证气缸压力正常,这由活塞、气缸、活塞环、气缸垫、气门、缸盖保证;二是合适混合气的浓度,这由燃油供给系统指供;三是良好的润滑和冷却、这由发动机的冷却系统来保证;四是足够的点火能量,这由点火系统提供;五是正确的配气时间和点火时间:即在进气时进气门适时的打开,当压缩和作功时必须关闭,当排气时排气门要及时打开,保证燃烧后的废气排出。在混合气被压缩到一定程度后,点火系统要适时的点燃混合气。对于这些必需有时间保证的控制,在原系统的设计的基础上,需要维修工在装配时保证配气时间和点火时间的正确,这些操作的理论基础即是发动机的工作原理和配气相位。面对多种设计的配气机构和点火系统,本文将分析发动机工作原理和配气机位在发动机维修中的指导意义。 配气相位是研究发动机工作时气门的开启和关闭时间的,配气相位的基础是气门的早开和晚关。因为气门的开启和关闭由凸轮驱动,而凸轮的曲线设计决定了气门在打开和关闭时需要一段时间,而全开的时间更短,为了保证充气效率,在凸轮设计上保证气门提前打开并迟后关闭。 理解四冲程发动机的工作原理对理解配气相位有重要作用 为了了解配气相位,要从四冲程发动机的工作原理中应掌握三点内容: 一是进气、压缩、作功、排气这四个冲程中活塞的运动方向,冲程开始时活塞处于哪个点、结束时处于哪个点:进气和作功活塞下行,开始于上止点、结束于下止点;压缩与排气活塞上行,开始于下止点、结束于上止点。

二是四个冲程中气门的状态:进气时进气门打开、排气时排气门打开,在其它冲程时处于关闭状态; 三是什么时间点火:压缩即将结束,活塞到达上止点前的某一时刻,火花塞点燃气缸的混合气; 进气门开启时间:为了实现进气门早开,在进气冲程的前一个冲程即排气冲程即将结束时,也就是活塞到达上止点前某刻进气门开始开启,当排气结束活塞处于上止点时,进气门处于微开状态,这体现了进气门的早开。 进气门完全关闭时间:进气结束活塞处于下止点时,进气门并没有完全关闭,当活塞上行一段,此时已是压缩冲程,进气门才完全关闭,这体现了进气门的晚关。 排气门开启时间:为了实现排气门早开,在排气冲程的前一个冲程即作功冲程即将结束时,也就是活塞到达下止点前某刻排气门开始开启,当作功结束活塞处于下止点时,排气门处于微开状态,这体现了排气门的早开。 排气门完全关闭时间:排气结束活塞处于上止点时,排气门并没有完全关闭,当活塞下行一段,此时已是进气冲程,排气门才完全关闭,这体现了排气门的晚关。 配气相位中重要的是两个点:压缩结束上止点和排气结束上止点。在压缩结束活塞处于上止点时,进气门和排气门均处于完全关闭状态;而在排气结束活塞处于上止点时,进气门和排气门均没有完全关闭,此时即将完全关闭的是排气门、而即将打开的是进气门。 维修中的应用主要是能依据凸轮轴位置来判断某缸是处于压缩结束还是排气结束上止点。 多缸发动机同位缸的概念 多缸发动机为了保证工作平稳,要求各缸作功应均匀间隔,所以在曲轴的设计上出现了有两个缸的活塞运动方向相同,此时的两个缸被称为同位缸。当两缸活塞上行时,一个缸处于压缩冲程、另一个缸处于排气冲程,当他们处于上止点时,运用配气相位的知识,通过凸轮轴位置可以判断哪个缸处于排气结束,哪个缸处于压缩结束:两个气门均完全关闭的气缸处于压缩结束,而两个气门均处于微开一点的气缸是排气结束。 满足配气相位的要求,在曲轴的驱动下,定时的打开的关闭气门;采取化油器供油的发动机,凸轮轴上还设有偏心轮,用于驱动汽油泵;同时凸轮轴上的螺旋齿轮驱动分电器,有些发动机的螺旋齿轮同时驱动分电器和机油泵

基于本田可变配气相位凸轮配气结构设计

基于本田可变配气相位凸轮配气结构设计说明书 摘要 汽油机可变气门技术作为一种性价比相当高的技术方案,得到了广泛的应用。特别是近几年由于油价的攀升和日趋严格的环保法规,可变配气机构对节省燃油、降低废气污染、提高发动机功率都有显著作用。 本论文针对广泛用于现代轿车用汽油机最新技术完全可变气门驱动机构本田发动机的结构、原理方面的技术分析,以及对本人的新设计思路进行浅析。主要研究内容包括: 1.对以本田为代表的日系轿车完全可变气门技术的结构和工作原理进行分析,从而进一步的了解可变气门技术; 2.对以本田VTEC为代表的日系轿车可变气门技术的结构和工作原理进行分析; 3.对本人设计的凸轮轴设计图、工作原理进行浅析,比较和现有技术的优缺点。 本文通过对本田VTEC可变气门技术进行分析,以及新式凸轮轴的思维方向,进而对未来发动机技术的发展趋势进行一定的探索。 关键词:发动机,可变气门技术,凸轮轴,新技术

Honda VTEC camshaft valve structure design specifications based on absraote The gasoline engine variable valve technology as a cost-effective quite high technical sche me, been widely used. Especially in recent years because of rising oil prices and increasin gly strict environmental protection laws and regulations, variable of valve-train saving fuel and reduce exhaust pollution and increase engine power are significantly. Widely used in t his paper with the latest technology of modern car engine - totally variable valve driving mechanism VV A BMW new series engine, Toyota VTEC - I engine of the structure, princi ple and technical analysis, the new design idea of my bai. The main research contents incl ude: 1. To BMW completely variable valve technical structure and workingprinciple of carry on the analysis, thus further understanding of variable valve technology; 2. The Honda VTEC variable valve structure and working principle of technology analys is; 3. To my design camshafts, comparison and the guide-subject advantages and disadvanta ges of existing technology. This article through to Honda new engine completely variable valve technology, Honda VTEC variable valve technologies were analyzed, and the new camshaft thinking direction , and then to the development trend of future engine technology for certain exploration.

凸轮及同步控制指导说明

目录 凸轮及同步控制指导说明 (3) 1 凸轮简介 (3) 1.1 凸轮基本原理 (3) 1.2 了解机械参数 (4) 2 三种基本模式 (6) 2.1 旋切/飞剪 (6) 2.1.1 试运行 (9) 2.1.2 显示 (14) 2.1.3 配置功能 (15) 2.2 追剪 (31) 2.2.1 试运行 (32) 2.2.2 显示 (37) 2.2.3 配置功能 (38) 2.3 通用凸轮 (50) 2.3.1 界面介绍 (50) 2.3.2 试运行 (53) 2.3.3 配置功能 (55) 3 故障处理 (58) 4 常见问题 (59) 5 功能码 (60) 龙门同步控制说明 (69) 1 基本原理 (69) 2 系统配线图 (69) 3 参数的设定 (71) 4 对位回零方式 (73) 5 后台监控通道 (75) 6 步骤 (75)

凸轮及同步控制指导说明 1凸轮简介 本说明书介绍了如何正确使用汇川电子凸轮专用伺服驱动器。在使用(安装、运行、维护、检查等)前,请务必认真阅读本说明书。另外,请在理解产品的特性后再使用该产品。 本产品的主要特点有: (1)伺服驱动器与运动控制器结合为一体化控制器。 (2)使用高精度电子凸轮生成运动轨迹,速度、加速度曲线都平滑变化,使电机的速 度指令、转矩指令没有阶跃变化,可以大幅度减小机械缓冲。 (3)支持自由曲线规划、同步旋切、自动追剪、等电子凸轮功能。 (4)可跟踪标点位置(色标、孔位及凸点等)实时调节进行剪切。可用于印刷纸、包装袋等需要补偿印刷/位置偏差的剪切。 (5)支持相位调整功能。可用于医用卫生纸等没有色标但需要补偿位置偏差的剪切。(6)支持Modbus、与PLC,HMI等通讯,实时修改凸轮数据、方便灵活使用。 (7)剪切长度范围可达到65535.000mm,设定可精确至um单位。 (8)可包含人性化的订单自动切换功能。 (9)自由曲线规划功能,大容量EEPROM可使设置的点数多达272个。 (10)人性化的图形规划界面、自由上传、下载的功能使用户在使用时更加形象、具体、方便。 (11)支持多刀系统。这样剪切效率更高。 (12)具备仿真进料功能,方便调试。静态仿真功能在调试的过程中避免意外的发生。(13)汇川可提供整套设备,包括进料驱动器、裁刀伺服、PLC和HMI等。 1.1凸轮基本原理 凸轮是一个具有曲线轮廓或凹槽的构件,它把运动特性传递给紧靠其边缘移动的推杆,推杆又带动机架做周期性运动。凸轮机构一般是由凸轮,从动件和机架三部分组成。如图1.1所示这就是一个典型的凸轮机构。 图1.1机械凸轮

发动机可变配气相位技术

发动机可变配气相位技术 (VVT engine technology) 本文介绍了通过在配气机构多刚体模型中引入柔性体,描述了配气机构的动力学性能,建立了柔性体气门弹簧,分析了气门弹簧动刚度的非线性行为,并且依据模态技术计算得到其动态应力。主要从进气门晚关角及进排气的动态效应几方面着手,不断改进发动机的配气相位以及进排气系统,使发动机的实际性能曲线逐步接近计算机仿真曲线。其中配气相位、进气门间隙、排气门间隙、转速、负荷五个调整参数之间是相互影响的。 该方法为优化设计配气机构等机械产品及对其进行疲劳性能研究提供了依据。该仪器可检测各种汽、柴油发动机的启动性能、高压点火性能、燃油喷射性能、充电性能、动力性能、配气相位、发动机异响震动分析等30余种技术参数,并分析故障产生的原因,在检测过程中,可随时显示各种波形及技术参数和结果并可随机打印,该仪器内存有一百多种国内外发动机技术参数,内容十分丰富,随时可以与检测结果对比。 目前,汽车工业的发展正在面临着两个主要问题——能源的枯竭与环境的污染。现代高科技的发展已将汽车发动机的节能、减排、低排放作为“节能-高效-环保”一体化课题进行综合研究和技术开发。为了同时提高汽油机的燃油经济性和动力性,满足越来越严格的排放法规要求,世界各大公司竞相采用新技术生产汽车的发动机。汽车发动机的配气相位对其动力性、经济性以及排气污染都有重要的影响。为了保护环境以及为了人类可持续发展,实现低能源消耗和低排放污染已成为汽车发动机的发展方向,这就要求发动机在保证良好动力性的同时,又要降低燃油消耗量,需要某种可变配气相位机构能使气门正时、气门开启持续时间及气门升程等参数中的一个或多个随发动机的工况变化实时进行调节,即配气相位角也应该随之改变。最佳的配

相关文档