文档库 最新最全的文档下载
当前位置:文档库 › 结晶器保护渣渣膜的研究

结晶器保护渣渣膜的研究

结晶器保护渣渣膜的研究
结晶器保护渣渣膜的研究

连铸结晶器保护渣应用研究报告

危险性较大的分部分项工程安全专项施工方案编制陈可亮海南省建筑业协会 安全专项施工方案编制前言2009年5月13日,中华人民共和国住房和城乡建设部印发了《危险性较大的分部分项

工程安全管理办法》(建质[2009]87号)(以下简称管理办法)。00 建质【2009】87号文.doc00-1 关于加强建筑边坡与深基坑工程质量安全管理的通知.doc第五条施工单位应当在危险性较大的分部分项工程施工前编制专项方案;对于超过一定规模的危险性较大的分部分项工程,施工单位应当组织专家对专项方案进行论证。海南省建筑业协会 安全专项施工方案编制

前言第八条专项方案应当由施工单位技术部门组织本单位施工技术、安全、质量等部门的专业技术人员进行审核。经审核合格的,由施工单位技术负责人签字。实行施工总承包的,专项方案应当由总承包单位技术负责人及相关专业承包单位技术负责人签字。第九条超过一定规模的危险性较大的分部分项工程专项方案应当由施工单位组织召开专家论证会。实行施工总承包的,由施工总承包单位组织召开专家论证会。海南省建筑

业协会 安全专项施工方案编制1.编制的基本要求第七条专 项方案编制应当包括以下内容:(一)工程概况危险性较大的分部分项工程概况、施工平面布置、施工要求和技术保证条件。(二)编制依据相关法律、法规、规范性文件、标准、规范及图纸(国标图集)、施工组织设计等。(三)施工计划包括施工进度计划、材料与设备计划。(四)施工工艺 技术技术参数、工艺流程、施工方法、检查验收等。海南省建

筑业协会 安全专项施工方案编制1.编制的基本要求(五)施工安全保证措施组织保障、技术措施、应急预案、监测监控等。(六)劳动力计划:专职安全生产管理人员、特种作业人员等。(七)计算书及相关图纸。01 脚手架工程专项方案大纲.doc02 模板工程专项方案大纲.doc03 深基坑工程专项方案大纲.doc 海南省建筑业协会 安全专项施工方案编制

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术 【保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-07 11-07 杨拉道刘洪王永洪刘赵卫邢彩萍田松林 (西安重型机械研究所) 结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。其作用 是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使 之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部仍 为液相的铸坯连续不断地从结晶器下口拉出,为其在以后的二冷区域内完全凝固创造条件。在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中,结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响,使结晶器同时处于机械应力和热应力的综合作用之下,工作条件极为恶劣,在此恶劣条件下结晶器长时间地工作,其使用状况直接关系到连铸机的性能,并与铸坯的质量与产量密切相关。因此,除了规范生产操作、选择合适的保护渣和避免机械损伤外,合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。 板坯连铸机一般采用四壁组合式(亦称板式)结晶器,也有一个结晶器 浇多流铸坯的插装式结构。 结晶器主要参数的确定 1 结晶器长度H 结晶器长度主要根据结晶器出口的坯壳最小厚度确定。若坯壳过薄,铸 坯就会出现鼓肚变形,对于板坯连铸机,要求坯壳厚度大于10~15mm。结晶器长度也可按下式进行核算: H=(δ/K)2Vc+S1+S2 (mm)

式中δ——结晶器出口处坯壳的最小厚度,mm K——凝固系数,一般取K=18~22 mm/min0.5 Vc——拉速,mm/min S1——结晶器铜板顶面至液面的距离,多取S1=100 mm S2——安全余量,S=50~100 mm 对常规板坯连铸机可参考下述经验: 当浇铸速度≤2.0m/min时,结晶器长度可采用900~950mm。 当浇铸速度2.0~3.0m/min时,结晶器长度可采用950~1100mm。 当浇铸速度≥3.0m/min时,结晶器长度可采用1100~1200mm。 2 结晶器铜板厚度h 铜板厚度的确定是依据热量传热原理和高温下的使用性能,具体说,与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。研究表明,拉速高,铜板应随之减薄;反之,拉速低,铜板应随之增厚。在考虑上述诸多因素后,铜板的厚度可由下式确定:

水平连铸50问

1、什么是水平连铸? 答:水平连铸(简称HCC)就是在铸机上将钢水沿水平方向连续地铸成钢坯的过程(如下简图)。与弧形连铸相比较具有设备简单、适合生产裂纹敏感性强的钢种等特点。 切割机 2、水平连铸机的主要设备有哪些? 答:水平连铸机的主要设备有: ⑴中间包:盛放钢液的容器,可均匀钢液温度和利于钢液中夹杂物上浮; ⑵结晶器:生产铸坯的关键所在; ⑶引锭杆:将铸坯从结晶器中引出的工具,一般使用刚性中空引锭杆; ⑷拉坯系统:包括拉坯机和控制系统,对拉坯参数进行设定并实施动作; ⑸切割机:对铸坯进行定尺的设备,要求自身重量尽量轻,以减少对拉坯动作的影响; ⑹冷床:在线储存和冷却铸坯的设备; ⑺冷却水系统:对结晶器和整个拉坯系统进行冷却,结晶器冷却水和设备冷却水是两套分开的循环系统。 3、为什么要开发水平连铸技术? 答:水平连铸与传统的弧形连铸相比有以下优点: ⑴由于设备水平布置,机身低,厂房高度要求较低,所以基建投资较少。 ⑵铸坯质量高。由于拉坯时中间包与结晶器是紧密相连,防止了钢水的二次氧化,且中间包内钢液面较高,有利于夹杂物的上浮,以提高钢清洁度。据统计,水平连铸钢中夹杂物含量一般为弧形连铸钢中夹杂物含量的1/5左右。由于实现了密封浇注无二次氧化,水平连铸坯中含氧量为弧形铸坯中含氧量的1/4左右。此外,铸坯不弯曲、无矫直内裂、无鼓肚疏松等。特别是水平连铸中结晶器导热集中于前端,铸坯出结晶器后不用喷水,铸坯表面质量好,很适合于高合金钢的铸造。 ⑶能直接浇铸成小型铸坯,甚至几毫米的线坯,因此能用最小的轧制比取得终了产品,大大地缩短了工艺流程。 ⑷安全可靠性好,由于设备水平布置,一旦拉漏对后续设备烧损少,且事故现场易于清理,能尽快恢复正常生产。 目前,水平连铸适合于中小型钢厂与电炉匹配生产小型断面铸坯。 4、目前在生产中使用的水平连铸机有哪些机型? 答:目前在生产中使用的水平连铸机,按铸坯尺寸分,有以下五种机型 机型 中间包 容量(t) 流间距 (mm) 铸坯尺寸 (mm) 最高拉坯 速度(m/min) 设备长度 (m) 产量 (万吨/流?年) SLD-200 20 1200 ∮150~∮200 2.8 58 10~12 SLD-140 15 1000 ∮110~∮150 3.8 50 8~10 SLD-100 10 800 ∮50~∮100 4.5 40 4~6 SLD-60 5 600 ∮30~∮70 5.0 30 2~4 SLD-20 0.5 150 ∮8~∮20 6.0 20 0.2~0.3

卷渣原因

结晶器保护渣卷渣类型及防止 板坯连铸结晶器内主要由以下类型的卷渣发生: 1、结晶器内壁卷渣 在结晶器壁附近,由于表面液体的不稳定流动,将保护渣卷入钢水。卷入的渣滴有可能重新上浮至渣钢表面,也有可能被凝固坯壳前沿捕捉,形成皮下夹渣。 2、回流夹渣 当浸入式水口插入深度过浅而拉坯速度较低时,流股冲击不到结晶器窄面,流股上回流到水口侧面附近,其向下的分速度把保护渣卷入钢水,被水口流股捕捉,进入结晶器造成卷渣。 3、剪切卷渣 从浸入式水口流出的流股到达结晶器窄面后为分上升流和下降流,若渣滴不能再次回到渣而被钢液裹挟至钢液熔池深处或被凝固坯壳捕捉,就发生了卷渣.当拉速较高,水口浸入深度较浅,水口出口夹角向下较小时易发生此类卷渣. 4、旋涡卷流 由于紊流或水口出流不对称造成的水口两侧流场的不对称将导致水口两侧的表面流速不等,当表面流速相差到一定程度后,两表面流在水口附近汇合时将在速度较小的一侧产生旋涡,这种旋涡的能量较大时即可把保护渣卷入钢液内部.此外,钢液从水口冲出时,水口从上方会形成负压区,在负压区的影响下旋涡会被拉伸,加强,由旋涡卷吸的渣滴就有可能被带到钢液熔池深处,卷渣就形成了. 解决结晶器卷渣的措施 1、水口浸入深度

水口浸入,液深度过深,容易回流卷渣;如过深,增加了夹杂物和气泡卷入铸坯深处的机会,且由于热点下移,增大了漏钢几率,并造成了化渣不良,润滑不好. 2、水口出水面积 原使用的浸入式水口上口大,下口小,造成下口出口射流速度快,对液面的冲击强度较强,液面波动幅度大;同时下口容易附着冷钢,易形成偏流,旋涡卷渣可能性增大.拉速太慢,容易造成回流卷渣. 3、拉坯速度 拉坯速度较快,保护渣熔融结构变化,熔渣层厚变薄,粉渣层卷放钢液的几率增大;拉速太慢,容易造成回流卷渣. 4、保护渣粘度 在保证保护渣能顺利流入结晶器与铸坯铸坏表面之间的缝隙的情况下,适当增大保护渣粘度,保证合适的液渣层厚度.。 2夹渣漏钢 主要原因: 1)结晶器液面波动大2)结晶器偏振,3)在快换中间包时,由于涨速过快,在 结晶器液面产生局部扰动4)中包、水口等耐火材料质量不稳定,造成耐材脱落、水口损坏炸裂等;5)中间包钢水温度低,使保护渣熔化不好。 采取措施为: 1)严格要求转炉冶炼、出钢操作,保证钢水的洁净度,改善连铸钢水的可浇性,严格工艺制度,尤其在热换中间包、快换浸入式水口、涨降拉速的过程中保持必要的稳定时间,避免结晶器内的局部扰动造成夹渣; 2)加强对浸入式水口、中间包耐材的质量管理,使用干式料中包,淘汰镁质板中包,推行浸入式水口的系列化,规范浸入式水口的插入深度,保证结晶器内合适的流场; 3)严细操作,规范捞渣条操作,避免捞渣条时扰动结晶器液面,造成夹渣;

结晶器保护渣的性能和特性汇总

结晶器保护渣的性能和特性 1.简介 在连铸生产中结晶器保护渣起着主要作用。保护渣从结晶器顶部加入,向下移动逐步形成烧结层,熔融层和液渣层(见图1)。液渣渗入结晶器铜板与坯壳之间,润滑坯壳。但是,大部分的液渣进入铜板与坯壳之间后,遇水冷结晶器铜板凝结并形成玻璃状的固态渣膜(大约2毫米厚)。薄液渣膜(大约0.1毫米厚)与坯壳一起移动并为其提供液态润滑。同时,玻璃渣也可部分结晶。一般认为固渣膜附在结晶器壁上,或者如果移动,一定比坯壳的速度慢得多。结晶器振动防止坯壳粘结在结晶器上。固渣膜的厚度和特性决定水平热传递。总之,液渣膜控制润滑,固渣膜控制水平热传递。 图1:结晶器内形成的各种渣层 应超过振幅,才能保证保护渣渗透良好(如坯壳的一般认为液渣层厚度d pool 润滑),一般建议采用厚度>10毫米。液渣层厚度影响渗入结晶器铜板与坯壳之间的液渣量和从钢水进到液渣中的夹杂物数量。 连铸生产中保护渣有下列功能: 1)防止弯月面钢水被氧化 2)保温,防止弯月面钢水表面凝结 3)提供液渣润滑坯壳 4)对浇铸钢种提供最佳水平热传递 5)吸附钢水中的夹杂物 所有上述功能都很重要,但在日常生产中最重要的润滑和水平热传递。影响保护渣性能的基本因素如下: ,振动特性) ·浇铸条件(拉速,V c ·钢种和结晶器尺寸 ·结晶器液位控制(可导致振痕等) ·钢流,其紊动可导致多种问题,如气泡和夹渣 由此可见,要有效执行上述工作需要优化保护渣的物理性能。 结晶器保护渣的构成如下:70% (CaO+SiO ),0-6%MgO,2-6% 2

Al 2O 3 ,2-10%Na 2 O(+K 2 O), 0-10%F带有其他添加物,如 TiO 2 , ZrO 2 , B 2 O 3 , Li 2 O 和MnO。碱度(%CaO/%SiO 2 )范围为0.7-1.3。碳以焦碳,碳黑和石墨方式加入(2-20%),1)可控制保护渣的熔化速度,2)可在结晶器上部形成CO(g),防止钢水氧化。碳以固定碳方式存在于保护渣中,因而可防止保护渣结块,直到最后氧化掉。这是控制保护渣熔化速率的机理。 2.结晶器保护渣的性能和功能 润滑和保护渣消耗 液态结晶器保护渣可润滑铸坯。如果保护渣完全在结晶器下部结晶,就失去了液态润滑,就会发生许多问题(如龟裂)。因而铸坯润滑很重要。公式(1)中 液体摩擦力为F 1,V m 是结晶器速度,A是结晶器的面积。由此可见摩擦力减小, 粘度η减小,液渣膜厚度d 1 增加。 F 1=Aη(V m -V m )/ d 1 (1) 由于到角部的距离增加,摩擦力增加,因而保护渣消耗量Q s 提供一种测量 润滑的方法,主要取决于结晶器的大小。板坯中的摩擦力>大方坯摩擦力>方坯摩 擦力,并随钢水的粘度增加而增加。保护渣消耗量Q t 一般按公斤/吨钢计算。采 用公式(2)将Q t 转化为Q s ,保护渣公斤/m-2(结晶器)。 Q s =f* Q t 7?6/R= d 1 ρ (2) f*表示保护渣产生的液渣的粒度级,ρ是液渣的密度,R是(结晶器表面积),并给2(w+t)/wt, w和t是结晶器的厚度。摩擦力随到角部的距离增加而增加,因此板坯需要的润滑(如较高的Q s )>大方坯>方坯。 根据报告,保护渣消耗量不适宜,将导致各种铸坯缺陷和问题,如下:1)纵裂, 2)粘结漏钢(总是与缺乏润滑有关), 3)深度振痕, 4)横角裂, 5)三角区裂纹 6)形成凹坑。 保护渣的消耗与多种影响因素有关。大多数人认为主要影响有两种:1)用 于润滑结晶器,Q lub ,2)填补振痕Q om 。采用三种数学模型,计算Q om ,但近来显

结晶器分类

连铸结晶器 结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模,它的性能对连铸机的生产能力和铸坯质量起着十分重要的作用,因此,被称之为连铸设备的“心脏”。1、结晶器的作用 结晶器是连铸机的心脏,它的重要作用表现在: 1)在尽可能高的拉速下保证出结晶器时形成足够的坯壳厚度,以抵抗钢水静压力而不拉漏;2)结晶器周边坯壳厚度能均匀稳定生长; 3)结晶器内的钢水——渣相——坯壳——铜壁之间的相互作用,对铸坯表面质量有决定性影响。上述第1)个作用决定了连铸机的生产率;2)、 3)作用决定了铸坯表面质量。 2、结晶器的性能 1)有较好的导热性能,能迅速形成足够厚度的初生坯壳; 2)有良好的结构刚度和结构工艺性,便于加工制造,易于拆装和调整; 3)有较好的耐磨性及较高的热疲劳性; 4)重量轻、以便在振动时有较小的惯性力。 3、结晶器的分类 按连铸机型式不同,结晶器可分为直形和弧形两大类。 1)直型结晶器。直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。该类型结晶器还有利于提高坯壳的质量和拉 坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。直形结晶器用于立式和立弯式及直弧连铸机。 2)弧形结晶器。弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。弧形结晶器用在全弧形和椭圆形连铸机上。 按铸坯规格和形状来分,有小方坯、大方坯、板坯和异性坯结晶器。按结晶器结构可分为管式、整体式和组合式三种。 连铸结晶器:就是一个钢水制冷成型设备。其由框架,结晶器冷却背板或水箱和铜板,调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。 连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。 保护材料用途:1.确保连铸工艺顺行;2.改善铸坯表面质量。 连铸结晶器钢水流动控制技术 1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。伴随着连铸机拉速的提高,结晶器内液面波动加剧,容易产生卷渣,造成铸坯质量恶化。采用结晶器钢水流动控制技术可以改善结晶器内流场形态,抑制出料速度以平稳液面,促进夹杂物上浮。用于板坯结晶器的电磁制动(EMBr)、电磁流动控制(FC结晶器)和多模式电磁搅拌(即EMLA,EMLS、EMRS,统称MM-EMS)是结晶器钢水流动控制技术的典型代表。 2、电磁制动器通过对结晶器施加一个与铸流方向垂直的静态磁场而对流动的钢液进行制动。钢流由于电磁感应而产生感应电压,因此在钢液中产生感应电流,这些电流由于受到静态磁场的作用而产生一个与钢水运动方向相反的制动力。钢液的流速越快,制动力也越大。电磁制动器具有一个单一的、覆盖整个板坯宽度的静态磁场。电磁制动技术可抑制水口射流速度,减缓沿凝固壳向下流动,促进夹杂物和气泡上浮。

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术 结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。其作用是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部仍为液相的铸坯连续不断地从结晶器下口拉出,为其在以后的二冷区域内完全凝固创造条件。在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中,结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响,使结晶器同时处于机械应力和热应力的综合作用之下,工作条件极为恶劣,在此恶劣条件下结晶器长时间地工作,其使用状况直接关系到连铸机的性能,并与铸坯的质量与产量密切相关。因此,除了规范生产操作、选择合适的保护渣和避免机械损伤外,合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。 板坯连铸机一般采用四壁组合式(亦称板式)结晶器,也有一个结晶器浇多流铸坯的插装式结构。 ?结晶器主要参数的确定? 1 结晶器长度H ?结晶器长度主要根据结晶器出口的坯壳最小厚度确定。若坯壳过薄,铸坯就会出现鼓肚变形,对于板坯连铸机,要求坯壳厚度大于10~15mm。结晶器长度也可按下式进行核算:??H=(δ/K)2Vc+S1+S2 (mm)??式中δ——结晶器出口处坯壳的最小厚度,mm ?K——凝固系数,一般取K=18~22 mm/min0.5 ? Vc——拉速,mm/min S1——结晶器铜板顶面至液面的距离,多取S1=100 mm??S2——安全余量,S=50~100 mm??对常规板坯连铸机可参考下述经验:??当浇铸速度 ≤2.0m/min时,结晶器长度可采用900~950mm。??当浇铸速度2.0~3.0m/min 时,结晶器长度可采用950~1100mm。 当浇铸速度≥3.0m/min时,结晶器长度可采用1100~1200mm。?? 2 结晶器铜板厚度h??铜板厚度的确定是依据热量传热原理和高温下的使用性能,具体说,与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。研究表明,拉速高,铜板应随之减薄;反之,拉速低,铜板应随之增厚。在考虑上述诸多因素后,铜板的厚度可由下式确定:? h=hm+Δm+δm (mm)? 式中hm——铜板冷却水槽深度,mm Δm——铜板加工余量,一般取Δm=10~15mm? δm——铜板最终的有效厚度,一般取δm=10mm? 3 结晶器内腔最大宽度Amax? Amax=1.025×Bmax (mm)? 式中Bmax——板坯最大名义宽度,mm 4 宽边铜板最大宽度Cumax

《连铸保护渣的分类》编制说明

《连铸保护渣的分类》编制说明 1、工作简介 1.1任务来源 根据工信部工信厅科[2011]75号文《关于印发2011年第一批行业标准修订计划的通知》的要求,由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草《连铸保护渣分类(2010-3479T-YB)》。 1.2主要工作过程及参编单位 接到标准编制任务后,我们迅速组建了标准起草工作组。标准起草工作组组建后,首先收集了国内外有关资料,了解连铸保护渣生产企业有关技术发展动态,并对我国连铸保护渣生产企业的生产现状作了调研,明确了工作重点和进程安排。 2011年5月1—2日,标准起草工作组召开了第一次工作会议。会议上进一步明确了行业标准起草工作要求,就标准的基本框架及内容进行了充分讨论,研究了标准宣贯教材的编写工作并对工作组成员分工、工作进度及时限要求作了具体安排。 2011年6月,标准起草组根据前期工作情况提出了该标准征求意见稿的初稿。该征求意见稿的初稿已发给全国钢标准化技术委员会的相关专家征求意见,并对专家的意见进行了研究、分析和采纳,形成该标准的征求意见稿。 标准起草单位主要由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草。 2、编制目的 连铸技术是优化现代钢铁产业结构的关键性技术,而结晶器保护渣对于改善铸坯质量,稳定连铸操作至关重要。我国从上世纪70年代开始就进行了一系列保护渣的试验研究,现已建起了数家相当规模的生产厂家,为我国钢铁工业提供了所需要的保护渣产品。由于连铸保护渣产品的特殊性,除相关的检、试验分析方法标准外,一直没有制定相应的产品标准。目前,保护渣市场较为混乱,用户选择保护渣没有依据很不方便。为了规范市场,保证钢铁生产的质量,满足钢厂用户对不同钢种使用保护渣的选择,急需制定连铸保护渣的分类标准,为今后统一连铸保护渣产品标准提供基础保障。

结晶器振动和振痕、保护渣耗量的关系

结晶器振动和振痕深度、保护渣耗量的关系分析2008-11-20 20:14:42 作者:炼钢人来源:制钢参考网浏览次数:142 文字大小:【大】【中】【小】 关于结晶器振动参数对铸坯表面振痕深度的影响已经进行了许多研究,如唐山钢铁公司的张洪波对结晶器的振动问题进行了一系列的研究,所有研究表明,振痕深度是负滑脱时间的增函数,负滑脱时间越长,振痕深度越深,反之,负滑脱时间越短,振痕深度越浅,因此,提高振动频率可以有效降低振痕深度。表1.1为英国某钢铁公司的部分实验统计结果,可以看到,当振动的频率增加,行程减小时,振痕深度减小。 日本住友金属和歌山厂研究得到铸坯表面振痕深度随结晶器振动频率的增加和振幅的减小而降低。当振动频率增加到250cpm,振动行程减小到3.5mm时,振痕深度可以减小到0.2mm以下。 大量的文献已经对结晶器振动和保护渣耗量的关系进行了研究,结果表明,保护渣耗量在负滑脱时间率变化不大时,是负滑脱时间的增函数;在负滑脱时间率变化较大时,不能满足上述关系,而保护渣耗量在所有情况下则和正滑脱时间之间保持增函数的关系。可见,振痕深度由负滑脱时间控制,保护渣耗量由正滑脱时间控制。 表1 英国钢铁公司部分实验数据

有报道指出,根据实验结果显示,对于一定的钢种,保护渣耗量是振动频率的减函数,是波形偏斜率的增函数,是振幅的增函数,是保护渣粘度的减函数。下面对结晶器振动对振痕深度和保护渣耗量的影响作以下总结: (1)t N增加,NSR同时增大,在这种情况下,振痕加深,保护渣耗量减少,此时既不利于表面质量的改善,又恶化结晶器的润滑状况,这是不可取的。振幅增加便形成这种趋势,所以振幅应该小,这和目前宝钢结晶器振动采用小振幅是一致的。 (2)t N减少,NSR同时增大,在这种情况下,振痕减轻,保护渣耗量减少,此时利于表面质量的改善,但恶化结晶器的润滑状况。如果控制振痕深度是主要目的,则采用这种振动方式。提高振动频率可以达到这一目的。 (3)t N增加,NSR同时减小,在这种情况下,振痕加深,保护渣耗量增加,不利于表面质量的改善,但却可以改善结晶器的润滑状况。如果结晶器的润滑是主要目的,可以采用这种方式,较低的频率可以使这一目的得到实现。 (4)t N减少,NSR同时减少,在这种情况下,振痕减轻,保护渣耗量增加,此时既有利于表面质量的改善,又可以改善结晶器的润滑状况,是最好的选择方式。大波形偏斜率可促成这种趋势。实验结果表明,a=0.4时,结晶器摩擦力减少40%,其中30%是由于结晶器上升时与坯壳相对速度减少所致,10%是保护渣消耗量增加所致。 综合以上对于结晶器振动对结晶器保护渣耗量、振痕深度影响的分析,可以得到如下结论:振幅和波形偏斜率的影响使“单向”的,即由于振幅或波形偏斜率导致的t N及NSR的变化是同向的,两者为增函数的关系,因此,振幅及波形偏斜率的取值具有单向性。频率的影响是“双向”的,即频率导致t N及NSR的变化具有相反的趋势,两者是减函数关系,因此,频率有一个最佳的取值范围,

水平连铸机组安全操作规程

编号:CZ-GC-00446 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 水平连铸机组安全操作规程Safety operation regulations for horizontal continuous casting unit

水平连铸机组安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 1.目的 规范现场操作,保证安全生产顺利进行 2.适用范围 本规程适用于熔铸车间水平连铸机组生产。 3.内容 3.1对使用吊钳、钢丝绳、吊链等前必须检查是否完好,钢丝要稳、正、牢、吊钳要钳牢靠。 3.2禁止跨越炉口,炉台工加料时,要认真清除料表面杂质和水份,严禁潮湿、进水、油污严重的电解铜和工艺废料加入炉膛。 3.3加料装炉时,应集中思想,注意周围环境及其他操作人员是否进入安全区,同时投料要轻,稳,较重的原料装炉时要采用适当的措施,轻轻投入,以免金属飞溅伤人。 3.4熔炼炉倾斜起炉时,炉体铁板上不准站人,降回时注意是否

有物挡住,如有物挡,应及时通知处理。 3.5发现炉子异常、检查炉体时,保持人身与炉体距离不得少500mm,并注意周围环境,保证紧急避让方便。一旦发生漏炉或铜水溢出,操作人员应立即顺安全通道避让到高处.危急导线或电器部分时,通知操作台立即停电,同时启用备用水源冷却线圈。 3.6舀铜液时,操作手一切安全防护用品必须穿戴齐全,检查工具是否安全可靠。铜液未冷却前必须有专人现场监护,起吊铜液专用吊具必须保证安全可靠,操作人员应保持与吊物的安全距离。 3.7熔炼炉加料和转炉时,感应器必须停电,中间流槽必须加定位销。 3.8在引拉前将结晶器前的事故包,保温炉后的事故包烘烤至无水分,并且里面不得有油及其他杂物。 3.9引锭机在引拉过程中,应注意检查引锭机的工作情况和铸坯出口状况。如发现不正常现象,应立即采取预防措施,以及必要时停机处理,防止漏铜。 3.10铸坯应堆放整齐,同时保持场地清洁、无油水、畅通。

连铸板坯结晶器内钢渣界面的波动行为和卷渣行为的研究

连铸板坯结晶器内钢渣界面的波动行为和卷渣行为的研究 摘要随着高效连铸的发展和吹氩工艺的广泛应用,结晶器的冶金作用越来越重要。深入研究结晶器内钢渣运动是促进连铸工艺顺行,改善铸坯质量的关键因素。本文以太钢板坯连铸结晶器为研究对象,根据相似原理建立1:2的水模型,采用水力学物理模拟方法,研究了拉速、水口插入深度以及吹气量对结晶器内液面波动、液渣分布、卷渣行为的影响规律。 研究表明:拉速对结晶器内钢渣界面流动行为影响很大,吹气量对结晶器不同部位的钢渣流动影响程度不同,在水口附近影响最大。在高拉速浇注时,结晶器内很容易出现剪切卷渣;在拉速不高而吹气量比较大时,吹气卷渣是卷渣的主要方式。当卷入结晶器内的渣滴冲击深度较浅时,会因浮力作用而慢慢上浮;当渣滴的冲击深度较深时,就会被流股冲击到结晶器下部区域,最终形成铸坯大型夹杂物或者导致卷渣漏钢事故。 关键词板坯结晶器卷渣吹气 1文献综述 1.1板坯连铸技术概述 连续铸钢技术的开发与应用是钢铁生产中继氧气转炉之后又一次重大的技术革命,是目前冶金领域最活跃的一个分支,也是炼钢领域内发展最快的技术之一。连铸技术对世界钢铁工业的发展产生了巨大的推动力。目前连铸生产快速发展已成为推动炼钢和整个钢铁生产蓬勃发展的主要技术动力[1,2]。 1.2结晶器冶金作用 在连铸过程中,由于钢水不纯净、二次氧化、夹杂上浮不充分,铸坯本身的凝固特征,高温铸坯要经受冷却、弯曲和拉矫等方面的热应力和机械应力,使铸坯存在一些缺陷。铸坯的表面缺陷主要决定于钢水在结晶器内的凝固过程,它是与结晶器内坯壳的形成、结晶器振动、保护渣性能、浸入式水口设计及钢液面稳定性等因素有关的,必须严格控制影响表面质量的各参数在合理的目标值内,以生产无缺陷的铸坯,这也是热送和直接轧制的前提条件。影响板坯质量及工艺顺行的关键问题,大部分与钢液在结晶器内的流动行为有着直接或间接的关系。高速连铸会加剧钢液流速和弯月面的流动,造成凝固壳的不稳定,夹杂物难以上浮,更为严重的是,易将钢液面上的保护渣卷入到钢水中,保护渣覆盖不均匀,从而引起漏钢事故和质量缺陷。因此,深入了解和控制结晶器内的钢液流动行为是保证高效连铸过程顺行、提高连铸坯质量的关键结晶器在连铸生产过程中是高效率的传热器、凝固成型器、钢水净化器、铸坯表面质量控制器,要求结晶器内钢水流动不应把保护渣卷入钢液内部,钢流冲击深度应利于夹杂物上浮和减小对凝固坯壳的冲刷作用,而结晶器流场对此有决定性的影响。1.3本文的研究内容和研究目的 本文依据相似原理,针对太钢机浇注板坯的质量问题和工艺顺行问题,研究了不同工艺参数对结晶器内钢液流动行为的影响,重点分析了结晶器内卷渣、液渣分布规律。

连铸保护渣的成分

连铸保护渣的成分是 2012-02-05 16:35匿名|分类:工程技术科学|浏览3564次 分享到: 2012-02-11 00:40网友采纳 满意记得给分啊,还有更多资料! 1.基础材料 设计保护渣的基本组分: 主要化学成分是SiO2, CaO, Al2O3。 它们在保护渣中占的比例是50 -80%。 2. 熔剂材料具有控制保护渣的粘度和熔化行为的能力。 主要组元是Na2O, Li2O, K2O, F 等。 –如)Na2CO3,CaF2,Li2CO3等。 3. 碳质材料(骨架材料)具有控制保护渣熔速的能力碳的类型(炭黑,焦炭,石墨等)不同的钢种选用不同的保护渣,成分的变化主要考虑以下保护渣物理化学特性: 2.1 碱度 一般定义为组分中(R=CaO%/SiO2%)的比值。它是反映保护渣吸收钢液中夹杂物能力的重要指标,同时也反映了保护渣润滑性能的优劣。通常碱度大,吸收夹杂物的能力也大,但它的析晶温度变大,导致传热和润滑性能恶化。 2.2 粘度 它是衡量保护渣润滑性能的重要指标。目前通常采用旋转法测定或根据经验公式计算。现在大多测其在1300℃条件下的值,常用保护渣的粘度(1300℃)为0 .05~0.15Pa.s。它受化学成分和温度的控制,生产中主要靠助熔剂来调节。要想得到高质量铸坯且不发生粘结漏钢,必须要选择合适粘度的保护渣。保护渣粘度过低,液渣大量流入缝隙,造成渣膜不均匀,局部凝固变缓,导致凝固坯壳变形,引起纵裂和拉漏事故;粘度过大,会使铸坯表面粗糙。 2.3 熔化温度 它包括烧结起始温度、软化温度或叫变形温度、半球点温度和流动温度。实际应用中是将渣料制成锥形3×3 mm的标准试样,在显微镜中测定。当以一定的升温速度使试样加热到由圆柱形变为半球形时的温度,称为熔化温度。连铸生产中通常将保护渣的熔化温度控制在1200℃以下。它主要受保护渣的成分、碱度以及Al2O3含量等因素的影响,熔化温度过高,润滑作用差并且不均匀。 2.4 结晶温度(析晶温度) 它是影响凝固坯壳导热的重要参数。对裂纹敏感性特强的包晶类钢种应使用结晶温度高的保护渣。它主要受化学成分的影响,尤其是碱度。通常可以在测保护渣粘度时进行,当保护渣在降温过程中,从粘度-温度曲线上发现熔渣有结晶现象。在这一点,熔渣变得不流动,且此刻测粘度已不可能,就将这一点的温度定义为结晶温度。 2.5 熔化速度

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术 保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-07 11-07 杨拉道刘洪王永洪刘赵卫邢彩萍田松林(西安重型机械研究所) 结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。其作用是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却, 导出钢液的热量, 使之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯, 并使这种芯部仍为液相的铸坯连续不断地从结晶器下口拉出,为其在以后的二冷区域内完全凝固创造条件。在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中,结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响,使结晶器同时处于机械应力和热应力的综合作用之下,工作条件极为恶劣,在此恶劣条件下结晶器长时间地工作,其使用状况直接关系到连铸机的性能,并与铸坯的质量与产量密切相关。因此,除了规范生产操作、选择合适的保护渣和避免机械损 伤外,合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。 板坯连铸机一般采用四壁组合式(亦称板式)结晶器,也有一个结晶器浇多流铸坯的插装式结构。 结晶器主要参数的确定 1 结晶器长度H 结晶器长度主要根据结晶器出口的坯壳最小厚度确定。若坯壳过薄,铸坯就会出现鼓肚变形,对于板坯连铸机,要求坯壳厚度大于10~15mm。结晶器长度也可按下式进行核算: H=(δ/K)2Vc +S1+S2 (mm)

式中δ——结晶器出口处坯壳的最小厚度,mm K——凝固系数,一般取K=18~22 mm/min0.5 Vc ——拉速,mm/min S1——结晶器铜板顶面至液面的距离,多取S1=100 mm S2 ——安全余量,S=50~100 mm 对常规板坯连铸机可参考下述经验: 当浇铸速度≤2.0m/min 时,结晶器长度可采用900~950mm。 当浇铸速度2.0 ~3.0m/min 时,结晶器长度可采用950~1100mm。 当浇铸速度≥3.0m/min 时,结晶器长度可采用1100~1200mm。 2 结晶器铜板厚度h 铜板厚度的确定是依据热量传热原理和高温下的使用性能,具体说,与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。研究表明,拉速高,铜板应随之减薄;反之,拉速低,铜板应随之增厚。在考虑上述诸多因素后,铜板的厚度可由下式确定:

连铸结晶器液面自动加渣控制系统简介

连铸结晶器液面自动加渣控制系统简介

连铸结晶器液面自动加渣控制系统简介 一、概述 连铸机浇筑时结晶器加保护渣是连铸生产中最重要的工作,保护渣在连铸生产中起着极为重要的作用,如防止二次氧化、润滑及吸附杂质等。连铸工艺要求保护渣在浇铸过程中形成熔融层、烧结层及粉渣层等三层结构,以便更好的发挥作用。少加勤加是添加保护渣的一条重要原则。 二、现场现状 目前连铸机上采用的加渣方式大都还是人工方式,每个工人管理着一流或两流,需时刻观察着结晶口的状态,需要加时就用随便的推上一堆,心情好或领导在时加的还均匀些,领导不在那就看自己的心情了,心情好负责些,心情不好那就随便了。况且连铸机旁的环境比较恶劣,工人的劳动强度很大,要求工人长时间的高质量的完成加渣工作也有难度。因此人工添加保护渣受操作者因素的影响较大,很难保证添加的稳定性,容易产生卷渣和液面波动,从而产生夹杂、振痕加深等缺陷。针对这种情况,我公司最新研发了一套连铸结晶器液面自动加渣控制系统,可以代替工人进行自动加渣而基本无需工人干预。 三、系统简介 我公司新研发的连铸结晶器液面自动加渣控制系统,包括工控机、控制执行单元、现场控制报警单元、加料仓、气动单元、结晶器渣液面温度检测装置、渣料喷头、料位计、专用软件组成。

连铸结晶器液面自动加渣控制系统是一套闭环自动控制系统,它以工控机为核心,通过专用软件来自动控制各个组成部分自动工作,在基本参数设置完成后,由工控机来根据连铸机结晶器内渣液面的实际情况进行参数调整,无需再人工干预调整而能保证结晶器内渣液面的均匀和稳定。 系统的工作过程由工控机实时不停的读取结晶器内渣液面的表面温度,如果渣液面的表面温度超过设定的加料温度,则工控机控制执行单元让加料仓下料,同时打开气动单元,保护渣在下料管内被送料气体经渣料喷头均匀吹送到结晶器内,然后再测结晶器内渣液面的表面温度,如果渣液面的表面温度仍然超过设定的加料温度,则工控机重复上面的加料过程,如果测量到结晶器内渣液面的表面温度低于设定的加料温度则停止加料和关闭气动单元。 在现场设有工人控制箱,可以控制任意一流加料系统的启动和停止。当出现故障时控制箱会发出声光报警,并指示灯提示哪一流出现问题。 系统实现框图如下: 图1系统框图 加 料 下料控制单 渣料 工控 干燥 渣层 料显示 报

浅析连铸结晶器保护渣渣圈

浅析连铸结晶器保护渣渣圈 王爱兰刘平陈建新 (包钢(集团)公司技术中心,包头 014010) 摘要:通过对连铸结晶器保护渣渣圈形成原因的剖析,结合生产实际分析并讨论了 影响渣圈形成的因素及对保护渣使用性能的影响。 关键词:连铸结晶器保护渣渣圈 Analyse of slag circule to mould powder WANG Ailan Liu Ping Chen Jianxin (Technology center of Baotou Iron and Steel(Group)Co) Abstract: this paper analyse forming factors of slag circule to mould powder and application performance of mould powder in according to production. Keywords: mould powder slag circule of mould powder 1 前言 连铸保护渣是直接影响连铸稳定生产和改善铸坯质量的一种消耗性材料,在结晶器中必须保证合适的熔渣层结构才能充分发挥其五大冶金功能:覆盖保温、防止二次氧化、吸收夹杂、在结晶器与铸坯间起润滑作用和改善结晶器与铸坯间的传热。其中最重要的两个冶金功能是“润滑”和“控制传热”,这两个功能的良好发挥是借助于熔融保护渣充填到结晶器壁和坯壳之间的缝隙内形成渣膜得以实现,而渣膜又受流入结晶器壁的熔渣量控制,熔渣流入量与渣圈之间存在着内在的联系。深入研究渣圈结构特征及其与冶金功能之间的关系具有实际意义。 2 连铸结晶器保护渣渣圈的形成及对使用性能的影响 连铸结晶器保护渣渣圈是在熔渣与结晶器壁之间高梯度温度场内形成的[1]。保护渣在浇注条件下,结晶器的上下运动和熔渣的粘滞流动使熔渣由弯月面流向结晶器和铸坯之间,粘附在结晶器的铜壁上,起润滑作用,使铸坯顺利拉出铸机。在熔渣的流入过程中,高温状态

连铸保护渣概述

连铸保护渣概述 1 连铸保护渣的组成 (1) 2 连铸保护渣的作用 (2) 3 连铸保护渣进入结晶器的行为 (3) 4 保护渣的主要理化性能指标 (5) 二战后,战后恢复及经济发展的需求成为钢铁冶金工业发展的主要驱动力。自50年代始,连铸技术的出现促进了钢铁冶金工业的蓬勃发展。自60年代连铸结晶器保护渣技术的出现取代菜籽油以来,使连铸钢品种、连铸断面种类、连铸坯的质量、连铸生产率得以大幅度提高。近年来,以高拉速、高连浇率、高作业率、及高质量为特征的高效连铸得到迅速的发展,成为钢铁企业降低成本、降低能耗、减少投资成、开拓市场、在激烈的世界钢铁市场竞争中利于不败之地的重要技术创新和钢铁企业结构优化的必然需要。从70年代开始,连铸技术在装备先进的钢铁企业的板坯连铸浇铸速度逐渐提高,从1.0m/min左右上升到2.0/min 左右,目前最大铸速可达3.0/min,日本住友正在开发5.0m/min的大板坯连铸技术,意大利在小方坯连铸上拉速已经达到 5.0/min。因此,以高拉速为主要特征的高效连铸技术的开发、应用、推广是优化我国连铸技术,提高连铸水平的重要发展方向。由于高效连铸中的高拉速使结晶器中的热流及摩擦力增大、结晶器中钢液面波动加剧、出结晶器的铸坯坯壳变薄、渣耗急剧下降造成润滑不良和传热不均等,使得从常速连铸到高速连铸遇到了粘结漏钢和铸坯表面质量差两大难题,目前,为解决这些问题,就必须研究和开发具有相应物理和化学性能的结晶器保护渣,保证连铸过程中结晶器内的物理化学反应处于良好的状态。以连铸连轧为基础的紧凑型生产流程是降低冶金产品生产成本、提高企业经济效益的一个重要途径,无缺陷铸坯生产技术是实现连铸连轧的关键,这对铸坯表面质量提出了更高要求,连铸保护渣对高表面质量铸坯的生产起着重要的保障作用,为此,国内外各炼钢厂都在寻求适合本厂连铸工艺特点的无缺陷铸坯生产用结晶器保护渣。近十年来,国内外连铸保护渣的开发,以满足连铸生产的需要、充分发挥保护渣的作用为主要目的,同时在保护渣原料、制作工艺、保护渣的基础理论研究方面进行了大量的工作。连铸结晶器保护渣已经成为连铸工艺过程必须的关键性材料,对铸坯质量及连铸工艺顺行发挥着不可替代的作用。 1 连铸保护渣的组成 现用的保护渣一般由三部分组成:基料、助熔剂和熔速调节剂。基料一般

连铸结晶器液面自动加渣控制系统简介样本

连铸结晶器液面自动加渣控制系统简介 一、概述 连铸机浇筑时结晶器加保护渣是连铸生产中最重要的工作, 保护渣在连铸生产中起着极为重要的作用, 如防止二次氧化、润滑及吸附杂质等。连铸工艺要求保护渣在浇铸过程中形成熔融层、烧结层及粉渣层等三层结构, 以便更好的发挥作用。少加勤加是添加保护渣的一条重要原则。 二、现场现状 当前连铸机上采用的加渣方式大都还是人工方式, 每个工人管理着一流或两流, 需时刻观察着结晶口的状态, 需要加时就用随便的推上一堆, 心情好或领导在时加的还均匀些, 领导不在那就看自己的心情了, 心情好负责些, 心情不好那就随便了。况且连铸机旁的环境比较恶劣, 工人的劳动强度很大, 要求工人长时间的高质量的完成加渣工作也有难度。因此人工添加保护渣受操作者因素的影响较大, 很难保证添加的稳定性, 容易产生卷渣和液面波动, 从而产生夹杂、振痕加深等缺陷。针对这种情况, 我公司最新研发了一套连铸结晶器液面自动加渣控制系统, 能够代替工人进行自动加渣而基本无需工人干预。 三、系统简介 我公司新研发的连铸结晶器液面自动加渣控制系统, 包括工控机、控制执行单元、现场控制报警单元、加料仓、气动单元、结晶器渣液面温度检测装置、渣料喷头、料位计、专用软件组

成。 连铸结晶器液面自动加渣控制系统是一套闭环自动控制系统, 它以工控机为核心, 经过专用软件来自动控制各个组成部分自动工作, 在基本参数设置完成后, 由工控机来根据连铸机结晶器内渣液面的实际情况进行参数调整, 无需再人工干预调整而能保证结晶器内渣液面的均匀和稳定。 系统的工作过程由工控机实时不停的读取结晶器内渣液面的表面温度, 如果渣液面的表面温度超过设定的加料温度, 则工控机控制执行单元让加料仓下料, 同时打开气动单元, 保护渣在下料管内被送料气体经渣料喷头均匀吹送到结晶器内, 然后再测结晶器内渣液面的表面温度, 如果渣液面的表面温度依然超过设定的加料温度, 则工控机重复上面的加料过程, 如果测量到结晶器内渣液面的表面温度低于设定的加料温度则停止加料和关闭气动单元。 在现场设有工人控制箱, 能够控制任意一流加料系统的启动和停止。当出现故障时控制箱会发出声光报警, 并指示灯提示哪一流出现问题。 系统实现框图如下:

最新卷渣原因

卷渣原因

结晶器保护渣卷渣类型及防止 板坯连铸结晶器内主要由以下类型的卷渣发生: 1、结晶器内壁卷渣 在结晶器壁附近,由于表面液体的不稳定流动,将保护渣卷入钢水。卷入的渣滴有可能重新上浮至渣钢表面,也有可能被凝固坯壳前沿捕捉,形成皮下夹渣。 2、回流夹渣 当浸入式水口插入深度过浅而拉坯速度较低时,流股冲击不到结晶器窄面,流股上回流到水口侧面附近,其向下的分速度把保护渣卷入钢水,被水口流股捕捉,进入结晶器造成卷渣。 3、剪切卷渣 从浸入式水口流出的流股到达结晶器窄面后为分上升流和下降流,若渣滴不能再次回到渣而被钢液裹挟至钢液熔池深处或被凝固坯壳捕捉,就发生了卷渣.当拉速较高,水口浸入深度较浅,水口出口夹角向下较小时易发生此类卷渣. 4、旋涡卷流 由于紊流或水口出流不对称造成的水口两侧流场的不对称将导致水口两侧的表面流速不等,当表面流速相差到一定程度后,两表面流在水口附近汇合时将在速度较小的一侧产生旋涡,这种旋涡的能量较大时即可把保护渣卷入钢液内部.此

外,钢液从水口冲出时,水口从上方会形成负压区,在负压区的影响下旋涡会被拉伸,加强,由旋涡卷吸的渣滴就有可能被带到钢液熔池深处,卷渣就形成了. 解决结晶器卷渣的措施 1、水口浸入深度 水口浸入,液深度过深,容易回流卷渣;如过深,增加了夹杂物和气泡卷入铸坯深处的机会,且由于热点下移,增大了漏钢几率,并造成了化渣不良,润滑不好. 2、水口出水面积 原使用的浸入式水口上口大,下口小,造成下口出口射流速度快,对液面的冲击强度较强,液面波动幅度大;同时下口容易附着冷钢,易形成偏流,旋涡卷渣可能性增大.拉速太慢,容易造成回流卷渣. 3、拉坯速度 拉坯速度较快,保护渣熔融结构变化,熔渣层厚变薄,粉渣层卷放钢液的几率增大;拉速太慢,容易造成回流卷渣. 4、保护渣粘度 在保证保护渣能顺利流入结晶器与铸坯铸坏表面之间的缝隙的情况下,适当增大保护渣粘度,保证合适的液渣层厚度.。 2夹渣漏钢 主要原因:

相关文档