文档库 最新最全的文档下载
当前位置:文档库 › 内燃机进气管玉柴200系列夹具设计

内燃机进气管玉柴200系列夹具设计

摘要

本设计主要包括两方面的内容,即进气管的加工工艺规程设计以及典型的加工工序的夹具设计。本文对一个常规工艺设计及的步骤做了详细阐述。在此基础上对零件加工要求进行分析,最终确定毛坯的材料,选择定位基准,并留出适当的加工余量。综合上述分析可以制定出零件加工工艺路线中的具体参数进行计算,例如基本的切削用量的计算,并根据计算结果选择机床,验算机床功率,此外,计算加工过程中的机动时间和辅助时间也是必不可少的。

机械加工工艺过程,是指用机械加工方法逐步改变毛坯形态(形状、尺寸和表面质量),使之成为合格零件所进行的全部过程。

机械加工工艺过程包括结构工艺性分析、毛坯的选择、基准的选择、加工余量的确定、工艺路线的拟定、工序尺寸及公差的确定和加工设备的选择等。工艺路线是连接产品设计和制造的纽带,它是一项经验性强、技巧性高、涉及多方面的知识和信息的工作,因此工艺路线设计极其复杂,其中,加工顺序的先后、热处理的安排和工序的集中还是工序的集中与分散是工艺人员在拟定工艺路线时的原则性问题。

为了提高劳动生产率,保证加工质量和改善劳动条件,需要设计专用的夹具。在夹具设计中,不仅要追求其其结构的合理性,更重要的是核算其加工精度的准确性。影响工件加工精度的因素很多,且种类复杂。本夹具的设计是完成定位设计、夹紧设计等,以及如何将这些机构装配起来形成一个整体装配过程。结构方案确定以后,绘制了主要的零件图装配图。

关键词:加工工艺;切削用量;工艺计算;夹具设计。

ABSTRACT

This design mainly includes two aspects of content, namely the intake pipe processing process planning and typical processing process of fixture design. In this paper a conventional process design and steps to do a detailed description. On the basis of the parts processing requirements analysis, with a final determination of blank materials, choose the locating datum, and set aside the proper machining allowance. A combination of the analysis can work out the parts processing process route in the specific parameters calculation, such as basic of cutting parameter calculation, and according to the calculated results choose machine tool, the checking machine power, in addition, the calculation process, mobile time and auxiliary time is also essential.

Mechanical processing, it is to point to by machining methods gradually change the blank form (shape, size and surface quality), make it become the qualified the process all parts.

Mechanical processing process including structure analysis technology, the choice of blank, the choice of machining allowance benchmark, the determination, process route of the recommended, and the determination of the procedure sizes tolerance and processing equipment choice, etc. Process line is the connection product design and the manufacture of the link, it is a critical skill, high, strong a wide range of knowledge and information work, so process route design is extremely complex, among them, the processing order has the arrangement and working procedure, heat treatment process of concentration or centralized and decentralized is in planning process engineering process route of principle problem.

In order to improve labor productivity, guarantee the processing quality and improve working conditions, and need to design a special fixture. The fixture design, we not only need to pursue the rationality of the structure, more important is the accuracy of accounting the machining accuracy. The influence the machining accuracy of many factors, and species complex. This fixture design is complete orientation design, clamping design, and how these institutions together to form a whole assembly process. Structure plan later, rendering the main parts drawing assembly drawing.

Key words: process, the cutting dosages, process calculation, fixture design.

目录

摘要 (Ⅲ)

ABSTRACT (Ⅳ)

目录 (Ⅴ)

1 绪论 (1)

1.1本课题的研究内容和意义 (1)

1.2国内外的发展概况 (1)

1.3本课题应达到的要求 (2)

2 零件的分析 (3)

2.1零件的功用 (3)

2.2零件的工艺分析 (3)

3 零件的工艺规程设计 (5)

3.1确定零件的生产类型 (5)

3.2材料的选择 (5)

3.3确定零件毛坯的制造形式 (5)

3.4拟定零件的机械加工工艺路线 (5)

3.4.1定位基准的选择 (5)

3.4.2零件表面加工方法的选择 (6)

3.4.3零件各表面加工顺序的确定 (6)

3.4.4工序的组合 (6)

3.5工序设计 (6)

3.6工艺计算 (7)

3.6.1 铣后表面的工艺计算 (8)

3.6.2 钻后表面上孔的工艺计算 (10)

3.6.3 铣前表面的工艺计算 (12)

3.6.4 钻前表面上孔的工艺计算 (14)

3.6.5 铣上表面的工艺计算 (14)

3.6.6 钻上表面上孔的工艺计算 (15)

3.6.7 铣凸台面的工艺计算 (17)

3.6.8 铣左端面的工艺计算 (17)

3.6.9 钻左端面上孔的工艺计算 (18)

4夹具设计 (19)

4.1夹具设计概述 (19)

4.2 机床夹具的分类 (19)

4.3 机床夹具的基本组成 (19)

4.4 夹具设计 (19)

4.4.1 铣后表面夹具设计 (23)

4.4.2 铣前表面夹具设计 (23)

4.4.3 钻左端面孔夹具设计 (24)

4.5 夹具图装配图上的标注 (24)

4.6定位误差的分析和计算 (25)

4.6.1定位误差的分析 (26)

4.6.2定位误差的计算 (27)

4.7夹紧力的分析与计算 (29)

5结论与展望 (31)

5.1结论 (31)

5.2不足之处及未来展望 (31)

致谢 (32)

参考文献 (33)

附录 (34)

发动机设计复习题

1.工程机械内燃机和轿车用内燃机的工作条件有什么不同?其在设计时应满足什么要求? 答:车用内燃机的使用特定是:经常需要在较大的范围内变速和变负荷,并且启动和加速频繁。而工程机械内燃机使用特定:经常在大负荷下工作,而且常短期超载,经常在野外流动作业,环境条件差。设计要求:有一定的功率储备以适应短期超载;结构强度大,耐振动,能防水防尘;燃料和机油消耗率应小,所用油料价格要低,操作维修要简便,使用寿命应长,结构上适于大量生产,制造费用应低廉。,能够在斜坡上安全作业,在寒带工作应能保证启动,在热带工作应不产生过热,并能适应高原工作。在城市作业,特别是在坑道作业的工程机械的内燃机,还要求其排放污染少、噪声少。 2. 功率标定可以分为几种标定方法?摩托车内燃机用哪种方法标定?重型汽车内燃机用 什么方法标定?为什么? 答:有四种标定方法:15min功率、1h功率、12h小时功率、持续功率. 摩托车用15min 功率标定,重型汽车内燃机用1h功率标定。 3.我国的机动车内燃机排放指标主要借鉴的是哪个标准?目前我国执行的是哪个阶段的 标准?规定的排放指标是多少? 答:借鉴的是欧洲标准。目前执行的是国四标准。 4.提高标定转速与活塞平均速度是提高内燃机单位体积功率的有效措施,但是对于工程机 械柴油机为啥一般不会超过3000r/min?为啥汽油机的转速可以设计的比柴油机的更高? 答:提高内燃机的标定转速与活塞平均速度是提高内燃机单位体积功率的有效措施一,但是随着转速提高,单位时间内气缸完成的工作循环次数增加了,这会使零件的受热程度加剧,而且噪声增大;随着活塞平均速度的增加,作用于曲柄连杆机构零件的惯性力增加了,加速磨损,特别是活塞环和气缸套的磨损加剧,这将缩短使用寿命;柴油机喷入燃料后燃烧需要一定时间,所以适合低转速下燃烧以带来大扭矩,另外由于柴油是压燃的需要大的压缩比,而汽油是点燃的,压缩比较小,考虑到材料强度的影响,柴油机的转速提高比汽油机有限,故汽油机的转速可以设计的比柴油机的更高。 5.在设计一款新的发动机是,一般应首先设计一台单缸机,有哪些研究工作需要在单缸试 验机上完成? 答:(1)工作过程试验,包括燃油系统、燃烧室、配气机构等参数和压缩比试验(2)增压模拟试验(3)二冲程内燃机的扫气系统试验(4)主要零部件的可靠性和耐久性试验(5)主要零部件的温度状况和动态应力测量。 6.在增压柴油机的中冷方式中,空空中冷和水空中冷效果更好?对于冷却效果不好的中冷方式为什么还要应用?在其基础上可以采用什么措施来提高冷却效果? 答:水空中冷效果更好。风冷式中冷器因其结构简单和制造成本低而得到了广泛应用,大部分涡轮增压发动机使用的都是风冷式中冷器,在其基础上采取高低温双循环二级中冷来提高冷却效果。 7. 风冷式内燃机具有冷却可靠,抗机械损伤能力强,对地区适应性较好的优点,但是为什么其应用没有水冷式内燃机广泛? 答:(1)风冷式发动机缺点:尺寸较大;热负荷较大、机油温度高、机油消耗率较高;噪声较大(2)由于水冷式内燃机冷却较好,强化潜力要比风冷式内燃机大,而且由于生产传统关系,使得水冷式内燃机更多一些。

进气管真空度

发动机进气管真空度(又称负压)是进气管内气压与大气压力差的绝对值,是汽车发动机各气缸交替进气时对进气管形成的负压值总和,—般用△Px表示。发动机进气管真空度的大小及其稳定性与工作气缸数量、发动机转速和空燃比的大小成正比,与节气门的开度成反比,也随着进气系统密封性、点火性能的变差而减小。进气管真空度是发动机的一个综合性技术指标,被称为发动机性能的“晴雨表”。若进气管的真空度符合标准,不仅表明气缸的密封性能良好,而且表明点火性能、配气相位及空燃比(A/F)也基本符合要求。因此,通过检测进气歧管的真空度可以不解体诊断发动机的多种故障。 进气管真空度的基本检测方法 ① 起动发动机并运转到正常工作温度;②然后将变速杆置入空档,让发 动机怠速运转;③再找到节气门后方专门设置的进气系统真空度检测孔,在该处连接真空表(如果没有这种检测孔,可以拆开进气歧管上的一根真空管,用三通接头连接真空表),就可以进行检测。备注:检测时若真空表摆动,可以让发动机稍加速运转一会儿,直至表针稳定下来,也可以采用发动机综合性能分析仪测量进气管负压的波形变化。 备注:检测时若真空表摆动,可以让发动机稍加速运转一会儿,直至表针稳定下来,也可以采用发动机综合性能分析仪测量进气管负压的波形变化。当发动机以怠速运转时,轿车发动机进气管真空度的数值一般为64kPa~71 kPa。如果进气管的真空度太小,说明进气系统存在漏气现象。(1)导致发动机运转无力。若怠速时进气管的真空度很低,说明有空气从旁路进入了进气管,由于这部分空气没有经过空气流量传感器的计量或未经节气门控制,空气流量传感器的测量值必然低于实际进气量,而电控单元(ECU)是根据空气流量传感 当发动机以怠速运转时,轿车发动机进气管真空度的数值一般为64kPa~71 kPa。如果进气管的真空度太小,说明进气系统存在漏气现象。(1)导致发动机运转无力。若怠速时进气管的真空度很低,说明有空气从旁路进入了进气管,由于这部分空气没有经过空气流量传感器的计量或未经节气门控制,空气流量传感器的测量值必然低于实际进气量,而电控单元(ECU)是根据空气流量传感器等信号决定基本喷油量的,这样就导致喷油量偏少,由于“油少气多”,即混合气过稀,因此发动机运转无力。 ⑴一辆上海大众POLO劲取轿车,出现加速无力,排气管烧红(尤其是氧传感器的安装根部),尾气呛人的故障。经过仔细检查,发现空气滤清器右下角的三通阀阀体

内燃机的平衡

第三章 内燃机的平衡 第一节 概述 内燃机运转时产生往复惯性力,旋转惯性力及反扭矩等,这些力或力矩是曲柄转角的周期性函数。在内燃机一个运转周期中,惯性力及其力矩和反扭知的大小、方向在变化,或大小和方向都在变化,并通过曲柄轴承和机体传给支架,使之产生振动。所以,这些力或力矩就是使内燃机运转不平衡的原因。 静平衡和动平衡 曲柄旋转质量系统,不但要求静平衡,也要求动平衡。 静平衡:质量系统旋转时离心合力等于零,即系统的质心(重心)位于旋转轴线上。 动平衡:质量系统旋转是,旋转惯性力合力等于零,而且合力矩r M 也等于零。 第二节 单缸内燃机的平衡 一、旋转惯性力的平衡 单缸内燃机的总旋转惯性力,包括曲柄不平衡质量和连杆换算到大头处的质量所产生离心力之和。 2ωR m P r r -= 该离心力的作用线与曲柄重合,方向背离曲柄中心,因此,只需在曲柄的对方,装上平衡重,使其所产生的离心力与原有的总旋转惯性力大小相等、方向相反即可将其平衡。 通常平衡重是配置两块,每个曲柄臂上各一块,这样可以使曲柄及轴承的负荷状况较好。所加平衡重的大小B m '为: 2 22ωωR m r m r B B ='' r B B m r R m '='2 B m '——平衡重质量 B r '——平衡重质心与曲轴中心线之间的距离 为了减轻平衡重质量并充分利用曲轴箱空间,可尽量使平衡重的质心远离曲轴中心线。 二、往复惯性力的平衡 一次往复惯性力 αωcos 2R m P j jI -= 二次往复惯性力 αωλ2cos 2R m P j jII -= 令2ωR m C j -

从形式上看,j P 与离心力一样,但这是j m 的往复质量而不是旋转质量。 如果把C 假想看成是一个作用在曲柄上的离心力,则一次往复惯性力jI P ,就相当于该离心力在气缸中心线上的投影。因为这个离心力是假想的,只是形式上相当于一个离心力,故把它作为一次往复惯性力的当量离心力。 现把这个当量离心力的质量分成完全相等的两部分。即各等于 2 j m ,并使一部分内气缸中心线 开始,半径R 的圆上,以向速度顺时针方向旋转,另一部分以同样条件下反时针方向旋转,显然它 们的离心力分为2C 。正转部分离心力作为jI P 的正转矢量,A 1表示。反转部分离心力作为jI P 的反 转矢量,B 1表示。 在活塞位于止点时,此两当量重合于气缸中心线上。在任一曲轴转角时,正转矢量A 1与反转矢量B 1的合矢量都落在气缸中心线上,其方向及大小与一次往复惯性力的方向及大小一致。这是因为A 1、B 1在气缸中心上的投影为 ()jI P C C C B A ==+=-+αααααcos cos 2 cos 2cos cos 11 在垂直于气缸中心线方向,A 1与B 1的投影正好大小相等,方向相反,其和为零。 ()0sin 2 sin 2sin sin 11=-=-+ααααC C B A 同理,二次惯性力正、反转矢量,用A 2、B 2表示。两矢量重合于气缸中心线上,一正、一反,以2倍于曲轴角速度(ω2)旋转。在任一曲轴转角时,A 2+B 2的矢量合,都落在气缸中心线上,其方向及大小与二次往复惯性力jII P 的方向及大小相同。 用正、反转两个矢量来分析惯性力的作用,是平衡分析中行之有效的一种方法。 一次惯性力jI P 可用两个质量所产生的离心力矢量来代替,所以要想将jI P 全部平衡,只要平衡掉这两个离心力即可。具体的做法是采用两根旋转方向相反的平衡轴。 第三节 单列式多缸内燃机的平衡 多缸机,各缸产生的一、二次往复惯性力却是沿各自气缸中心线,因此是互相平等,且作用在同一平面内(气缸轴线平面);只是一次惯性力与二次惯性力变化频率不相同。各气缸的旋转惯性力沿各自曲柄方向作用在不同平面内。由于各气缸中心线之间有一距离,因此各缸的往复惯性力,和旋转惯性力对于与曲轴轴线垂直的某一参考平面(一般取通过曲轴中央的平面为参考平面),还将产生力矩,如互相抵消,本身就平衡了,如不能抵消,则是不平衡的。

内燃机设计复试题目

1.10年笔试部分: 第一题是判断与选择混合的题目,即二选一。与往年差不多,但又加上了几个新题型。大体是以下内容。 (1)发动机气缸盖在什么时候受力最大? (2)为避免发生共振,应提高机体频率还是减低机体频率? 不好意思,记不起来了,呵呵。 第二题名词解释:系统误差和压电效应。 第三题是综合体:全新内容。 (1)测量发动机上止点位置时,通常使用哪几种方法,各有什么特点? (2)发动机和测功机的匹配问题,就是给出发动机的转速和功率(比如1000min/s,2000kw),再给出测功机的转速和功率(比如1000min/s,1800kw,也即测功机的各项数据都小于发动机的),问是否满足上述条件的任何测功机都适用于上述发动机。 (3)二缸,三缸,四缸,六缸发动机再曲轴上安装平衡重的作用是否相同,为什么。 (4)给出进排气门提前角和迟闭角四个数据,以及配气相位图,问同缸异门的凸轮轴中心线夹角是多少?(也不难,好好看看) 现代内燃机设计的流程是什么? 天津大学2009年硕士研究生复试面试题 一、专业题 1.汽油机在各种典型负荷下的过量空气系数为多少 2.柴油机的油耗为什么比汽油机低 3.发动机进、排气为何要早开晚闭 4.柴油机排放后处理的措施 5.提高充量系数的措施 6.汽油机为什么要精确控制过量空气系数 7.EGR是如何降低NOx的 8.增压中冷的作用 9.泵气损失包括哪些 10.柴油燃烧的两个必要因素:浓度和温度 11.作用在曲轴上的有害力矩 12.提高曲轴强度的措施 13.热力学三大定律

14.汽油机、柴油机的温熵图(一般问热能或热物理专业跨过来考的学生) 15.发动机的负荷、速度特性实验 16.雷诺数是用来干什么的 二、实践能力 1.做过哪些实验及某个实验的相关问题 2.拆装发动机的过程 3.去过什么工厂实习及其相关问题 4.金工实习相关问题 三、英语口语 1. 为何选择天津大学 2.毕业论文的课题是什么,你将如何展开进行 3.你对内燃机国家重点燃烧实验室有哪些了解 4.你来自哪个学校 5.你的兴趣爱好 6.与工作过的同学相比,你有哪些优势 08年的笔试题 一:填空: 1.内燃机滑动轴承的承载油膜是由油楔油膜和挤压油膜两种油膜组成。 2.内燃机常规实验中需要监控冷却水温度、机油温度、机油压力。 3.内燃机的耐久性通常用大修期来表示,一般取决于缸套以及曲轴轴颈的磨损速率。 4.内燃机启动方式有手启动和电启动以及空气启动。

内燃机设计课后复习题答案(袁兆成主编)u

第二章:曲柄连杆机构受力分析 2-1写出中心曲柄连杆机构活塞的运动规律表达式,并说出位移、速度和加速度的用途。答:X = r[(1-cosα)+ λ/4(1-cos2α)] = XⅠ+XⅡ; V = rω(sinα+sin2α*λ/2) = vⅠ+vⅡ; a = rω2(cosα+λcos2α) = aⅠ+aⅡ; 用途:1)活塞位移用于P-φ示功图与P-V示功图的转换,气门干涉的校验及动力计算;2)活塞速度用于计算活塞平均速度Vm= =18 m/s,用于判断强化程度及计算功率,计算最大素的Vmax,评价汽缸的磨损;3)活塞加速度用于计算往复惯性力的大小和变化,进行平衡分析及动力计算。 2-2气压力P g和往复惯性力P j的对外表现是什么?有什么不同? 答:气压力Fg的对外表现为输出转矩,而Fj的对外表现为有自由力产生使发动机产生的纵向振动。不同:除了上述两点,还有 ?Fjmax < Fgmax ?Fj总是存在,但在一个周期其正负值相互抵消,做功为零;Fg是脉冲性,一个周期只有一个峰值。 2-3 解:连杆力:;侧向力:; 曲柄切向力:;径向力:; 证明:输出力矩:; 翻倒力矩: ==. 所以翻倒力矩与输出力矩大小相等方向相反。 2-4 解:1,假设每一缸转矩都一样,是均匀的,仅仅是工作时刻即相位不同。 如果第一缸的转矩为,则第二缸的转矩为,; 第一主轴颈所受转矩; 第二主轴颈所受转矩; 第三主轴颈所受转矩; 第四主轴颈所受转矩; 2, 2.5 当连杆轴颈和连杆轴承承受负荷是,坐标系应该固定在哪个零件上? 2.6 轴颈负荷与轴承负荷有什么关系?

互为反作用力关系 2.7 什么叫做自由力? 答 2.8提高转矩均匀性的措施? 答 1,增加气缸数 2,点火要均匀 3,按质量公差带分组 4,增加飞轮惯量 2.9 3. 为什么说连杆轴颈负荷大于主轴颈负荷? 答主轴径主要承受往复惯性力和气压力,曲轴一般动平衡,旋转惯性力较小,主轴径较短弯曲应力也较小,连杆轴径要承受连杆传来的往复惯性力和气压力,还要承受连杆及曲柄销的旋转惯性力。 2.10 连杆的当量质量换算原理表达式 2.11 从设计的角度出发说明什么是动力计算,以及计算出那些结果 答为了进行零件强度的计算,轴承负荷计算和输出转矩计算,曲柄连杆机构中力的计算是必不可少的。 1合成力 2 侧向力 3 连杆力 4 切向力 5 径向力 6 单杠转矩 7 翻倒力矩 2010-12-08 第三章:燃机的平衡 3-1四冲程四缸机,点火顺序1-3-4-2,试分析旋转惯性力和力矩,第一阶、第二阶往复惯性力和力矩,如不平衡,请采取平衡措施。 答:解:点火间隔角为 A= =180° (1)作曲柄图和轴测图,假设缸心距为a。 一阶曲柄图二阶曲柄图轴测图

复习(内燃机设计)

第一章内燃机设计总论 1、内燃机主要设计指标有哪些?动力性指标、经济性指标、紧凑性指标、可靠性与耐久性指标、适应性指标、运转性能指标、低公害指标。 2、内燃机的动力性指标有哪些?标定功率,标定转速,活塞平均速度,平均有效压力及扭矩 3、经济性指标有哪些?生产成本,运转中的消耗,以及维修费用等,燃油消耗率作为主要指标。 4、内燃机设计工作中的“三化”?产品系列化,零部件通用化,零件设计标准化。 5、内燃机主要结构参数有哪些?内燃机的主要结构参数,是指决定内燃机总体尺寸的参数,这些参数为:活塞行程S与气缸直径D的比值S/D;曲柄半径R与连杆长度L的比值λ,λ=R/L;气缸中心距L0与气径直径D的比值L0/D;对于V型内燃机还包括气缸夹角γ。 6、活塞行程与气缸直径的比值活塞行程S与气缸直径D的比值S/D,是决定内燃机设计的基本条件,由此即可确定气缸直径D及活塞行程S这两个主要参数。同一气缸容积的值,可以由不同的活塞行程与气缸直径组合而成。要正确确定出活塞行程和气缸直径值,必须正确确定S/D值。 7、曲柄半径R与连杆长度L的比值λ曲柄半径R与连杆L的比值λ是决定内燃机连杆长度L的一个结构参数。在确定参数λ之后,即可决定连杆长度的大小。 8、分析曲柄半径R与连杆长度L的比值λ对内燃机结构的影响对于单列式内燃机,λ值越大,连杆长度越短,D、S相同的条件下,内燃机的高度或宽度也越小,可是内燃机的外形尺寸减小,重量减轻。同时,连杆缩短后,使连杆杆身具有较大的刚度和强度。虽然由于λ加大,使往复运动质量的加速度和连杆摆角也加大,但因连杆重量减轻,往复惯性力与侧压力并没有什么增加。所以在设计时,为了尽可能缩小内燃机的外形尺寸和减轻重量,一般尽可能选取较大的 值,以使连杆的长度尽量短一些。 9、连杆长度的缩短,受到什么条件的限制:(1)活塞在下止点时,裙部不应与平衡重相碰。(2)活塞在上止点时,曲柄臂不应与气缸套下部相碰。(3)连杆在气缸套内摆动时,连杆杆身不应与气缸套下部相碰。 10、气缸中心距Lo与气缸直径D的比值Lo/D Lo/D是决定内燃机长度的主要参数 第二章内燃机曲柄连杆机构 1、作用在曲柄连杆机构上的力运动质量产生的惯性力和作用在活塞上的气体力,这些力随着曲柄转角的不同而变化,在稳定情况下,曲柄每转二周为一个变化周期,实际上,内燃机的工况是不断变化的,因此作用在曲柄连杆机构上的力和力矩也是在不断变化的。通常在动力学分析中,只计算标定工况下的作用力和力矩。并认为曲柄是作等速旋转运动。 2、进行内燃机的动力学计算的步骤 在进行动力学计算之前,必须根据实测的示功图或对工作过程的循环模拟计算来确定气体作用力的变化情况再根据运动学求出的各运动件的加速度,由此求出惯性力的变化情况,从而得到总的作用力及力矩,在此基础上,进一步分析这些力和力矩对内燃机平衡与振动的影响。

《内燃机设计》课后习题答案(袁兆成主编)

第一章:燃机设计总论 1-1根据公式 τ 2 785 .0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可 以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点: 1)燃料经济性好。 2)因为没有点火系统,所以工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO 和HC 的排放比汽油机少。 汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。 4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么? 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么? 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么? 答:新型燃烧室,多气门(提高ηv),可变配气相位VVT (提高ηv),可变进气管长度(提高ηv),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

发动机进气管真空度

进气管真空度与发动机控制的联系发动机进气管真空度(又称负压)是进气管内气压与大气压力差的绝对值,是汽 车发动机各气缸交替进气时对进气管形成的负压值总和,—般用△Px表示。发动机进气管真空度的大小及其稳定性与工作气缸数量、发动机转速和空燃比的大小成正比,与节气门的开度成反比,也随着进气系统密封性、点火性能的变差而减小。 进气管真空度是发动机的一个综合性技术指标,被称为发动机性能的“晴雨表”。若进气管的真空度符合标准,不仅表明气缸的密封性能良好,而且表明点火性能、配气相位及空燃比(A/F)也基本符合要求。因此,通过检测进气歧管的真空度可以不解体诊断发动机的多种故障。 进气管真空度的基本检测方法 ①起动发动机并运转到正常工作温度; ②然后将变速杆置入空档,让发动机怠速运转; ③再找到节气门后方专门设置的进气系统真空度检测孔,在该处连接真空表(如果没有这种检测孔,可以拆开进气歧管上的一根真空管,用三通接头连接真空表),就可以进行检测。 备注:检测时若真空表摆动,可以让发动机稍加速运转一会儿,直至表针稳定下来,也可以采用发动机综合性能分析仪测量进气管负压的波形变化。 当发动机以怠速运转时,轿车发动机进气管真空度的数值一般为64kP a~71 kPa。如果进气管的真空度太小,说明进气系统存在漏气现象。 (1)导致发动机运转无力。若怠速时进气管的真空度很低,说明有空气从旁路进入了进气管,由于这部分空气没有经过空气流量传感器的计量或未经节气门控制,空气流量传感器的测量值必然低于实际进气量,而电控单元(ECU)是根据空气流量传感

器等信号决定基本喷油量的,这样就导致喷油量偏少,由于“油少气多”,即混合气过稀,因此发动机运转无力。 ⑴一辆上海大众POLO劲取轿车,出现加速无力,排气管烧红(尤其是氧传感器的安装根部),尾气呛人的故障。经过仔细检查,发现空气滤清器右下角的三通阀阀体与节气门体下侧进气腔处的真空软管脱落,造成节气门后部漏气,引起进气管真空度下降,进气歧管绝对压力传感器的信号电压变大,ECU便指令喷油器增大喷油量,从而导致燃烧不完全,废气中含有大量的未燃混合气,由于三效催化转化器的作用,这些未燃混合气在转化成CO2和H20的过程中释放大量的热量,造成排气温度过高,最终引起排气管烧红的故障。将脱落的真空软管插好,故障排除。 (2)造成发动机起动困难。一辆02款瑞风HFC6470A车,装备韩国原装C4JS2.4L发动机和手动变速器,已经行驶16万km,起动机运转有力,但是发动机就是无法起动着机。检查燃油压力,正常。检查火花塞跳火情况,火花强烈。拆下发动机的正时罩盖,正时记号无误。用二极管试灯检查喷油器线束,能够正常闪烁。最后发现进气歧管上部稳压箱末端的一个圆形闷盖已经脱落,由于空气量过多,造成混合气太稀。将该闷盖固定牢靠,上述故障不再出现。 (3)导致怠速不稳。若进气管漏气,进气量与节气门的开度将不遵循原来的函数关系,空气流量传感器无法测出真实的进气量,造成ECU对进气量的控制不准确,导致发动机怠速不稳定。 (4)增加尾气中污染物的排放。进气管真空度降低,意味着发动机的负荷和燃烧室温度增加,从而提高每循环废气的最高温度,因而导致尾气中的NO X含量增加。 2、进气管真空度失常对汽车自动控制系统的影响 由于进气管真空度的大小意味着发动机转速及负荷的大小,进气管真空度的变化意味着发动机的转速及负荷发生了变化,因此在电控汽车上,发动机进气管的负压

内燃机设计》课后习题答案(袁兆成主编)

第一章:内燃机设计总论 1-1根据公式 τ2 785.0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可 以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些具体原因是什么 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-2汽油机的主要优点是什么柴油机主要优点是什么 答:柴油机优点: 1)燃料经济性好。 2)因为没有点火系统,所以工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO 和HC 的排放比汽油机少。 汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。 4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高为什么 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )为什么 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些为什么 答:新型燃烧室,多气门(提高ηv ),可变配气相位VVT (提高ηv ),可变进气管长度(提高ηv ),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

检测进气管真空度的方法判断发动机的故障

检测进气管真空度的方法判断发动机的故障 发动机正常温度下,怠速时真空压力应为57-71Kpa。 1、利用进气真空参数变化诊断发动机故障的原理 影响汽油机发动机使用性能的三要素是密封性、点火性及空燃比,其中进气系统密封性的影响尤其关键,不能忽视真空度在诊断维修中的应用。真空度代表了发动机的综合性能,只要发动机带有故障,其真空度必然会引起变化。因为真空度是由密封性、节气门位置和发动机转速等综合因素决定的。 节气门有故障会直接反映到真空度上。其他任何系统有故障都会造成发动机转速变化,那么在一定节气门的情况下真空度也会发生变化,这就是真空度判断的原理,因而,利用进气真空度表检测发动机进气管真空度,可发现发动机内部许多的问题,简便易行。 对于汽油发动机而言在运转过程中由于进气行程的作用,在进气歧管中就会产生真空度。真空度是由各缸在交替进行进气行程时造成的。如果该数值较高且真空表指针表现也较稳定,反映到发动机的工作中则是平稳、有力、加速性良好。 由于现代汽车发动机在结构上存在着很大差异,所以进气歧管真空度的大小及其稳定性就和发动机的结构及性能(进气系统密封性、发动机转速、汽缸的数量等)、点火系统的工作性能、可燃混合气的品质(空燃比的大小)有着密切的联系,并与它们的变化成正比关系。另外,进气歧管真空度还受到节气门开度的影响,并与其成反比。根据这个原理,利用真空表对进气歧管真空度进行检测并分析故障成因就成了一种可行的方法。 2、利用进气真空参数变化诊断发动机故障的方法

现代汽车发动机上一般布置有多根胶管,主要目的是利用发动机工作时进气歧管内产生的真空作为多种辅助设备的动力源或有关传感器的信号源。发动机进气歧管真空度的高低及其稳定性与发动机工作的气缸数、转速、密封性能、点火性能、混合气空燃比和节气门开度等有关。 用真空表对进气歧管真空度进行检测的方法是:把真空表接于节气门的后方,启动发动机,在正常的状态下进行怠速运转,即可从真空表中获取其真空数值。如果随意改变节气门的开度(急加速或急减速)就会获取真空度的变化值,根据这些数值的变化,就可分析和判断发动机存在的故障。 3、真空度测量在故障诊断中的应用 发动机工作正常时进气歧管内真空度的大小及变化都有固定的范围和规律,反之如真空度大小与正常值相偏离,则发动机必然存在某种故障。造成真空度读数异常的常见原因有一个或多个火花塞缺火、空气软管破损或软管接头松脱、气门密封不良、气缸盖势或进气歧管垫等漏气、活塞环漏气严重、废气再循环阀(EGR)不能关闭、曲轴箱强制通风阀(PCV)被卡住而全开等。不同的原因所对应的真空表读数不同,因此掌握常见工况下真空表的正确读数及一些因故障而造成的异常情况,对故障诊断有益。 3.1 怠速工况下,发动机进气歧管真空表的读数应稳定在57.kPa~74kPa之间,如怠速测试时真空表读数不正常,则需进行如下测试: a) 检查基本点火正时; b)检查气门正时; c)检查气缸压缩压力;

内燃机设计考试要点

第一章内燃机设计总论 一、开发设计组成 答:1、产品开发计划阶段;2、设计实施阶段;3、产品试制检验阶段; 4、改进与处理阶段。 二、三化要求 答:1、产品系列化; 2、零部件通用化; 3、零件设计标准化。 三、汽油机的优点 答:1、空气利用率高,升功率高。 2、零部件强度要求较低,制造成本低。 3、低温起动性好,加速性好,工作柔和,噪声较小。 4、升功率高,最高燃烧压力低,机构轻巧,比质量小。 5、不冒黑烟,颗粒排放少。 柴油机的优点: 1、燃料经济性好。 2、工作可靠,耐久性好。 3、通过增压和扩缸,增加攻略。 4、防火安全性好。 5、CO和HC的排放比汽油机少。 四、内燃机评定参数 答:1、强化指标。平均有效压力Pme和活塞平均速度Vm的乘积。 2、比质量m/Pe。单位:kg/kW。工作过程的强化程度和结构设计的完善程度。 3、升功率kW/L。发动机工作的完善性。 五、气缸直径D和汽缸数Z 答: 气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升 程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲柄连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算甚至重新设计凸轮型线等。 六、行程S 答:行程S改变后,在结构上要重新设计曲轴,要重新进行曲柄连杆机构动力计算、 平衡计算、机体高度改变或者曲轴中心移动、压缩比验算与修正、工作过程计算

O 1,6720°5,23,4 120°240°360° 480° 600° 536241M 0,1 M 1,2 M 1M 2,3M 3,4M 2 M 3M 4,5M 4 M 5,6M 5M 6 M 6,71] )sin 1([)( ) sin 1()sin (1 cos sin sin L r sin sin r sin L AOB )cos cos ()(21 2221 22212αλαλββλαλαββααβ--+=∴-=-===?+-+=-'='=l l r x r l l r AO O A A A x -连杆比= 有利用正弦定理,中,在 第二章、曲柄连杆受理机构分析 1、曲柄连杆中力的关系 答:P33,图2-5 2、多缸机扭矩(动力计算),多缸机曲柄图。合成扭矩计算。 第一主轴颈所受扭矩 M0,1=0 第二主轴颈所受扭矩 M1,2=M1(α) 第三主轴颈所受扭矩 M2,3= M1,2+M1(α+240) 第四主轴颈所受扭矩 M3,4= M2,3+ M1(α+480) 第五主轴颈所受扭矩 M4,5= M3,4+ M1(α+ 120) 第六主轴颈所受扭矩 M5,6= M4,5+ M1(α+600) 第七主轴颈所受扭矩 M6,7= M5,6+ M1(α+ 360) 3、中心曲柄连杆机构的运动规律 ∏ I ∏ I ∏I ++=++ =+-+-=-+-=+-=∴-≈---=-a a r a v v r v X X r r r x )2cos (cos )2sin 2 (sin x )]2cos 1(41 )cos 1[( )]2cos 2121(21)cos 1[( sin 21 )cos 1[( sin 211 sin 16 1sin 81sin 211)sin 1( 2222664422212 2==度和加速度求两次导数得到活塞速对=又αλαωαλ αωαλααλαα λααλαλαλαλαλ

《内燃机设计》课后习题标准答案(袁兆成主编)

第一章:内燃机设计总论 1-1根据公式,可以知道,当设计的活塞平均速度V m增加时,可以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么?答:①摩擦损失增加,机械效率ηm下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv下降。 1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点:?1)燃料经济性好。?2)因为没有点火系统,所以工作可靠性和耐久性好。3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO和HC的排放比汽油机少。?汽油机优点:?1)空气利用率高,转速高,因而升功率高。?2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。?4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么? 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm、S=90mm,是否都可以达到相同的最大设计转速(如n=6000r/min)?为什么? 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么? 答:①摩擦损失增加,机械效率ηm下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么? 答:新型燃烧室,多气门(提高ηv),可变配气相位VVT(提高ηv),可变进气管长度(提高ηv),可变压缩比,可变增压器VGT、VNT(可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC、SOHC(结构紧凑,往复惯性力小)。 1-8某发动机为了提高功率,采用了扩大汽缸直径的途径,如果汽缸直径扩大比较多,比如扩大5mm,与之相匹配的还要改变那些机构的设计?还要进行哪些必要的计算? 答:气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲轴连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算深知重新设计凸轮型线等。 1-9某发动机由于某种原因,改变了活塞行程,与之相匹配的还要进行哪些结构更改设计

《内燃机设计》课后习题问题详解(袁兆成主编)

第一章:燃机设计总论 1-1根据公式 τ2 785.0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可 以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点: 1)燃料经济性好。 2)因为没有点火系统,所以工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油挥发性差。 5)CO 和HC 的排放比汽油机少。 汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。 3)低温启动性好、加速性好,噪声低。 4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么? 答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。 ②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。 1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么? 答:.对于汽油机能达到,但是柴油机不能。因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。 1-5活塞平均速度提高,可以强化发动机动力性,请分析带来的副作用是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承载能力下降,发动机寿命降低。 ② 惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。 ③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。 1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么? 答:新型燃烧室,多气门(提高ηv ),可变配气相位VVT (提高ηv ),可变进气管长度(提高ηv ),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

内燃机设计第2版(袁兆成)课后习题答案第1章

1增加带来的副作用是: 1)摩擦损失增加,机械效率下降,活塞组的热负荷增加,机油温度升高,机 油承载能力下降,发动机寿命降低。 2)惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命降低。3)进排气流速增加,导致进气阻力增加、充气效率下降。 2汽油机优点: 1)空气利用率高,转速高,因而升功率高。 2)制造成本低。 3)低温起动性、加速性好,噪声低。 4)结构轻巧,比质量小。 5)不冒黑烟,颗粒排放少。 柴油机优点: 1)燃料经济性好。 2)工作可靠性和耐久性好。 3)可以通过增压、扩缸来增加功率。 4)防火安全性好,因为柴油机挥发性差。 5)CO和HC的排放比汽油机少。 3汽油机升功率高,因为空气利用率高,转速高,因而升功率高。 4不可以。柴油机的转速一般比汽油机转速低,不会达到同样的最高转速。 5惯性力增加,导致机械负荷增加,平衡、振动问题突出,噪声增加。 1)工作频率增加,导致活塞、汽缸盖、汽缸套、排气门等零件的热负荷增加。2)摩擦损失增加、机械效率下降,燃油消耗率增加,磨损寿命变短。 3)进排气系统阻力增加,充气效率下降。 6新型燃烧室、多气门、可变配气相位(VVT)、可变长度进气管、可变增压器(VGT,VNT)、顶置凸轮机构(DOHC或SOHC)等 7三维造型实体设计、气体、液体流动分析,冷却水温度场分析,配气相位性能

的优化,喷雾模拟,燃油喷射模拟,燃烧模拟,振动分析模拟,噪声仿真等 8气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升 程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲柄连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算甚至重新设计凸轮型线等。 9行程S改变后,在结构上要重新设计曲轴,要重新进行曲柄连杆机构动力计算、 平衡计算、机体高度改变或者曲轴中心移动、压缩比验算与修正、工作过程计算等 10它可用来积累和管理技术数据,摆脱对某个技术人员的依赖,提高设计技术的继承性,方便技术咨询、数据查询,进行设计流程管理。

内燃机设计期末试题

内燃机设计试卷 、简答题(24 分) 1. 发动机的支承力有哪些?哪些是引起发动机振动的力? 2. 凸轮缓冲段的高度主要考虑了哪些因素?采用液压挺柱时是否还应该设计缓冲段? 3. 活塞环工作应力与装配应力之间是什么关系,写出表达式,并说明设计时如何选择? Z D 2 P e = 0.7854—p me V m^_—)4. 发动机转速提高,意味着活塞平均速度Vm高,根据公式100 可知,可以提高发动机的有效功率;请回答Vm增加带来的负面作用有哪些? 二、填空(20分) 1. 机体的设计原则为:在尽可能—的条件下,尽量提高机体的___________ 。 F i T= C COS Of 2. 往复惯性力「始终沿_________ 作用。 3. 发动机的主临界转速与发火次序的变化_______ 。 4. 如果需要在轴瓦上开油槽,应该开在主轴瓦的_______ ,连杆轴瓦的_____ 。 5. 从等刚度出发,主轴颈D1 ______ 连杆轴颈D2 ;从等强度出发,D1 ______ D2 ;实际设计时D1 ___ D2。 6. 润滑系机油循环量根据__________ 来确定。 三、分析(20分) 已知一单列四行程三缸发动机,发火次序1-3-2,请分析往复惯性力的平衡性,如必要,请 采取整体平衡措施,写出质径积表达式,在轴侧图上标出平衡重布置。 四、计算(16分) 已知一台单列四行程三缸发动机(1-3-2),进排气门在一条直线上,凸轮轴顶置,图中虚

线L与气门轴线平行,摆杆以及配气相位如附图 % = 58°他a = 20° 刑=⑷ g = 4沪

求: 1各缸排气凸轮相对于第一缸排气凸轮的夹角; 2?同缸异名凸轮夹角; 3?排气凸轮工作半包角; 4. 一缸活塞位于压缩上止点时,其排气凸轮桃尖相对于图中虚线L的夹角。 、叙述(12分) 1?请叙述气缸套产生穴蚀的原因,并说出减轻穴蚀的设计和结构措施。 2?请结合作图叙述活塞工作时销轴方向变形大的原因,并说明结构设计时怎样考虑。 内燃机设计试题标准答案A 、简答题(24) 1答:往复惯性力是由往复运动质量Mj高速运动产生的,它的运动加速度为 2 2 a=w(cosa +kcos2a),所以Fj = m j (co护+》cos/)。惯性力不参与做功 因为正负做功在一个循环内相抵消。(6分) 2答:气压力、侧向力、热变形。反椭圆设计、绝热槽、恒范钢片(6分) 3答:轴瓦的过盈量主要是保证工作可靠。有自由弹势、半圆周过盈量、余面高度。加标准力F0,检测余面高度(6分) 4答:结构改变:曲轴、集体高度或曲轴中心孔位置。计算:动力计算、曲轴平衡分析、 压缩比、工作过程、(6分) 二、分析计算(20分) 发火间隔角A = 720/3= 240 (2分);画出曲柄布置图(2分);一阶曲柄图、二阶曲柄图(2分) 一阶惯性力分析,等于零(2分)、二阶旋转惯性力分析,等于零(2分)。一阶惯性力 矩分析,等于3ac (4分),二阶惯性力矩比较小,不考虑(2分)。 考虑整体平衡对一阶惯性力矩进行平衡,平衡措施正确,质径积结果正确

相关文档
相关文档 最新文档