文档库 最新最全的文档下载
当前位置:文档库 › 一元多项式环中的孙子定理

一元多项式环中的孙子定理

一元多项式环中的孙子定理
一元多项式环中的孙子定理

第5卷第4期

2006年7月杭州师范学院学报(自然科学版)Journ al of Hangzhou Teachers College (Natural Scien ce E dition )V ol .5No .4Jul .2006收稿日期:2006-06-06

作者简介:王继成(1963-),男,黑龙江青冈人,绥化学院数学系副教授,主要从事代数数论方面的研究.

文章编号:1008-9403(2006)04-0313-02

一元多项式环中的孙子定理

王继成

(绥化学院数学系,黑龙江绥化,152061)

摘 要:利用数域上一元多项式环与整数环相似的性质,建立数域上一元多项式环中的孙子定理,并给出

它的简单应用.

关键词:多项式;整除;互素;同余

中图分类号:O 151.21 MSC 2000:11T 55 文献标识码:A

0 引 言

由于整数环Z 与一元多项式环F (x )都是近世代数中的欧氏环,因此整数环与一元多项式环具有相似的性质,据整数环中的一些性质,可以相应地得出一元多项式环中的一些性质.在此通过类比的方法来引入一元多项式环中的孙子定理并给出简单应用.

引理 设q 1(x ),q 2(x ),…,q r (x )是F [x ]内一组两两互素的多项式,则对任意i (1≤i ≤r )存在多项式h i (x )∈F [x ]使h i (x )≡1(m od q i (x )),h i (x )≡0(mod q j (x ))(i ≠j )

证明 由条件知,对任意j ≠i ,有(q i (x ),q j (x ))=1.

于是存在U j (x ),V j (x )∈F [x ],使U j (x )q i (x )+V j (x )q j (x )=1

令h i (x )=

∏r

j =1j ≠i V j (x )q j

(x ),有h j (x )=0(mod q j (x ))(j ≠i ),而且h i (x )=∏j ≠1(

1-u j

(x )q j (x ))=1+q j (x )u (x )=1(mod q i (x ))其中u (x )为展开式中提出公因式q i (x )(除第一项)之后所剩的多项式.

孙子定理 设q 1(x ),q 2(x ),…q r (x )为F [x ]内两两互素的多项式,任给

f 1(x ),f 2(x ),…,f r (x )∈F (x )

则同余式组

f (x )≡f i (x )(mod q i (x ))(i =1,2,…,r )

(1)

的解可以表示为:f (x )=

∑r i =1h i (x )f i (x )(m od q i (x )q 2(x )…q r (x ))其中h i

(x )出现在引理中.证明 根据引理,对每个i (1≤i ≤r ),存在h i (x )满足

h i (x )≡1(mo d q i (x )),h i (x )≡0(m od q j (x ))(j ≠i )

令g (x )=

∑r

k =1f k (x )h k (x ),则对每个i (1≤i ≤r ),有f i (x )h i (x )≡f i (x )(mod q i (x ))

而当k ≠i 时,f k (x )h k (x )≡0(mod q i (x ))故g (x )=f i (x )(mod q i (x ))(i =1,2,…r )

因此有f (x )≡g (x )(m od q 1(x )q 2(x )…q r (x ))

为了便于孙子定理的简单应用,先来研究一下h i (x )的求法.

由h i (x )≡0(mo d q j (x ))(j ≠i )知q j (x )|h i (x ),而(q j (x ),q k (x ))=1,j ≠k ,故

∏r

j =1j ≠i q j (x )|h i (x ),所以h i (x )=

∏r j =1j ≠r q j (

x )t i (x ),其中t i (x )∈F [x ],且t i (x )满足∏r

j =1j ≠r q j (x )t i (x )≡1(mod q j (x ))由辗转相除法u i (x ),v j (x )∈F (x )使

∏r

j =1j ≠i q j (x )u i (x )+v j (x )q i (x )=1其中δo u i (x )<δo q i (x )由此看到取t i (x )=u i (x ),便有h i (x )=

∏r j =1j ≠i q j (x )u i (x )由孙子定理中式(1)的解为f (x )=∑r i =1∏r

j =1j ≠i

q j (x )u i (x )f i (x )(mod q 1(x )q 2(x )…q r (x ))例 求解同余组f (x )≡1(mod 1)

f (x )≡x (mod x +1)

f (x )≡x 2(mod x 2+x +1)

(2)

解 由于x ,x +1,x 2+x +1是两两互素的多项式,所以式(2)有解,又由于

x ≡-1(mod x +1);x 2≡-(x +1)(mod x 2+x +1)

所以式(2)同解于f (x )≡1(m od x )

f (x )≡-1(mo d x +1)f (x )≡-(x +1)(mo d x 2

+x +1)

由(x +1)(x 2+x +1)t 1(x )≡1(mo d x ),则t 1(x )≡1(m od x ),故h 1(x )≡(x +1)(x 2+x +1)

由x (x 2+x +1)t 2(x )≡1(mo d x +1),则-t 2(x )≡1(m od x +1),即t 2(x )≡-1(m od x +1)故h 2(x )=-x (x 2+x +1),由x (x +1)t 3(x )≡1(mod x 2+x +1),则-t 3(x )≡1(mod x 2+x +1)即t 3(x )≡-1(m od x 2+x +1),故h 3(x )=-x (x +1)

由孙子定理知式(2)有解

f (x )≡(x +1)(x 2+x +1)+x (x 2+x +1)+x (x +1)2(mo d x ((x +1)(x 2+x +1))

即f (x )≡3x 3+5x 2+4x +2(m od x (x +1)(x 2+x +1))

参考文献:

[1]闵嗣鹤,严士健.初等数论[M ].2版.北京:高等教育出版社,2000:62.

[2]孟道骥.高等代数与解析几何[M ].北京:科学出版社,2004:13.

[3]张禾瑞.近世代数基础[M ].北京:高等教育出版社,1978:101.Sunse 's Theorem in the polynomial ring

WANG Ji -cheng

(Departm ent of M ath ematics ,Suihua College ,Suihua 152061,China )

A bstract :U sing the similarity betw ee n polynomia l ring a nd intege r ring the paper establishes Sunse 's T heo rem in the po ly no mial ring in numbe r field ,and offer s its brief lea rning and practice .

Key words :po ly no mial ;divide exactly ;relative prime ;cong ruence 314杭州师范学院学报(自然科学版)2006年 

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

韦达定理及其应用

韦达定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况

高中数学:(一)正弦定理

课时达标训练(一) 正 弦 定 理 [即时达标对点练] 题组1 利用正弦定理解三角形 1.若△ABC 中,a =4,A =45°,B =60°,则b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 解析:选C 由正弦定理a sin A =b sin B ,得4sin 45°=b sin 60°,所以b =26,故选C. 2.在△ABC 中,A =60°,a =3,b =2,则B =( ) A .45°或135° B .60° C .45° D .135° 解析:选C 由正弦定理a sin A =b sin B , 得sin B =b sin A a =2sin 60°3=2 2. ∵a >b ,∴A >B , ∴B =45°. 3.在△ABC 中,cos A a =sin B b ,则A =( ) A .30° B .45° C .60° D .90° 解析:选B ∵sin A a =sin B b ,又cos A a =sin B b , ∴cos A a =sin A a , ∴sin A =cos A ,tan A =1. 又0°

5.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1 sin 30°=2,∴a =2sin A ,b =2sin B ,c =2sin C . ∴ a -2 b +c sin A -2sin B +sin C =2. ★答案★:2 6.已知b =10,c =56,C =60°,解三角形. 解:∵sin B = b sin C c =10·sin 60°56 =2 2, 且b =10,c =56,b 0,∴cos A =0,即A =π 2 ,∴△ABC 为直角三角形. ★答案★:直角三角形 8.在△ABC 中,a cos ????π2-A =b cos ????π 2-B ,判断△ABC 的形状. 解:法一:∵a cos ????π2-A =b ·cos ????π2-B , ∴a sin A =b sin B .由正弦定理,得a ·a 2R =b ·b 2R , ∴a 2=b 2,∴a =b , ∴△ABC 为等腰三角形. 法二:∵a cos ????π2-A =b cos ????π 2-B , ∴a sin A =b sin B . 由正弦定理,得2R sin 2A =2R sin 2B , 即sin A =sin B ,

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

韦达定理及其应用

韦达定理及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0 后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件, 试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和 同时为正;一根大于1,另一根小于是等价于和异号。

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

二项式定理和多项式定理

二项式定理和多项式定理 1.固定分组问题 例1 将12本不同的书分给甲、乙、丙、丁4位学生,求分别满足下列条件的分配方法各有多少种: (1)4位学生每人3本; (2)甲、乙各得4本,丙、丁各得2本; (3)甲得5本,乙得4本,丙得2本,丁得1本. 解 (1)先从12本书中选取3本分给甲,有3 12C 种方法;当甲分得3本书后, 从剩下的9本书中选取3本分给乙,有3 9C 种方法;类似可得,丙、丁的分法分别 有36C 、33C 种,由乘法原理得所求分法共有312C 39C 36C 33 C =4 )!3(! 12=369600种; (2)与(1)的解法类似可得所求分配方法种数为 484 12C C 2224 C C =! 2!2!4!4! 12???=207900; (3)与(1)的解法类似可得所求分配方法种数为 47512C C 1 1 23C C =! 1!2!4!5! 12???=83160. 在例1中是将不同的书分给不同的学生,并且指定了每人分得的本数,我们称之为固定分组问题.我们将这个问题总结成如下一般定理: 定理1 将n 个不同的元素分成带有编号从1,2,…,r 的r 个组:1A ,,, 2A r A ,使得1A 有n 1个元素,2A 有2n 个元素,…,r A 有r n 个元素,n n n n r =+++ 21,则不同的分组方法共有 ! !!! 21r n n n n ??? 种. 证明 先从n 个不同的元素中选取n 1个分给1A ,这一步有1 n n C 种方法;再从 剩下的1n n -个元素中选取2n 个分给2A ,这一步有2 1n n n C -种方法;如此继续下去,最后剩下的r n 个元素分给r A ,有r r n n C 种方法,由乘法原理得这样的固定分组方法共有1n n C 21n n n C -…r r n n C = ! !!! 21r n n n n 种.证毕.

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

韦达定理及其应用

韦达定理及其应用 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求( 221 ab b a ++ )2004的值。 解析由①知1+21 a - 2 1 a =0, 即(1 a )2-2· 1 a -1 =0,③ 由②知(b2)2-2b2-1=0,④ ∴1 a ,b2为一元二次方程x2-2x-1=0的两根. 由韦达定理,得1 a +b2=2, 1 a ·b2=-1. ∴ 221 ab b a ++ =[( 1 a +b2)+ 2 b a ]2004=(2-1)2004=1. 点评 本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,?难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解. 【知识延伸】 例1已知关于x的二次方程2x2+ax-2a+1=0的两个实根的平方和为71 4 ,求a的值.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

韦达定理应用资料资料全

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

二项式定理公开课教案

二项式定理公开课教案 1、重点:二项式定理的发现、理解和初步应用。 2、难点:二项式定理的发现。 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* ∈N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*∈+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a ++=+; 32232333)()()(b ab b a a b a b a b a +++=++=+; 43223434464)()()(b ab b a b a a b a b a b a ++++=++=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +++++=++=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 问题1:请你找出以上数据上下行之间的规律。 预期回答:下一行中间的各个数分别等于上一行对应位置的相邻两数之和。 问题2:以5 )(b a +的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

预期回答:①展开式每一项的次数按某一字母降幂排列、另一字母升幂排列,且两个字母的和等于乘方指数;②展开式的项数比乘方指数多1项;③展开式中第二项的系数等于乘方指数。 初步归纳出下式: ()()()()()n n n n n n b b a b a b a a b a +++++=+--- 33221)( (※) (设计意图:以上呈现给学生的由系数排成的“三角形”,起到了“先行组织者”的作用,虽然,教师将此“三角形”模型以定论的形式呈现给学生,但是,它毕竟不是最后的结果,而是一种寻找系数规律的有效工具,便于学生将新的学习材料同自己原有的认知结构联系起来,并纳入到原有认知结构中而出现意义。这样的学习是有意义的而不是机械的,是主动建构的而不是被动死记的心理过程。)练习:展开7 )(b a + 教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作,称为杨辉三角形,这项发明比欧洲人帕斯卡三角早400多年。你们今天做了与杨辉同样的探索,以鼓励学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。第二步:继续设疑 如何展开100) (b a +以及)()(*∈+N n b a n 呢? (设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷 的方法的欲望。) 继续新授 师:为了寻找规律,我们将))()()(()(4b a b a b a b a b a ++++=+中第一个括号中的字母分别记成11,b a ;第二个括号中的字母分别记成22,b a ;依次类推。请再次用多项式乘法运算法则计算:))()()(()(443322114b a b a b a b a b a ++++=+

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

二项式定理与多项式定理

《高中数学研究性学习案例》 分组问题 二项式定理 多项式定理 1.固定分组问题 例1 将12本不同的书分给甲、乙、丙、丁4位学生,求分别满足下列条件的分配方法各有多少种: (1)4位学生每人3本; (2)甲、乙各得4本,丙、丁各得2本; (3)甲得5本,乙得4本,丙得2本,丁得1本. 解 (1)先从12本书中选取3本分给甲,有种方法;当甲分得3本书后,从剩下的9本书中选取3本分给乙,有种方法;类似可得,丙、丁的分法分别有、种,由乘法原理得所求分法共有==369600种; (2)与(1)的解法类似可得所求分配方法种数为==207900; (3)与(1)的解法类似可得所求分配方法种数为==83160. 在例1中是将不同的书分给不同的学生,并且指定了每人分得的本数,我们称之为固定分组问题.我们将这个问题总结成如下一般定理:定理1 将n个不同的元素分成带有编号从1,2,…,r的r个组:,,使得有n1个元素,有个元素,…,有个元素,,则不同的分组方法共有种. 证明 先从n个不同的元素中选取n1个分给,这一步有种方法;再从剩下的个元素中选取个分给,这一步有种方法;如此继续下去,最后剩下的个元素分给,有种方法,由乘法原理得这样的固定分组方法共有…=种.证毕. 我们将定理1的分配问题简称为()固定分组问题. 2.不尽相异元素的全排列 多项式定理 固定分组数有多种组合学意义,除了表示固定分组的方法数外,它还有以下两种表示意义: (1)不尽相异元素的全排列种数

有r类元素,其中第k类元素有个(k=1,2,…,r),同类元素不加区分,不同类元素互不相同,。则这r类n个不尽相异元素的全排列种数等于固定分组数。. 例2 (06年高考江苏卷(理))今有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列有 种不同的方法(用数字作答). 解 9个球排成一列要占9个位置,从9个位置中选取2个放红球,有种方法;再从其余7个位置中选取3个放黄球,有种方法;最后在剩下的4个位置上全放白球,有种方法,由乘法原理得所求的排列方法共 有==1260种. 评注:对于固定分组数,除了表示固定分组的方法数外,它还表示r 类共n个(不尽相异)元素的全排列数,其中第k类元素有个(k=1,2,…,r),同类元素不加区分,. (2)多项式定理的系数 在的展开式中,项的系数等于固定分组数。例如在的展开式中,项的系数为=,这正是我们所熟悉的二项式系数。有如下的多项式定理:多项式定理设n是正整数,则对一切实数x1,x2,……,x r有 (*) 其中求和是对满足方程 n1+n2+……n r = n 的一切非负整 数n1,n2,……,n t 来求。因为r元方程n1+n2+……n r = n的非负整数共有组,所以在的展开式中共有个不同的项。 多项式定理是对二项式定理的推广,在多项式定理中令r = 2 就得到了二项式定理 。 例3 写出的展开式中项与项的系数. 解 先求项的系数.是10个括号的连乘积,将这10个括号看成10个元素,从中先取出4个括号作为第一组,在每个括号中都取x;再从剩下的6个括号中取出3个作为第二组,在每个括号中都取y;再从剩下的3个括号中取出2个作为第三组,在每个括号中都取z;最后的剩下的1个括号

相关文档
相关文档 最新文档