文档库 最新最全的文档下载
当前位置:文档库 › MATLAB教学视频:详解数据拟合的MATLAB实现(线性拟合)

MATLAB教学视频:详解数据拟合的MATLAB实现(线性拟合)

MATLAB中如何直接曲线拟合

MATLAB中如何直接曲线拟合,而不使用cftool的GUI 界面 我们知道在MATLAB中有个很方便的曲线拟合工具:cftool 最基本的使用方法如下,假设我们需要拟合的点集存放在两个向量X和Y中,分别储存着各离散点的横坐标和纵坐标,则在MATLAB中直接键入命令 cftool(X,Y) 就会弹出Curve Fitting Tool的GUI界面,点击界面上的fitting即可开始曲线拟合。 MATLAB提供了各种曲线拟合方法,例如:Exponential, Fourier, Gaussing, Interpolant, Polynomial, Power, Rational, Smoothing Spline, Sum of Functions, Weibull等,当然,也可以使用 Custom Equations. cftool不仅可以绘制拟合后的曲线、给出拟合参数,还能给出拟合好坏的评价 参数(Goodness of fit)如SSE, R-square, RMSE等数据,非常好用。但是如果我们已经确定了拟合的方法,只需要对数据进行计算,那么这种GUI的操作方式就不太适合了,比如在m文件中就不方便直接调用cftool。 MATLAB已经给出了解决办法,可以在cftool中根据情况生成特定的m文件,让我们直接进行特定的曲线拟合并给出参数。具体方法在帮助文件的如下文档中" \ Curve Fitting Toolbox \ Generating M-files From Curve Fitting Tool " ,以下简单举例说明: 以双色球从第125期到第145期蓝球为Y值: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21; cftool(X,Y); 点击Fitting选择最常用的多项式拟合(Polynomial),选择3次多项式拟合(cubic),然后就会出现如下拟合图形: 然后在Curve Fitting Tool窗口中点击 " \ File \ Generate M-file " 即可生成能直接曲线拟合的m函数文件,其中使用的拟合方法就是刚才使用的三次多项式拟合,文件中这条语句证明了这一点: ft_ = fittype('poly3'); 保存该m文件(默认叫做createFit.m),调用方法和通常的m文件一样,使用不同的X和Y值就能拟合出不同的曲线。但是,这种调用方法只能看到一个拟合出的图形窗口,拟合参数以及Goodness of fit参数都看不到了,因此需要在刚才的m文件中稍作修改。 找到这句话: cf_ = fit(X(ok_),Y(ok_),ft_); 修改为: [cf_,gof] = fit(X(ok_),Y(ok_),ft_); 然后将函数声明 function createFit(X,Y) 修改为 function [cf_,gof] = createFit(X,Y) ,这样我们再调用试试看: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21;

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

matlab曲线拟合实例

曲线拟合 求二次拟合多项式 解:(一)最小二乘法MA TLAB编程: function p=least_squar(x,y,n,w) if nargin<4 w=1 end if nargin<3 n=1 end m=length(y); X=ones(1,m) if m<=n error end for i=1:n X=[(x.^i);X] end A=X*diag(w)*X';b=X*(w.*y)';p=(A\b)' 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4] p=least_squar(x,y,2) 运行得: p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x (二)正交多项式拟合MATLAB编程: function p=least_squar2(x,y,n,w) if nargin<4 w=1; end if nargin<3 n=1; end m=length(x); X=ones(1,m); if m<=n error end for i=1:n X=[x.^i;X]; end A=zeros(1,n+1);

A(1,n+1)=1; a=zeros(1,n+1); z=zeros(1,n+1); for i=1:n phi=A(i,:)*X;t=sum(w.*phi.*phi); b=-sum(w.*phi.*x.*phi)/t a(i)=sum(w.*y.*phi)/t; if i==1 c=0;else c=-t/t1; end t1=t for j=1:n z(j)=A(i,j+1); end z(n+1)=0 if i==1 z=z+b*A(i,:); else z=z+b*A(i,:)+c*A(i-1,:); end A=[A;z]; end phi=A(n+1,:)*X;t=sum(w.*phi.*phi); a(n+1)=sum(w.*y.*phi)/t; p=a*A; 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4]; p=least_squar2(x,y,2) 运行得: b = -6.1250 t1 = 8 z = 0 1 0 b = -4.9328 t1 = 64.8750 z = 1.0000 -6.1250 0 p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

MATLAB程序(线性拟合)

1、一元线性拟合 求HNO 3的正常沸点温度T b 及摩尔汽化热。 程序如下: >> t=[0 20 40 50 70 80 90 100]; >> t=t+273.15; >> p=[1919.52 6385.07 17728.9 27726.4 62251.1 89311 124902.1 170890.6] p = 1.0e+005 * 0.0192 0.0639 0.1773 0.2773 0.6225 0.8931 1.2490 1.7089 >> subplot 121 >> plot(t,p,'o',t,p) >> t1=1./t;p2=log(p); >> pp=polyfit(t1,p2,1) pp = 1.0e+003 * -4.5691 0.0243 >> subplot 122 >> plot(t1,p2,'o',t1,p2) >> gtext('p/pa'),gtext('T/K'),GTEXT('lnP/Pa'),gtext('T^-^1/K') 由克拉贝龙-克劳修斯方程式,~ ln v H P C RT ?=-+ 作1 ln ~P T -得一直线:3 1 ln 4.5691024.30P T -=-?+ 斜率为:~ 3 4.56910v H R ?-?=-

所以摩尔汽化热为:~ 314.569108.31437.99()v H kJ mol -?=??=? 并根据拟合方程,求得一大气压时 1 32.8010T --=? 则正常沸点为:357b T K = 2、多元线性拟合: 某气体混合物由四种气体组成,在常压或低压下其粘度η与各组分摩尔分数x 1,x 2,x 3,x 4之间有如下线性关系:011223344b b x b x b x b x η=++++ 试根据下表所列实验数据用最小二乘法确定上式中的各个系数,并计算其复相关系数。 Matlab 程序如下: >> a=[1.0 0.402 0.153 0.058 0.387;1.0 0.503 0.301 0.183 0.013; 1.0 0.306 0.109 0.224 0.361; 1.0 0.296 0.365 0.009 0.330; 1.0 0.309 0.405 0.109 0.177; 1.0 0.055 0.153 0.506 0.289] a = 1.0000 0.4020 0.1530 0.0580 0.3870 1.0000 0.5030 0.3010 0.1830 0.0130 1.0000 0.3060 0.1090 0.2240 0.3610 1.0000 0.2960 0.3650 0.0090 0.3300 1.0000 0.3090 0.4050 0.1090 0.1770 1.0000 0.0550 0.1530 0.5060 0.2890 >> y=[0.00625 0.00826 0.01182 0.01944 0.02372 0.03243]' y = 0.0063 0.0083 0.0118 0.0194 0.0237 0.0324 >> b=a.'*a

Matlab数据拟合程序

课程设计名称:设计二:数据拟合指导教师:张莉 课程设计时数: 6 课程设计设备:安装了Matlab、C++软件的计算机 课程设计日期:实验地点:第五教学楼北902 课程设计目的: 1. 了解最小二乘拟合的原理,掌握用MA TLAB作最小二乘拟合的方法; 2. 学会利用曲线拟合的方法建立数学模型。 课程设计准备: 1.在开始本实验之前,请回顾相关内容; 2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 用切削机床进行金属品加工时,为了适当地调整机床,需要测定刀具的磨损速度,在一定的时间测量刀具的厚度,得数据如表所示,请选用合适的函数来描述切削时间与刀具厚度的关系。 首先对数据进行分析,画出离散的点,观察点近似的曲线: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; plot(t,y,'r*')

判断出曲线是近似直线函数,所以对数据进行测试可以做三次函数拟合: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; %plot(t,y,'r*') A=polyfit(t,y,3) z=polyval(A,t); plot(t,y,'r*',t,z,'b') 051015 拟合结果: A = -0.3099 29.5676 拟合函数为:y=-0.3099t+29.5676

MATLAB软件基本的曲线拟合函数命令

MATLAB软件提供了基本的曲线拟合函数的命令。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 1.线性拟合函数:regress() 调用格式: b = regress(y,X) [b,bint,r,rint,stats] = regress(y,X) [b,bint,r,rint,stats] = regress(y,X,alpha) 说明:b=[ε; β],regress(y,X)返回X与y的最小二乘拟合的参数值β、ε,y=ε+βX。β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。 bint返回β的95%的置信区间。 r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例: x=[ones(10,1) (1:10)']; y=x*[10;1]+normrnd(0,0.1,10,1); [b,bint]=regress(y,x,0.05) 结果得回归方程为:y=9.9213+1.0143x 2.多项式曲线拟合函数:polyfit() 调用格式: p = polyfit(x,y,n) [p,s] = polyfit(x,y,n) 说明:n:多项式的最高阶数; x,y:将要拟合的数据,用数组的方式输入; p:为输出参数,即拟合多项式的系数; 多项式在x处的值y可用下面程序计算: y=polyval(p,x) 例: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=linspace(1,20,100); z=polyval(p,xi); % 多项式求值函数

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

MATLAB拟合函数

在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。 下面给你简单介绍一下它的使用方法。 首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x=(0:0.02:0.98)';二胡与施工的计划的风光好舒服很多国家法规和积分高科技 y=sin(4*pi*x+rand(size(x))); 此时x-y之间的函数近似的为正弦关系,频率为2,但是存在一个误差项。 可以通过作图看出它们的大体分布: plot(x,y,'*','markersize',2); 打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets 页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。 点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit 选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是: Custom Equations 用户自定义函数 Expotential e指数函数 Fourier 傅立叶函数,含有三角函数 Gaussian 正态分布函数,高斯函数 Interpolant 插值函数,含有线性函数,移动平均等类型的拟合 Polynomial 多项式函数 Power 幂函数 Rational 有理函数(不太清楚,没有怎么用过) Smooth Spline ??(光滑插值或者光滑拟合,不太清楚) Sum of sin functions正弦函数类 Weibull 威布尔函数(没用过) 不好意思,没有学过数理统计,所以很多东西都是用了才知道,翻译也就不太准确。不过在Type of fit选框下方有一个列表框,基本上各个函数类里的函数都写成解析式列在下方以供选择,所以找合适的函数还是比较容易的。

曲线拟合的线性最小二乘法及其MATLAB程序

3.1 曲线拟合的线性最小二乘法及其MATLAB 程序 例3.1.1 给出一组数据点),(i i y x 列入表3-1中,试用线性最小二乘法求拟合曲线,并估计其误差,作出拟合曲线. 表3-1 例3.1.1的一组数据),(y x 解 (1)在MATLAB 工作窗口输入程序 >> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; plot(x,y,'r*'), legend('实验数据(xi,yi)') xlabel('x'), ylabel('y'), title('例3.1.1的数据点(xi,yi)的散点图') 运行后屏幕显示数据的散点图(略). (3)编写下列MA TLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序 >> syms a1 a2 a3 a4 x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4 运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组 fi =[ -125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4] 编写构造误差平方和的MATLAB 程序 >> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]; fy=fi-y; fy2=fy.^2; J=sum(fy.^2) 运行后屏幕显示误差平方和如下 J= (-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+2 89/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a 2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/ 2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2 为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=??k a J )4,3,2,1(=k ,

2,3,4次曲线拟合matlab程序

2,3,4次曲线拟合matlab程序 【程序代码】 clf reset H=axes('unit','normalized','position',[0,0,1.5,1],'visible','off'); set(gcf,'currentaxes',H); str='\fontname{微软雅黑}2,3,4次曲线拟合程序'; text(0.17,0.9,str,'fontsize',15);%这是设置字体位置的 h_fig=get(H,'parent'); set(h_fig,'unit','normalized','position',[0.1,0.2,0.8,0.5]);%这是设置出现窗口的大小的 h_axes=axes('parent',h_fig,'unit','normalized','position',[0.1,0.15,0.55,0.7],'xlim',[015],'ylim',[0 1.8],'fontsize',8); h_text=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.90,0.24,0.03],'horizontal','left','s tring',{'左区间'}); h_text1=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.75,0.24,0.03],'horizontal','left',' string',{'右区间'}); h_text2=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.62,0.24,0.03],'horizontal','left',' string',{'步长'}); h_text3=uicontrol(h_fig,'style','text','unit','normalized','position',[0.69,0.48,0.24,0.03],'horizontal','left',' string',{'拟合矩阵'}); h_edit=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.82,0.24,0.08], 'horizontal','left','callback',['a=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']); h_edit1=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.67,0.24,0.08], 'horizontal','left','callback',['b=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']); h_edit2=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.54,0.24,0.08], 'horizontal','left','callback',['n=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']); h_edit3=uicontrol(h_fig,'style','edit','unit','normalized','position',[0.69,0.38,0.24,0.1], 'horizontal','left','callback',['x=str2num(get(gcbo,''string''));','t=a:n:b;','x=x;','p2=polyfit(t,x,2);','f2=poly val(p2,t);','p3=polyfit(t,x,3);','f3=polyval(p3,t);','p4=polyfit(t,x,4);','f4=polyval(p4,t);','plot(t,x,t,f2,t,f3,t, f4)']); h_push1=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.24,0.12,0.08],'string',' grid on','callback','grid on'); h_push2=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.69,0.15,0.12,0.08],'string',' grid off','callback','grid off'); h_push3=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.15,0.12,0.08],'string','退出','callback','exit'); h_push4=uicontrol(h_fig,'style','pushbutton','unit','normalized','position',[0.81,0.24,0.12,0.08],'string','关闭','callback','close(gcbf)'); 【操作界面】

Matlab线性回归(拟合)

Matlab 线性回归(拟合) 对于多元线性回归模型: e x x y p p ++++=βββ 110 设变量12,,,p x x x y 的n 组观测值为 12(,,,) 1,2,,i i ip i x x x y i n = . 记 ??????? ? ?=np n n p p x x x x x x x x x x 2 1 222211121111 1,?? ?? ??? ??=n y y y y 2 1 ,则???? ?? ? ??=p ββββ 10 的估计值为 y x x x b ')'(?1-==β (11.2) 在Matlab 中,用regress 函数进行多元线性回归分析,应用方法如下: 语法:b = regress(y, x) [b, bint, r, rint, stats] = regress(y , x) [b, bint, r, rint, stats] = regress(y , x, alpha) b = regress(y, x),得到的1+p 维列向量b 即为(11.2)式给出的回归系数β的估计值. [b, bint, r, rint, stats]=regress(y , x) 给出回归系数β的估计值b ,β的95%置信区间((1)2p +?向量)bint ,残差r 以及每个残差的95%置信区间(2?n 向量)rint ;向量stats 给出回归的R 2 统计量和F 以及临界概率p 的值. 如果i β的置信区间(bint 的第1i +行)不包含0,则在显著水平为α时拒绝0i β=的假设,认为变量i x 是显著的. [b, bint, r, rint, stats]=regress(y , x, alpha) 给出了bint 和rint 的100(1-alpha)%的置信区间. 三次样条插值函数的MATLAB 程序 matlab 的spline x = 0:10; y = sin(x); %插值点 xx = 0:.25:10; %绘图点 yy = spline(x,y ,xx); plot(x,y,'o',xx,yy)

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据 },...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲 线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: k k x a x a a x +++=...)(10?

2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x 必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。polyval( )为多项式曲线求值函数,调用格式:y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA 将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560

曲线拟合_线性最小二乘法及其MATLAB程序

1 曲线拟合的线性最小二乘法及其MATLAB 程序 例7.2.1 给出一组数据点),(i i y x 列入表7–2中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线. 表7–2 例7.2.1的一组数据),(y x 解 (1)在MATLAB 工作窗口输入程序 >> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; plot(x,y,'r*'), legend('实验数据(xi,yi)') xlabel('x'), ylabel('y'), title('例7.2.1的数据点(xi,yi)的散点图') 运行后屏幕显示数据的散点图(略). (3)编写下列MA TLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序 >> syms a1 a2 a3 a4 x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4 运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组 fi =[ -125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4] 编写构造误差平方和的MATLAB 程序 >> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]; fy=fi-y; fy2=fy.^2; J=sum(fy.^2) 运行后屏幕显示误差平方和如下 J= (-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+2 89/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a 2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/ 2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2 为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=??k a J )4,3,2,1(=k ,

相关文档
相关文档 最新文档