文档库 最新最全的文档下载
当前位置:文档库 › 内存的申请和释放

内存的申请和释放

内存的申请和释放
内存的申请和释放

计算机学院网络工程专业

操作系统课程设计

题目:内存的申请和释放

班级:网工11102班

姓名:郭阳学号: 2

同组人姓名:

起迄日期: 第一周,第二周

课程设计地点: E3——A513 指导教师:贺玉才

评阅意见:

成绩评定:

评阅人:日期:

完成日期:2014年3月

目录

一、概述3

1、设计目的3

2、开发环境3

二、设计要求3

三、实验基本原理3

四、程序流程图4

1、整体程序流程图4

2、内存分配ALLOCATE()流程图5

五、源程序6

1、数据结构6

2、主要功能函数6

3、源程序代码7

六、运行结果17

1、测试用例与程序运行结果截图17

2、内存分配正确测试错误!未定义书签。

3、内存回收错误测试错误!未定义书签。

4、内存回收正确测试用例错误!未定义书签。

七、总结18

八、参考文献18

一、概述

1、设计目的

了解操作系统的内存分配的方法

2、开发环境

WINDOWS环境Visual C++6.0

二、设计要求

定义一个自由存储块链表,按块地址排序,表中记录块的大小。当请求分配内存时,扫描自由存储块链表,知道找到一个足够大的可供分配的内存块,若找到的块的大小正好等于所请求的大小时,就把这一块从自由链表中取下来,返回给申请者。若找到的块太大,即对其分割,并从该块的高地址不分往低地址部分分割,取出大小合适的块返还给申请者,愈小的低地址部分留在链表中。若找不到足够大的块,就从操作系统中请求另外一个足够大的内存区域,并把它连接到自由块链表中,然后再继续搜索。

释放存储块也要搜索自由链表,目的是找到适当的位置将要释放的块插进去,如果被释放的块的任何一边与链表中的某一块临接,即对其进行合并操作,直到没有合并的临接块为止,这样可以防止存储空间变得零碎。。

三、实验基本原理

分区存储管理是给内存中的进程划分适当大小的存储区,以连续存储各进程的程序和数据,使各进程能并发地执行。最优适应分配算法扫描整个未分配区表或链表,从空闲区中挑选一个能满足用户进程要求的最小分区进行分配。

在可变分区模式下,在系统初启且用户作业尚未装入主存储器之前,整个用户区是一个大空闲分区,随着作业的装入和撤离,主存空间被分成许多分区,有的分区被占用,而有的分区时空闲的。为了方便主存空间的分配和去配,用于管理的数据结构可由两张表组成:

“已分配区表”和“未分配区表”。在“未分配表中”将空闲区按长度递增顺序排列,当装入新作业时,从未分配区表中挑选一个能满足用户进程要求的最小分区进行分配。这时从已分配表中找出一个空栏目登记新作业的起始地址和占用长度,同时修改未分配区表中空闲区的长度和起始地址。当作业撤离时已分配区表中的相应状态变为“空”,而将收回的分区登记到未分配区表中,若有相邻空闲区再将其连接后登记。可变分区的回收算法较为复杂,当一个作业撤离时,可分为4种情况:其临近都有作业(A和B),其一边有作业(A或B),其两边均为空闲区。尤其重要的是,在程序中利用“new 类型T(初值列表)”申请分配用于存放T类型数据的内存空间,利用“delete 指针名”释放指针所指向的内存空间。

四、程序流程图

1、整体程序流程图

2、内存分配allocate()流程图

主存空间的分配与回收—首次适应法

主存空间的分配与回收— 首次适应法 This manuscript was revised by the office on December 10, 2020.

南通大学操作系统实验课 实验报告 学生姓名 所在院系 专业 学号 指导教师 南通大学 2014年 5 月 16 日主存空间的分配与回收 ——首次适应法 一、实验目的 主存是中央处理机能直接存取指令和数据的存储器,能否合理而有效地使用它,在很大程度上将影响整个计算机系统的性能。 本实验主要熟悉主存的管理方法以及相应的分配与回收算法。所谓分配,就是解决多道程序或多进程如何共享主存空间的问题,以便各个进程能获得所希望的主存空间,正确运行。所谓回收,就是当进程运行完成时,将其所占用的主存空间归还给系统。 二、实验要求 采用空闲区链法管理空闲区,并增加已分配区表。分配算法采用首次适应法。 三、设计思路: (1)采用空闲区链法管理空闲区,并增加已分配区表。分配算法采用首次适应法(内存空闲区的地址按照从小到大的自然顺序排列),实现内存的分配与回收。 (2)设计一个进程申请序列以及进程完成后的释放顺序,实现主存的分配与回收。

(3)进行分配时应该考虑这样3种情况:进程申请的空间小于、等于或大于系统空闲区的大小。回收时应该考虑这样4种情况:释放区上邻、下邻、上下都邻和都不邻接空闲区。 (4)每次的分配与回收都要求把记录内存使用情况的各种数据结构的变化情况以及各进程的申请、释放情况显示出来。 四、主要思想 (1)输入主存空间的最大长度n创建最大长度总和为n的若干空闲区的主存空闲区链; (2)输入待存作业的长度x,从链头开始找第一个合适作业的空闲区:分区长度小于x时,指针后移,继续寻找;分区长度等于x时,分配空间, 修改作业分区;分区长度大于x时,分配空间,修改分区数据。 五、流程图 1.空闲区链的首次适应算法分配流程图 2.空闲区链的首次适应算法回收流程图 六、调试结果 1.内存的分配 2.内存的回收 3.内存清空 七、总结与感悟 说实话我操作系统学得不是很好,一开始看到题目觉得自己要完成这个实验有些难度。好在老师提醒书上有另一道类似题目的程序代码,另外书上也有首次适应法的流程图,可以给我们一些提示。之后我也参考了网上的相关资料,看看别人是如何实现的,他们都是怎么样的思路和方法,与我一开始的想法相比,比我精妙在哪里。最后自己调试时,遇到了许许多多问题和错误,请教了学得比较好的同学、经过不断的修改和完善之后,终于做完实验。 这次的实验使我了解到,平时对知识的积累相当重要,同时也要注重课上老师的讲解,老师在课上的延伸是课本上所没有的,这些知识对于我们对程序的编写有很大的作用,同时,编程也要求我们有足够的耐心,细细推敲。越着急可能就越无法得到我们想要的结果,遇到不会的问题要多多请教,知识是在实践与向别人请教的过程中积累的,所以问是至关重要的,只要肯下功夫很多东西都是可以完成的。操作系统这门课不但重要而且十分有用,我一定要下功夫把这门课学好。

电脑内存不足及释放内存

第一招:关闭多余顺序 如果同时打开地文档过多或者运行地顺序过多,就没有足够地内存运行其他顺序.这时,对于多文档界面程序,如等,请关闭当前文档外地所有文档,并退出当前未使用地顺序,或许你就能够继续执行因“内存缺乏”而被中断地任务.资料个人收集整理,勿做商业用途 第二招:清除剪贴板中地内容 .清除系统剪贴板中地内容(存储复制或剪贴内容地剪贴板)点击“开始→顺序→附件→系统工具→剪贴板查看程序”编辑”菜单上,单击“删除”命令,系统弹出“清除剪贴板”对话框,单击“按钮.资料个人收集整理,勿做商业用途 .清除多重剪贴板中地内容(顺序提供地剪贴板)剪贴板”任务窗格(或工具栏(上,单击“全部清空”或“清空‘剪贴板’当清空“剪贴板”时,系统剪贴板也将同时被清空.资料个人收集整理,勿做商业用途 第三招:合理设置虚拟内存 如果没有设置虚拟内存,那么很容易收到内存缺乏”消息.点击“开始→设置→控制面板”双击“系统”系统属性”对话框中,单击“性能”选项卡,然后单击“虚拟内存”按钮.选中“让管理虚拟内存设置推荐)选项,将计算机中可作为虚拟内存使用地硬盘空间量设置为默认值.资料个人收集整理,勿做商业用途 第四招:增加可用磁盘空间 有四种方法可以增加磁盘地使用空间: .清空回收站. .删除临时文件.打开电脑”右键单击要释放其空间地磁盘,然后单击“属性”惯例”选项卡上,单击“磁盘清理”按钮,选中要删除地不需要地文件前地复选框进行整理.资料个人收集整理,勿做商业用途 .从磁盘中删除过期地文件或已存档地文件. .删除从未使用过地所有文件. 第五招:重新装置已损坏地顺序 如果仅仅是使用某个顺序时,系统提示内存缺乏,而其他顺序可以正常运行,那么可能地原因是该顺序文件被毁坏,从而导致内存缺乏地问题.请尝试删除偏重新安装该程序,然后重新运行该程序.如果系统不再提示内存缺乏,那么说明原顺序文件确实被损坏.资料个人收集整理,勿做商业用途 第六招:使用内存优化软件 内存优化软件有很多,比方和就比较出色.可以设置自动清空剪贴板、释放被关闭顺序未释放地内存,从而免除你手工操作地麻烦,达到自动释放内存地目地无妨一试.资料个人收集整理,勿做商业用途 第七招:重新启动计算机 如果只退出程序,并不重新启动计算机,顺序可能无法将内存资源归还给系统.运行重要顺序之前,请重新启动计算机以充分释放系统资源.资料个人收集整理,勿做商业用途 第八招:减少自动运行地顺序 如果在启动时自动运行地顺序太多,那么,即使重新启动计算机,也没足够地内存用来运行其他顺序.这时就需要清除一些不必要地系统自启动程序.点击“开始→运行”输入打开“系统配置实用顺序”窗口.单击“一般”选项卡,选中“选择性启动”复选框.去掉处置文件”和“加载启动项”前地复选框.打开“启动”选项卡,将不需要开机自动启动地顺序都勾除掉就好了资料个人收集整理,勿做商业用途 第九招:查杀病毒 系统感染电脑病毒也是导致内存缺乏地罪魁祸首.当系统出现“内存缺乏”错误时,请使用最

解决系统内存不能为 Read 的方法(新添附件,不断收集中……)

运行某些程序的时候,有时会出现内存错误的提示,然后该程序就关闭。 “0x????????”指令引用的“0x????????”内存。该内存不能为“read”。 “0x????????”指令引用的“0x????????”内存,该内存不能为“written”。 总结我见过的内存不能为Read 问题,问题原因可以归纳为以下几点: 1、驱动不稳定,与系统不兼容,这最容易出现内存不能为Read 或者文件保护 2、系统安装了一个或者多个流氓软件,这出现IE 或者系统崩溃的机会也比较大,也有可能出现文件保护 3、系统加载的程序或者系统正在运行的程序之前有冲突,尤其是部分杀毒软件监控程序 4、系统本身存在漏洞,导致容易受到网络攻击。 5、病毒问题也是主要导致内存不能为Read、文件保护、Explorer.exe 错误…… 6、如果在玩游戏时候出现内存不能为Read,则很大可能是显卡驱动不适合(这里的不适合有不适合该游戏、不适合电脑的显卡),也有可能是DX9.0C 版本不够新或者不符合该游戏、显卡驱动 7、部分软件本身自身不足的问题 8、电脑硬件过热,也是导致内存不能为Read 的原因之一。 9、电脑内存与主板兼容性不好也是导致内存不能为Read 的致命原因! 希望以上总结能够对大家判断导致内存不能为Read 问题的原因有帮助。 分析: 一般来说,电脑硬件是很不容易坏的。内存出现问题的可能性并不大(除非你的内存真的是杂牌的一塌徒地),主要方面是:1。内存条坏了(二手内存情况居 多)、2。使用了有质量问题的内存,3。内存插在主板上的金手指部分灰尘太多。4。使用不同品牌不同容量的内存,从而出现不兼容的情况。5。超频带来的散 热问题。你可以使用MemT est 这个软件来检测一下内存,它可以彻底的检测出内存的稳定度。 二、如果都没有,那就从软件方面排除故障了。 先说原理:内存有个存放数据的地方叫缓冲区,当程序把数据放在缓冲区,需要操作系统提供的“功能函数”来申请,如果内存分配成功,函数就会将所新开辟的内 存区地址返回给应用程序,应用程序就可以通过这个地址使用这块内存。这就是“动态内存分配”,内存地址也就是编程中的“光标”。内存不是永远都招之即来、 用之不尽的,有时候内存分配也会失败。当分配失败时系统函数会返回一个0值,这时返回值“0”已不表示新启用的光标,而是系统向应用程序发出的一个通知, 告知出现了错误。作为应用程序,在每一次申请内存后都应该检查返回值是否为0,如果是,则意味着出现了故障,应该采取一些措施挽救,这就增强了程序的“健 壮性”。若应用程序没有检查这个错误,它就会按照“思维惯性”认为这个值是给它分配的可用光标,继续在之后的执行中使用这块内存。真正的0地址内存区储存 的是计算机系统中最重要的“中断描述符表”,绝对不允许应用程序使用。在没有保护机制的操作系统下(如DOS),写数据到这个地址会导致立即当机,而在健 壮的操作系统中,如Windows等,这个操作会马上被系统的保护机制捕获,其结果就是由操作系统强行关闭出错的应用程序,以防止其错误扩大。这时候,就

C语言中多维数组的内存分配和释放

写代码的时候会碰到多维数组的内存分配和释放问题,在分配和释放过程中很容易出现错误。下面贴上一些示例代码,以供参考。 如果要给二维数组(m*n)分配空间,代码可以写成下面: char **a, i; // 先分配m个指针单元,注意是指针单元 // 所以每个单元的大小是sizeof(char *) a = (char **)malloc(m * sizeof(char *)); // 再分配n个字符单元, // 上面的m个指针单元指向这n个字符单元首地址 for(i = 0; i < m; i++) a[i] = (char *)malloc(n * sizeof(char)); (注意红色部分) 释放应该是: int i; for(i=0;i

a = (char ***)malloc(m * sizeof(char **)); for(i = 0; i < m; ++i) a[i] = (char **)malloc(n * sizeof(char *)); for(i = 0; i < m; ++i) for(j = 0; j < n; ++j) a[i][j] = (char *)malloc(p * sizeof(char)); 释放代码为逆过程,具体代码为: int i,j,; for(i = 0; i < m; ++i) for(j = 0; j < n; ++j) free((void *)a[i][j]); for(i = 0; i < m; ++i) free((void *)a[i]); free((void *)a); 三维以上的多维数组的分配和释放,原理与上面的一样。 (转) C中如何为第二维长度固定的二维数组分配内存

2019年电脑内存不足怎样清理

2019年电脑内存不足怎样清理 篇一:计算机内存不足怎么办 计算机存储器不足怎么办 一、重新启动计算机 重新启动计算机,充分释放系统资源再使用。 二、查杀病毒 系统感染计算机病毒也是导致存储器不足的罪魁祸首,使用最新的杀毒软件查杀病毒,或许在清除计算机病毒之后,就解决了“存储器不足”的问题。 三、减轻存储器负担 1、打开的程序不可太多。如果同时打开的文档过多或者运行的程序过多,就没有足够的存储器运行其他程序,要随时关闭不用的程序和窗口。

2、自动运行的程序不可太多。单击“开始”,然后单击“运行”,,键入“Msconfig”,单击“确定”按钮,打开“系统配置实用程序”窗口,删除不想自动加载的启动组项目。 3、关闭多余程序 如果同时打开的文档过多或者运行的程序过多,就没有韩毅 足够的存储器运行其他程序。对于多文档界面程序,如Word、Excel 等,关闭当前文档外的所有文档,并退出当前未使用的程序,或许你就能够继续执行因“存储器不足”而被中断的任务。 4、清除剪贴板中的内容 四、增加可用磁盘空间 1.清空回收站。 2.删除临时档。在“我的计算机”窗口,右键单击要释放其空间的磁盘,然后单击“属性”,在“常规”选项卡上,单击“磁盘清理”按钮,选中要删除的不需要的档前的复选框进行整理。

3.从磁盘中删除过期的档或已存档的档。 4.删除从未使用过的档。 五、加大物理存储器,合理设置虚拟存储器 1、使用默认虚拟存储器,右键单击“我的计算机”→属性→高级→性能设置→高级→虚拟存储器更改→选择虚拟存储器(页面档)存放的分区→选中“让Windows管理虚拟存储器设置-(推荐)”→设置→确定。 2、自定义虚拟存储器,最好给它一个固定值,这样就 不容易产生磁盘碎片,具体数值根据你的物理存储器大小来定,一般是128MB物理存储器设2-3倍,256MB设1.5-2倍,512MB设1—1.5倍,1GB设0.5倍或设为自动。 3、具体步骤如下:右键单击“我的计算机”→属性→高级→性能设置→高级→虚拟存储器更改→选择虚拟存储器(页面档)存放的分区→自定义大小→确定最大值和最小值→设置→确定。

内存练习2015

1.某操作系统采用可变分区分配存储管理方法,用户区为512K且始址为0,用空间分区表管理空闲分区。若分配时采用分配空闲区低地址部分的方案,且初始时用户区的512K空间空闲,对下述申请序列: 申请300K, 申请100K, 释放300K, 申请150K, 申请30K, 申请40K, 申请60K, 释放30K 回答:1)采用首次适应算法,空闲分区中有哪些空块(给出始址、大小)2)采用最佳适应算法,空闲分区中有哪些空块(给出始址、大小) 3)如果申请100K,针对1)和2)各有什么结果。 2.在一分页存储管理系统中,逻辑地址长度为16位,页面大小为4096字节,现有一逻辑地址为2F6AH,且第0、1、2页依次存放在物理块5、10、11中,问相应的物理地址为多少? 3.在一个虚拟存储器中,主存容量为400字节,划分为4块,采用LRU算法。虚地址流为22,214,146,618,270,490,492,168,96,128。(注明:先从内存低地址部分装入)问:1)写出虚页地址流;2)画出实存中的调度过程示意图;3)写出实地址流4)计算命中率 4.请求分页管理系统中,假设某进程的页表内容如下表所示。页表内容: 页号页框(Page Frame)号有效位(存在位) 0 101H 1 1 —0 2 254H 1 页面大小为4KB,一次内存的访问时间是100ns,一次快表(TLB)的访问时间是10ns,处理一次缺页的平均时间为108ns(已含更新TLB和页表的时间),进程的驻留集大小固定为2,采用最近最少使用置换算法(LRU)和局部淘汰策略。假设①TLB初始为空;②地址转换时先访问TLB,若TLB未命中,再访问页表(忽略访问页表之后的TLB更新时间);③有效位为0表示页面不在内存,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指令处重新执行。 设有虚地址访问序列2362H、1565H、25A5H,请问: (1)依次访问上述三个虚地址,各需多少时间?给出计算过程。 (2)基于上述访问序列,虚地址1565H的物理地址是多少?请说明理由。 1

linux下内存释放问题

linux下内存释放问题 细心的朋友会注意到,当你在linux下频繁存取文件后,物理内存会非常快被用光,当程式结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都没有看到有什么非常好解决的办法.那么我来谈谈这个问题. 先来说说free命令 [root@server ~]# free -m total used free shared buffers cached Mem: 249 163 86 0 10 94 -/+ buffers/cache: 58 191 Swap: 511 0 511 其中: total 内存总数 used 已使用的内存数 free 空闲的内存数 shared 多个进程共享的内存总额 buffers Buffer Cache和cached Page Cache 磁盘缓存的大小 -buffers/cache 的内存数:used - buffers - cached +buffers/cache 的内存数:free + buffers + cached 可用的memory=free memory+buffers+cached 有了这个基础后,能得知,我目前used为163MB,free为86,buffer和cached分别为10,94 那么我们来看看,如果我执行复制文件,内存会发生什么变化. [root@server ~]# cp -r /etc ~/test/ [root@server ~]# free -m total used free shared buffers cached Mem: 249 244 4 0 8 174 -/+ buffers/cache: 62 187 Swap: 511 0 511 在我命令执行结束后,used为244MB,free为4MB,buffers为8MB,cached为174MB,天呐都被cached吃掉了.别紧张,这是为了提高文件读取效率的做法. 引用 https://www.wendangku.net/doc/ba12510413.html,/archives/2007/09/linux_free.html "为了提高磁盘存取效率, Linux做了一些精心的设计, 除了对dentry进行缓存(用于VFS,加速文件路径名到inode的转换), 还采取了两种主要Cache方式:Buffer Cache和Page Cache。前者针对磁盘块的读写,后者针对文件inode的读写。这些Cache有效缩短了I/O系统调用(比如read,write,getdents)的时间。" 那么有人说过段时间,linux会自动释放掉所用的内存,我们使用free再来试试,看看是否有释放>?

解决XXXX指令引用的XXXX内存,该内存不能为read 的方法

解决"XXXX指令引用的XXXX内存,该内存不能为read" 的方法 出现这个现象有方面的,一是硬件,即内存方面有问题,二是软件,这就有多方面的问题了。 一:先说说硬件: 一般来说,电脑硬件是很不容易坏的。内存出现问题的可能性并不大(除非你的内存真的是杂牌的一塌徒地),主要方面是:1。内存条坏了(二手内存情况居多)、2。使用了有质量问题的内存,3。内存插在主板上的金手指部分灰尘太多。4。使用不同品牌不同容量的内存,从而出现不兼容的情况。5。超频带来的散热问题。你可以使用MemTest 这个软件来检测一下内存,它可以彻底的检测出内存的稳定度。 二、如果都没有,那就从软件方面排除故障了。 先说原理:内存有个存放数据的地方叫缓冲区,当程序把数据放在缓冲区,需要操作系统提供的“功能函数”来申请,如果内存分配成功,函数就会将所新开辟的内存区地址返回给应用程序,应用程序就可以通过这个地址使用这块内存。这就是“动态内存分配”,内存地址也就是编程中的“光标”。内存不是永远都招之即来、用之不尽的,有时候内存分配也会失败。当分配失败时系统函数会返回一个0值,这时返回值“0”已不表示新启用的光标,而是系统向应用程序发出的一个通知,告知出现了错误。作为应用程序,在每一次申请内存后都应该检查返回值是否为0,如果是,则意味着出现了故障,应该采取一些措施挽救,这就增强了程序的“健壮性”。若应用程序没有检查这个错误,它就会按照“思维惯性”认为这个值是给它分配的可用光标,继续在之后的执行中使用这块内存。真正的0地址内存区储存的是计算机系统中最重要的“中断描述符表”,绝对不允许应用程序使用。在没有保护机制的操作系统下(如DOS),写数据到这个地址会导致立即当机,而在健壮的操作系统中,如Windows等,这个操作会马上被系统的保护机制捕获,其结果就是由操作系统强行关闭出错的应用程序,以防止其错误扩大。这时候,就会出现上述的内存不能为“read”错误,并指出被引用的内存地址为“0x00000000“。内存分配失败故障的原因很多,内存不够、系统函数的版本不匹配等都可能有影响。因此,这种分配失败多见于操作系统使用很长时间后,安装了多种应用程序(包括无意中“安装”的病毒程序),更改了大量的系统参数和系统档案之后。 在使用动态分配的应用程序中,有时会有这样的情况出现:程序试图读写一块“应该可用”的内存,但不知为什么,这个预料中可用的光标已经失效了。有可能是“忘记了”向操作系统要求分配,也可能是程序自己在某个时候已经注销了这块内存而“没有留意”等等。注销了的内存被系统回收,其访问权已经不属于该应用程序,因此读写操作也同样会触发系统的保护机制,企图“违法”的程序唯一的下场就是被操作终止执行,回收全部资源。计算机世界的法律还是要比人类有效和严厉得多啊!像这样的情况都属于程序自身的BUG,你往往可在特定的操作顺序下重现错误。无效光标不一定总是0,因此错误提示中的内存地址也不一定为“0x00000000”,而是其它随机数字。 首先建议: 1、检查系统中是否有木马或病毒。这类程序为了控制系统往往不负责任地修改系统,从而导致操作系统异常。平常应加强信息安全意识,对来源不明的可执行程序绝不好奇。 2、更新操作系统,让操作系统的安装程序重新拷贝正确版本的系统档案、修正系统参数。有时候操作系统本身也会有BUG,要注意安装官方发行的升级程序。 3、尽量使用最新正式版本的应用程序、Beta版、试用版都会有BUG。 4、删除然后重新创建 Winnt\System32\Wbem\Repository 文件夹中的文件:在桌面上右击我的电脑,然后单击管理。在"服务和应用程序"下,单击服务,然后关闭并停止 Windows Management Instrumentation 服务。删除 Winnt\System32\Wbem\Repository 文件夹中的所有文件。(在删除前请创建这些文件的备份副本。)打开"服务和应用程序",单击服

频繁分配释放内存导致的性能问题分析

内核态与用户态是操作系统的两种运行级别,intel cpu提供Ring0-Ring3三种级别的运行模式。Ring0级别最高,Ring3最低。 当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态(或简称为内核态)。此时处理器处于特权级最高的(0级) 内核代码中执行。当进程处于内核态时,执行的内核代码会使用当前进程的内核栈。每个进程都有自己的内核栈。当进程在执行用户自己的代码时,则称其处于用户运行态(用户态)。即此时处理器在特权级最低的(3级)用户代码中运行。 在内核态下CPU可执行任何指令,在用户态下CPU只能执行非特权指令。当CPU处于内核态,可以随意进入用户态;而当CPU处于用户态时,用户从用户态切换到内核态只有在系统调用和中断两种情况下发生,一般程序一开始都是运行于用户态,当程序需要使用系统资源时,就必须通过调用软中断进入内核态。 现象 1 压力测试过程中,发现被测对象性能不够理想,具体表现为: 进程的系统态CPU消耗20,用户态CPU消耗10,系统idle大约70 2 用ps -o majflt,minflt -C program命令查看,发现majflt每秒增量为0,而minflt每秒增量大于10000。 初步分析 majflt代表major fault,中文名叫大错误,minflt代表minor fault,中文名叫小错误。 这两个数值表示一个进程自启动以来所发生的缺页中断的次数。 当一个进程发生缺页中断的时候,进程会陷入内核态,执行以下操作: 检查要访问的虚拟地址是否合法 查找/分配一个物理页 填充物理页内容(读取磁盘,或者直接置0,或者啥也不干) 建立映射关系(虚拟地址到物理地址) 重新执行发生缺页中断的那条指令 如果第3步,需要读取磁盘,那么这次缺页中断就是majflt,否则就是minflt。 此进程minflt如此之高,一秒10000多次,不得不怀疑它跟进程内核态cpu消耗大有很大关系。 分析代码 查看代码,发现是这么写的:一个请求来,用malloc分配2M内存,请求结束后free这块内存。看日志,发现分配内存语句耗时10us,平均一条请求处理耗时1000us 。原因已找到! 虽然分配内存语句的耗时在一条处理请求中耗时比重不大,但是这条语句严重影响了性能。要解释清楚原因,需要先了解一下内存分配的原理。 内存分配的原理 从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap (不考虑共享内存)。brk是将数据段(.data)的最高地址指针_edata往高地址推,mmap是在进程的虚拟地址空间中(一般是堆和栈中间)找一块空闲的。这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。

malloc申请大内存报错分析

malloc申请大内存报错分析 每个进程会有4G的虚拟地址空间, malloc得到的的地址都是虚拟地址, 并且当malloc的时候, 操作系统并不会将实际的内存分配给进程的, 所以malloc 只会占用进程自身的虚拟地址空间。 我以前也做过申请内存的测试,并且写了一个短文: 操作系统: Redhat Linux AS5 32bit 服务器内存: 4G 服务器类型: I32 最近写搜索引擎, 因为创建索引需要大量的内存, 所以对Linux下的大内存申请进行了一些测试. (1)char * p = (char *)malloc( 2G字节); =>申请失败. (2)char * p = (char *)malloc( 1.9G字节); =>申请成功 (3)连续的申请10个300M的内存空间 for ( i=0; i<10; i++ ) p = (char*)malloc(300M字节) =>前9次成功, 最后1次申请失败 (4)先申请1.9G, 再申请900M p = (char *)malloc( 1.9G字节); p = (char *)malloc( 900M字节); =>两次申请都成功. 我的理解如下: 对于在普通默认的2.6.*的linux内核! 32位的机器里, 一个进程的内存地址空间范围是0-3G共4个G, 其中最后一个G是内核态的地址空间, 所以给用户态的内存地址空间只留下了前3个G. 那么这样, malloc能够申请到3G以内的内存才对, 但是结果并非如此.在(1)中我们申请2G的内存都没有申请到, 这是什么原因呢?先让我们看一看实际上进程的4G

内存空间都放着或被map着什么: 第0G和第1G:用户态地址空间 第2G:库函数映射等 第3G:内核态内存空间 用户态地址空间中还包含了进程代码本身占用的地址空间, 栈的空间等等. 第2G中, 库函数映射等只占用了很少的一部分空间,还有很多的空闲空间. 现在让我们解释这4个问题: 第(1)个问题, 由上图可以看出, 没有连续的2G的内存, 所以申请2G的连续内存是肯定失败的. 第(2), 申请1.9G的空间是成功的, 这是因为前两个G可能会有1.9G的连续空间. 第(3), 申请了300M*9 = 2.7G是成功的, 是的, 前3G中有可能空间着2.7G的空间, 前两个G中空闲的加上第3个G中空闲的部分. 但是如果一次申请2.7G 是不行的, 因为没有连续的2.7G的地址空间. 最后一个300M没有申请成功的原因是, 申请的空间大小不能超过3G的用户态地址空间. 第(4), 比较有意思, 显然那个1.9G是在第1-2G这个地址空间中申请成功的, 后900M是第3个G这片地址空间中申请成功的. 我们一共申请到了2.8G的"内存", 却也不是连续的。 32位Linux单进程有4G内存的限制 可用下面代码测试系统能给单进程分配多少用户态内存: int main() { int MB = 0; while(malloc(1 << 20)) ++MB; printf("Allocated %d MB total.n", MB); }

在IE下的JS编程需注意的内存释放问题

在IE下的JS编程需注意的内存释放问题 在IE下的JS编程中,以下的编程方式都会造成即使关闭IE也无法释放内存的问题,下面分类给出: 1、给DOM对象添加的属性是一个对象的引用。范例: var MyObject = {}; document.getElementById('myDiv').myProp = MyObject; 解决方法: 在window.onunload事件中写上: document.getElementById('myDiv').myProp = null; 2、DOM对象与JS对象相互引用。范例: function Encapsulator(element) { this.elementReference = element; element.myProp = this; } new Encapsulator(document.getElementById('myDiv')); 解决方法: 在onunload事件中写上: document.getElementById('myDiv').myProp = null; 3、给DOM对象用attachEvent绑定事件。范例: function doClick() {} element.attachEvent("onclick", doClick); 解决方法: 在onunload事件中写上: element.detachEvent('onclick', doClick); 4、从外到内执行appendChild。这时即使调用removeChild也无法释放。范例: var parentDiv = document.createElement("div"); var childDiv = document.createElement("div"); document.body.appendChild(parentDiv); parentDiv.appendChild(childDiv); 解决方法: 从内到外执行appendChild: var parentDiv = document.createElement("div"); var childDiv = document.createElement("div"); parentDiv.appendChild(childDiv); document.body.appendChild(parentDiv); 5、反复重写同一个属性会造成内存大量占用(但关闭IE后内存会被释放)。范例: for(i = 0; i < 5000; i++) { hostElement.text = "asdfasdfasdf";

内存的申请与释放

实习四 主存储器空间的分配和回收 一、实习内容 主存储器空间的分配和回收。 二、实习目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实习帮助学生理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 三、实习题目 本实习模拟在两种存储管理方式下的主存分配和回收。 第一题:在可变分区管理方式下采用最先适应算法实现主存分配和实现主存回收。 [提示]: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。例如: 为了 说明哪些区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,格式如下: 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用

来登记新的空闲区(例如,作业撤离后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 上述的这张说明表的登记情况是按提示(1)中的例所装入的三个作业占用的主存区域后填写的。 (2) 当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分给作业占用;另一部分又成为一个较小的空闲区。为了尽量减少由于分割造成的空闲区,而尽量保存高地址部分有较大的连续空闲区域,以利于大型作业的装入。为此,在空闲区说明表中,把每个空闲区按其地址顺序登记,即每个后继的空闲区其起始地址总是比前者大。为了方便查找还可使表格“紧缩”,总是让“空表目”栏集中在表格的后部。 (3) 采用最先适应算法(顺序分配算法)分配主存空间。 按照作业的需要量,查空闲区说明表,顺序查看登记栏,找到第一个能满足要求的空闲区。当空闲区大于需要量时,一部分用来装入作业,另一部分仍为空闲区登记在空闲区说明表中。 由于本实习是模拟主存的分配,所以把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。最先适应分配算法如图4-1。 (4) 当一个作业执行结束撤离时,作业所占的区域应该归还,归还的区域如果与其它空闲区相邻,则应合成一个较大的空闲区,登记在空闲区说明表中。例如,在提示(1)中列举的情况下,如果作业2撤离,归还所占主存区域时,应与上、下相邻的空闲区一起合成一个大的空闲区登记在空闲区说明表中。归还主存时的回收算法如图4-2。 (5) 请按最先适应算法设计主存分配和回收的程序。然后按(1)中假设主存中已装入三个作业,且形成两个空闲区,确定空闲区说明表的初值。现有一个需要主存量为6K的作业4申请装入主存;然后作业3撤离;再作业2撤离。请你为它们进行主存分配和回收,把空闲区说明表的初值以及每次分配或回收后的变化显示出来或打印出来。 第二题:在分页式管理方式下采用位示图来表示主存分配情况,实现主存空间的分配和回收。 [提示]: (1) 分页式存储器把主存分成大小相等的若干块,作业的信息也按块的大小分页,作业装入主存时可把作业的信息按页分散存放在主存的空闲块中,为了说明主存中哪些块已经被占用,哪些块是尚未分配的空闲块,可用一张位示图来指出。位示图可由若干存储单元来构成,其中每一位与一个物理块对应,用0/1表示对应块为空闲/已占用。 (2) 假设某系统的主存被分成大小相等的64块,则位示图可用8个字节来构成,另用一单元记录当前空闲块数。如果已有第0,1,4,5,6,9,11,13,24,31,共10个主存

真正彻底释放、手机内存可用空间

手机需 .打开管理器,进入手机目录下,里面全是一些数据文件,不管软件安装在手机或内存卡,都会在这里生成文件,特别是当软件删除后,文件仍然留在此目录下.资料个人收集整理,勿做商业用途 .文件名全部为英文,大家仔细看文件名后看软件是否已经删除,删除了地就可以直接删除文件,每个文件占用空间都比较大,真正彻底释放手机内存可用空间.资料个人收集整理,勿做商业用途 .当然后删除自带地软件里面也是有残留文件地,对准软件名后可以一一删除,如果哪个文件名不知具体是哪个软件,多百度吧.资料个人收集整理,勿做商业用途 .打开管理器,进入手机目录下,里面是一些日志文件,占用地空间也是非常大地,可以全部删除,不过开机后仍然有两三个文件会自动生成,没关系.资料个人收集整理,勿做商业用途 深度清理三星安卓手机各种残留文件,释放手机内存可用空间”教程 、本教程由官方出品,适用所有三星安卓手机:~4.1.2,自己用了久,效果刚刚滴!论坛没人发,我给大家分享一下!资料个人收集整理,勿做商业用途 、深度清理三星安卓手机各种残留文件教程: 、首先,你得要,对于有系统洁癖滴你来说,眼里揉不进沙子呵呵,那是必须装文件浏览器地. 、进入浏览器,然后第二个文件就是了,进入后删除全部即可. 、返回浏览器主页,找到文件夹,进入后往下拉,找到文件夹,进入后删除全部即可,有时候你地手机会因为这样那样滴原因而资料个人收集整理,勿做商业用途 、产生系统错误,就会产生那个高达左右滴文件了. 、接下来,进入刺激滴环节,在浏览器主页面,找到文件夹,往下拉,找到文件夹,进入后你会看到诸多结尾滴文资料个人收集整理,勿做商业用途 、件,有些你通过名字即可判知其所属软件程序.那为啥要清理那些文件呢?因为在你安装软件、游戏后,就好在这个目录下产生文件,资料个人收集整理,勿做商业用途 、而删除软件后,它还存在地而且你可以借助文件浏览器看一下他们滴大小,呵呵,很惊人吧. 、那接下来就是点击最左下角滴虚拟功能键,点击“多选模式”,然后点“全部选择”,点击“删除”即可,接下来要赶紧做地事情就是资料个人收集整理,勿做商业用途 、退出浏览器,迅速关机,否则时间长了就会产生系统错误通知. 、开机后再去看看这些文件,是地,他们又自动生成了! 但是删除软件地那些文件就消失地无影无踪了,这样可以有效清理很多无资料个人收集整理,勿做商业用途 、用地废品,节省空间. 全面清理三星安卓手机各种残留文件教程 首先,你得要,对于有系统洁癖滴你来说,眼里揉不进沙子呵呵,那是必须装文件管理器地. 进入管理器,然后第二个文件就是了,进入后删除全部即可. 返回管理器主页,找到文件夹,进入后往下拉,找到文件夹,进入后删除全部即可,有时候你地手机会因为这样那样滴原因而资料个人收集整理,勿做商业用途 产生系统错误,就会产生那个高达左右滴文件了. 接下来,进入刺激滴环节,在管理器主页面,找到文件夹,往下拉,找到文件夹,进入后你会看到诸多结尾滴文资料个人收集整理,勿做商业用途 件,有些你通过名字即可判知其所属软件程序.那为啥要清理那些文件呢?因为在你安装软件、游戏后,就好在这个目录下产生文件,资料个人收集整理,勿做商业用途

实验五 内存块的申请与释放

实验五内存块的申请与释放 一、实验目的 1. 掌握内存动态分区的实现方法。 2. 进一步掌握内存块的分配策略。 3. 掌握内存块申请与释放的算法与实验。 二、实验内容 写一个程序,模拟实现内存的动态分区分配算法。假设内存大小为100K。 1. 分别使用首次适应算法、最佳适应算法分配内存空间。 2. 实现对内存空间的释放。 3. 显示内存分配情况。 三、实验源程序(仅供参考) /* 进入程序后可以根据菜单项进入不同的模块*/ /* 1. 使用首次适应算法分配空间*/ /* 2. 使用最佳适应算法分配空间*/ /* 3. 释放一块空间*/ /* 4. 显示内存分配情况*/ /* 5. 退出系统*/ #include #include #include #include #define MEMSIZE 100 /定义内存大小为100/ #define MINSIZE 2 /分配时如果剩余值小于此值则不再分割/ typedef struct_MemoryInformation /空间分区表结构/ { int start; /起始地址/ int size; /大小/ char info; /状态:‘f’空闲(FREE);‘u’占用(USED);‘e’表示结束(END)/ }MEMINFO; MEMINFO MemList[MEMSIZE]; void Display(); /* 函数名:InitAll()*/ /* 功能:初始化所有变量。*/ void InitAll() { int i; MEMINFO temp={0,0, …e?}; for(i=0;i

动态内存申请与释放

动态内存申请与释放 (1)malloc方式 申请一维内存时,格式为: 类型表示符*变量名; 变量名= (类型标识符*)malloc(sizeof(类型标识符)*数组大小); 在使用完该方式申请的内存后,必须用free()函数及时释放,格式为:free(变量名) 变量名= NULL; 当申请二维内存时,格式为: 类型标识符**变量名; 变量名= (类型标识符**)malloc(sizeof(类型标识符*)*数组行大小); for(int i=0;i<数组行大小;i++) 变量名[i] = (类型标识符*)malloc(sizeof(类型标识符)*数组列大小);释放格式: free(变量名); 变量名= NULL; (2)new方式 当申请一维内存时,格式为: 类型标识符*变量名; 变量名= new 类型标识符[数组大小];

使用该方式申请的内存后,必须用delete()函数及时释放格式: delete[] 变量名; 变量名= NULL; 当申请二维内存时,格式为: 类型标识符**变量名; 变量名= new 类型标识符*[数组行大小]; for(int i=0;i<数组行大小;i++) 变量名[i] = new 类型标识符[数组列大小]; 释放格式: delete[] 变量名; 变量名= NULL; 例子: 申请二维内存 代码: 1 #include 2 #include 3 using namespace std; 4 5 int main() 6 { 7 int row;

8 int col = 2; 9 cout<<"please input row:"<>row; 11 int **memo; 12 memo = (int **)malloc(sizeof(int*)*row); 13 for(int k=0;k>memo[i][j]; 19 } 20 cout<<"标号——————————————值"<

相关文档
相关文档 最新文档