文档库 最新最全的文档下载
当前位置:文档库 › 差分方程概念性质及其部分应用

差分方程概念性质及其部分应用

差分方程概念性质及其部分应用
差分方程概念性质及其部分应用

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

分式,分式方程计算导学案

分式和分式方程的计算 《学案》 学习目标 1.了解分式的概念,能说出分式加减,乘除的法则. 会用这些法则 进行简单的加减乘除混合运算。 2.了解分式方程的概念,知道分式方程每一步的解法依据,从而使 学生会解分式方程。 3. 通过分式与分数计算的类比,分式解法与分式方程解法的类比, 使学生理解他们的异同。从而培养学生总结概括的能力。 学习重点和难点 分式的基本性质和等式基本性质的应用; 难点是分式计算与解分式方程的异同. 学习过程 一、 完成下列预习作业: 1、分解因式: ① 2x-6= ; ② x 3-4x 2+4x= ; ③1-2x+x 2= ; ④ x 2-9y 2= ; 2、计算 ;=+7372 =-7372 依据 ==+5432;==-5432 依据 3、计算 x x y ++y y x +=________= ;32b a -32a a =________= = 依据是 32ab +2 14a =________= ;a-b+22b a b += = 依据 4、填出下列各等式中未知的分子或分母。 ()22y x y x y x -=+-()y x ≠; ()b a ab ab a -=-2

()1)3(3=--x x x ; ()1122-=-+x x x x 依据是 __________________________________________________________ 5、=÷= ?5432,5432 依据: __________________________________________________________ (1) 3234y x x y ? = (2) cd b a c ab 4322222-÷ 依据: __________________________________________________________ 二、自学、合作探究 例1: 2221x x x x x -+÷ (写出步骤及依据) 例2: x x x x x x 34292222--?+- (写出步骤及依据) 例3: 22111x x x --- (写出步骤及依据) 例4:a a a a a 21)242(22+?---

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

分式方程知识点总结

分式方程知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解;

④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;(2)分式方程的解法,是段考、中考考查的重点。 误区提醒 (1)去分母时漏乘整数项; (2)去分母时弄错符号;

差分方程

差分方程

第九节差分方程 迄今为止,我们所研究的变量基本上是属于连续变化的类型. 但在经济管理或其它实际问题中,大多数变量是以定义在整数集上的数列形式变化的,银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等等. 通常称这类变量为离散型变量. 对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等. 描述各离散变量之间关系的数学模型称为离散型模型. 求解这类模型就可以得到各离散型变量的运行规律. 本节将介绍在经济学和管理科学中最常见的一种离散型数学模型—差分方程. 内容分布图示 ★引言★差分的概念★例1-5 ★差分方程的概念★例6 ★例7 ★一阶常系数线性齐次差分方程 ★一阶常系数线性非齐次差分方程 ★例9-14 ★例15 ★例16 ★二阶常系数线性差分方程

★ 二阶常系数线性齐次差分方程的通解 ★ 例17 ★ 例18 ★ 例19 ★ 二阶常系数线性非齐次差分方程的特解 ★ 例20-23 差分方程在经济学中的应用 ★ 模型1 ★ 模型2 ★模型3 ★ 内容小结 ★ 课堂练习 ★ 习题8-9 ★ 返回 内容要点: 一、 差分的概念与性质 一般地,在连续变化的时间范围内,变量y 关于时间t 的变化率是用dt dy 来刻画的;对离散型的变量y ,我们常取在规定的时间区间上的差商 t y ??来刻画变量y 的变化率. 如果 选择1=?t ,则 )()1(t y t y y -+=? 可以近似表示变量y 的变化率. 由此我们给出差分的定义. 定义 1 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即 t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(

最新微分方程与差分方程

微分方程与差分方程

第八章微分方程与差分方程 一、作业题 1.?Skip Record If...? ?Skip Record If...? ?Skip Record If...?,?Skip Record If...?为任意常数 (2)?Skip Record If...? 设?Skip Record If...?,?Skip Record If...?,?Skip Record If...? (代入上式) ?Skip Record If...? ?Skip Record If...?,?Skip Record If...? ?Skip Record If...?,?Skip Record If...? (3)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? (4)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 满足?Skip Record If...?的特解为?Skip Record If...? (5)设?Skip Record If...?代入(1)式中, ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?满足初始条件的特解为?Skip Record If...? (6)特征方程为?Skip Record If...?,解得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢70

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

人教版八年级上册分式方程练习及解析

第八讲 分式方程 考点综述: 中考对于分式方程的主要要求包括分式方程的概念以及解法,会检验分式方程的根,分式方程的应用也是中考考查的重点和热点。 典型例题: 例1:解方程: (1)(2007连云港) 11322x x x -=--- (2)(2007德州)解方程:120112x x x x -+=+- (3)(2007宁波)解方程21124x x x -=-- 解:(1)方程两边同乘(2)x -,得1(1)3(2)x x =----. 解这个方程,得2x =. 检验:当2x =时,20x -=,所以2x =是增根,原方程无解 (2)两边同乘以(1)(12)x x +-, 得(1)(12)2(1)0x x x x --++=; 整理,得510x -=; 解得 15 x = . 经检验,15x =是原方程的根. (3)方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1, 化简,得2x=-3 x=-3/2, 经检验,x=-3/2是原方程的根. 例2:(2007沈阳)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队 单独完成此项工程所需天数的45 ,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天, 则乙施工队单独完成此项工程需45 x 天, 根据题意,得 10x +1245x =1

解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45 x =20 答:甲、乙两个施工队单独完成此项工程分别需25天和20天. 实战演练: 1.(2008安徽)分式方程112 x x =+的解是( ) A . x=1 B . x =-1 C . x=2 D . x =-2 2.(2008荆州)方程21011x x x -+=--的解是( ) A .2 B .0 C .1 D .3 3.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .12012045x x -=+ B . 12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 4.(2008襄樊)当m = 时,关于x 的分式方程213 x m x +=--无解. 5.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________. 6.(2008泰州)方程 22123=-+--x x x 的解是=x __________. 7.解方程: (1)(2008赤峰)2112323x x x -=-+ (2)(2008南京)22011 x x x -=+- 8.(2008咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?

第10章 微分方程与差分方程

第十章 微分方程与差分方程 A 级自测题 一、选择题(每小题5分,共20分) 1.下列方程中为可分离变量方程的是( ). A .xy y e '=. B .x xy y e '+=. C .22()()0x xy dx y x y dy +++=. D .0yy y x '+-=. 2.下列方程中为可降阶的方程是( ). A .1y xy y '''++=. B .2()5yy y '''+=. C .x y xe y ''=+. D .2(1)(1)x y x y ''-=+. 3.若连续函数()f x 满足关系式30()()ln 33 x t f x f dt =+?,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +. 4.函数28x x y A =?+是差分方程( )的通解. A .21320x x x y y y ++-+=. B .12320x x x y y y ---+=. C .128x x y y +-=-. D .128x x y y +-=. 二、填空题(每小题5分,共20分) 1.微分方程2sin d d ρρθθ +=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________. 3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________. 4.差分方程12x x y y +-=的通解为 . 三、求下列微分方程的通解(每小题5分,共40分) 1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;

分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结 一、分式的基本概念 1、分式的定义 一般地,我们把形如B A 的代数式叫做分式,其中 A , B 都是整式,且B 含有字母。A 叫做分式的分子,B 叫做分式的分母。分式也可以看做两个整式相除(除式中含有字母)的商。 2.分式的基本性质 分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。 M B M A M B M A B A ÷÷=??=。其中,M 是不等于0的整式。 3.分式的约分 把分式中分子和分母的公因式约去,叫做分式的约分。 4.最简分式 分子和分母没有公因式的分式叫做最简分式。利用分式的基本性质可以对分式进行化简 二、分式的运算 1、分式的乘除 分式的乘法法则 分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。 D B C A D C B A ??=? 分式的除法法则 分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。 C B D A C D B A D C B A ??=?=÷

2、分式的加减 同分母的分式加减法法则 同分母的两个分式相加(减),分母不变,把分子相加(减)。 B C A B C B A ±=± 异分母的分式加减法法则 异分母的两个分式相加(减),先通分,化为同分母的分式,再加(减)。 分式的通分 把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。 几个分式的公分母不止一个,通分时一般选取最简公分母 BD BC AD BD BC BD AD D C B A ±=±=± 分式的混合运算 分式的混合运算,与数的混合运算类似。先算乘除,再算加减;如果有括号,要先算括号里面的。 三、分式方程 1、分式方程的定义 分母中含有未知数的方程叫做分式方程。 2、分式方程的解 使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。 3、解分式方程的步骤 1.通过去分母将分式方程转化为整式方程,

相关文档
相关文档 最新文档