文档库 最新最全的文档下载
当前位置:文档库 › 微波多芯片组件裸芯片自动贴装吸嘴设计

微波多芯片组件裸芯片自动贴装吸嘴设计

微波多芯片组件裸芯片自动贴装吸嘴设计
微波多芯片组件裸芯片自动贴装吸嘴设计

常用微波元件

常用微波元件 关键词:微波元件、隔离器、环行器 引言: 微波元件的功能在于微波信号进行各种变换,按其变换性质可将微波元件分为以下三类: 一:线性互易元件 凡是元件中没有非线性和非互易性物质都属于这一类。常用的线性互易元件包括:匹配负载、衰减器、移相器、短路活塞、功分器、微波电桥、定向耦合器、阻抗变换器和滤波器等。 衰减器作为线性互易元件,其频率范围可以从0至26.5GHz, 功率高达2000W。 被应用于民用,军事,航天,空间技术等。 高标准的达到“两高一低”,高功率,高隔离度,低插损。 其频率的范围,主要由客户的需求,从而去定制频率。 以下简单介绍50W功率的同轴衰减器,此衰减值可达到60Db, 频率可为8GHz, 12.4GHz, 18GHz,N型接头。 正面背面侧面 二:线性非易元件 这类元件中包含磁化铁氧体等各向异性媒介,具有非互易特性,其散射矩阵是不对称的。但仍工作于线性区域,属于线性元件范围。常用的线性非互易性元件有隔离度、环形器等。 三:非线性元件 这类元件中含有非线性物质,能对微波信号进行非线性变换,从而引起频率的改变,并能通过电磁控制以改变元件的特性参量。常用的非线性元件有检波器,混频器,变频器以及电磁快控元件等。 微波元件分类:

近年来,为了实现微波系统的小型化,开始采用由微带和集中参数元件组成的微波集成电路,可以在一块基片上做出大量的元件,组成复杂的微波系统,完成各种不同功能。 简要的介绍波导型,同轴型,微带型的产品。 波导隔离器频率范围主要为:2.4-110GHz (具体的频段由客户定制) 于衰减器的使用范围类同,主要使用在民用,军事,航天,空间技术等。 同样具备“低插损,高隔离度,高功率”的特性。 优译波导隔离器 同轴:A :低频率12MHz 至 1875MHz, 含FM, VHF, UHF 等。 B :700MHz 至26.5GHz, 含GSM, CDMA, WCDMA, LTE, L.S.C.X 波段等。 优译同轴隔离器

教你看懂微波毫米波同轴连接器

教你看懂微波毫米波同轴连接器 说到微波电路,就不能不提及同轴连接器。不管你的电路是在哪个频段,只要它是需要在频谱仪,网络分析仪等仪器上面测量,你就需要用到同轴连接器。 同轴连接器的种类有很多:SMA、SMB、SMC、APC-7、K接头等等。不管你使用的是哪种连接器,在使用前都需要注意其适用的频率范围。连接器的频率范围都受限于同轴结构中的第一个圆形波导传播模式的激励。减小外导体直径将增加可使用的最高频率; 用绝缘体填充空间会降低可使用的最高频率和增加系统损耗。而所有连接器的性能都受接插件接口质量的影响。如果内外导体的直径偏离设计要求的尺寸、电镀质量差、或连接处间隙大,都会使接口的反射系数和电阻性损耗降级。这就是为什么同样的一种连接器,质量好的能够用在更高的频率,而且驻波系数更小的原因,当然假如你的电路频率比较低原创:关于微波毫米波同轴连接器的知识,或者就只是一个测试版,在要求不高的情况下,你直接在城隍庙买几个十几块的那种也就冇所谓啦。 下面简单介绍下几种在测量和测试应用中常用的连接器。 APC-7 (7mm) 连接器 在所有18GHz连接器中,APC-7( Amphenol 精密连接器-7 mm)具有最低的反射系数,可提供重复性最好的测量。这种连接器在1960 年代由HP 和Amphenol 两公司联合开发。这是采用无极性设计的连接器,能适合有最苛刻要求的应用,尤其是计量和校准应用的要求。 1.0 mm 馈通 馈通适配器的一端是1.0mm 的阴性接头,另一端上是玻璃至金属的密封接口。它适用于从同轴至微带线封装或电路板的超高频(达110 GHz) 信号跳变。 2.92 mm 连接器 也就是我们平常所用的K接头。1983年,Wiltron 公司的William.Old.Field高级工程师在总结和克服先前推出的毫米波连接器的基础上,研制出的一种新型的K型连接器。它能在DC-46GHz频带范围内使用,具有良好的电性能,且能与现在已广泛使用的SMA连接器兼容,而且很快地被广大制造商认可,且成为目前国际上应用最为广泛的毫米波接头之一。2.92mm 连接器能与SMA和3.5 mm连接器适配。在46GHz频段使用时性能优良,而且价格比3.5mm 连接器要便宜;在18GHz以下使用时,性能要优于SMA接头。所以,当你看到K接头与SMA 接头外型相差不多,但是价格贵了几十倍时千万不要诧异,那可是高级货啊。 2.4 mm 连接器 2.4 mm 连接器是HP、Amphenol和M/A-COM三公司联合开发用于50 GHz的连接器。这项设计通过增加外壁厚度和强化插槽解决了SMA 和2.92 mm 连接器的脆弱性问题。它能与SMA、 3.5mm和2.92 mm连接器精确适配。但由于生产2.4mm连接器的厂商不如K型连接器的多,价格较高,所以应用没有K型连接器广泛。 1.85 mm 连接器 1.85 mm 连接器是1980 年代中期由HP公司,即现在的Agilent 公司开发的一种连接器,它的工作频率达到65GHz。1988年HP公司把这项设计提供给公众领域,以推进连接器类型的标准化; 通过研制,几家制造商可提供几种这样的器件。1.85mm连接器与 2.4 mm连接器适配,并具有同样的坚固性。近几年来,1.85mm连接器已通过优化达到67 GHz 频率。许多专家认为这种连接器是达到67GHz一般使用所可能的最小同轴连接器。 N 型连接器 N型(美国海军) 50Ω连接器是1940年代为低于4GHz军事系统所设计的连接器。1960年代的改进把性能推进到12GHz,以后更达到了18GHz。有些75Ω产品使用具有较小中心导体直径的N 型设计,但与50Ω连接器不兼容。 SMA 连接器

微波毫米波Project论文

正交混合网络的设计 : 学号: 学院:电子工程与光电技术学院 指导老师:兆龙

正交混合网络的设计 摘要 随着通信技术的迅猛发展,微带定向耦合器作为微波、毫米波系统中的重要器件也得到了更大的关注。本文先介绍了3dB定向耦合器的研究背景,又通过将输入激励分解成偶模激励和奇模激励的叠加的偶—奇模分解技术从理论上分析了3dB定向耦合器的工作过程。 通过ADS软件,对该正交混合网络结构进行原理图仿真,再生成版图。调整原理图中的微带线参数,使得Momentum中的仿真结果满足设计指标:回波损耗6% >,完善隔离6% >,以及在端口2和端口3处的3dB功率匹配的不平衡度1dB <。 分别设计3dB定向耦合器在5.8GHz低频和60GHz高频上微带线结构,并对其进行优化,改善其性能指标。对于工作频率为5.8GHz的定向耦合器,得到如 下性能指标:①中心频率 05.85 f GHz =;②20dB return loss bandwidth为16.39%;③20dB isolation bandwidth为13.64%;④Amplitude imbalance 0.41 dB dB <<,Insertion imbalance0.41 dB dB <<。 对于工作频率为60GHz的定向耦合器,得到如下性能指标:①中心频率 060.04 f GHz =;②20dB return loss bandwidth为15.01%;③20dB isolation bandwidth为14.31%;④Amplitude imbalance0.8761dB =<,Insertion imbalance0.9071dB =<。 最后,本文分析了所得到的定向耦合器的性能,验证其性能。 关键字:ADS3dB定向耦合器微带线优化仿真

微波电路设计基础知识

微波电路及设计的基础知识
1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith 圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的 CAD 软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/ba18952676.html,

第1章
概述
所谓微波电路,通常是指工作频段的波长在 10m~1cm(即 30MHz~30GHz)之 间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz) 等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频 (RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以 及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多 独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工 艺、元器件、以及设计 技术等方面,都已经发展得非常成熟,并且应用领域越来 越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过 了 1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路 的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电 路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
第2章
微波电路的基本常识
2.1 电路分类
2.1.1 按照传输线分类
微波电路可以按照传输线的性质分类,如:
图 1 微带线
图 2 带状线
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/ba18952676.html,

1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光

培养方案——电磁场与微波技术(学科代码:080904) 一、培养目标 本学科培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图象、语音、数 据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人 才。学位获得者应能承担高等院校、科研院所及高科技企业的教学、科研及开发管理等工作。 二、研究方向 1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光纤光电子技术及应用、4.微波、光通信与雷达信号处理技术、5.计算电磁学及应用、6.微波电路与系统、7.雷达技术与雷达信息处理 三、学制及学分 1. 对于按硕—博一体化课程体系培养的研究生,获得硕士学位一般需要3年。研究生在申请硕士学位前,必须取得总学分不低于35分(含开题报告2学分)。获得博 士学位一般需要5年,最长学习年限不超过7年。研究生在申请博士学位前,必须取得总学分不低于45分(含开题报告2学分、专业综合知识答辩2学分;博士层 次课程不低于8学分)。 2. 对于通过我校博士生入学考试的普通博士生,获得博士学位一般需要3年,最长学习年限不超过6年。研究生在申请博士学位前,

必须取得总学分不低于10分(含开题报告2学 分;博士层次课程不低于8学分)。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: ES45201 高等电磁场理论(3) ES45202 介质导波结构及应用(3.5) ES45203 电磁场数值解法(3.5) ES45204 微波系统与工程(3) 专业课: ES44201 微波电路原理与设计(3) ES44202 天线技术基础(3) ES44203 光电子学(2) ES45211 固态电子学基础(3) ES45213 光波导技术(2) ES45215 毫米波通信技术(2) ES45221 现代微波测量(2) ES45222 耦合模理论(2) ES45223 现代天线设计(2) ES45224 电波接收技术(3) ES14202 快电子学(3) IN05102 数字信号处理(II)(3) IN05121 移动通信工程(3) CN05112 实变与泛函▲(4) ES46201 电磁场与微波技术专题(2) 备注: 1. 带▲号课程为博士层次必修课,硕士层次选修课。对于硕博连读生,该课程只能按博士层次必修课记录学分; 2. 博士研究生或硕博连读研究生除必修编号为CN05112的课程外,还必须至少选修编号为ES46201的课程或一门经学科点认可的其它博士层次课程。电磁 场与微波技术专题可以由导师指定某专题的参考书(资料),由研究生作读书报告,并提交书面报告。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求

微波电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线 图4 波导

图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例 图7 微波集成电路(MIC)示例

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:300MHz-3000GHz 波长:0.1mm-1m 独特的特点:RF/MW 的波长与自然界物体尺寸相比拟 在RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。 长线概念:通常把RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线! RF/MW 系统的组成: 传输线:传输RF/MW 信号 微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波 天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输 目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线 任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播 分析和研究电波在空间的传播方式和特点 常用传输线机构:矩形波导 共面波导 同轴线 带状线 微带线 槽线 分析方法 称为传输线的特性阻抗 特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。 常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。 常用的同轴线的特性阻抗有50 Ω 和75Ω两种。 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。 无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。 传播常数γ: α为衰减常数, 单位为dB/m β为相移常数 对于均匀无耗传输线来说, 由于β与ω成线性关系, 故导行波的相速与频率无关, 也称为无色散波。当传输线有损耗时, β不再与ω成线性关系, 使相速υp 与频率ω有关,这就称为色散特性。 定义传输线上任意一点 z 处的反射波电压(或电流)与入射波电压(或电流)之比为电压(或电流)反射系数(越小越好) 当Zl=Z0时, Γl=0, 即负载终端无反射, 此时传输线上反射系数处处为零, 一般称之为负载匹配。而当Zl ≠Z0时, 负载端就会产生一反射波, 向信源方向传播, 若信源阻抗与传输线特性阻抗不相等时, 则它将再次被反射。 定义传输线上波腹点电压振幅与波节点电压振幅之比为电压驻波比, 用ρ表示: 0L Z C =)j /()j (0C G L R Z ωω++=βωωγj )j )(j (+=++≈a C G L R min max U U =ρ

自己DIY微波毫米波盲区监测系统

DIY微波/毫米波盲区监测系统 刚刚买了车,了解到一款叫做盲区监测系统的东西。看了下市面上的原厂汽车变道辅助系统动不动就要2~3K,于是冒出自己动手DIY一个的打算。 盲区监测系统也称为“侧向辅助系统”、“并线辅助系统”、“变道辅助系统”,是一种能够检测车辆侧后方位车辆动态特性的雷达装置,能够在车辆行驶时对两侧的盲区进行动态探测,并对司机进行提示。 现在市场上的有用超声波探测的,一般倒车雷达探测距离基本在2.5m左右,这个距离在车速上了80一点反应时间都没有,也不知某宝销量怎么来的。 原厂上都是用雷达做的,一般使用K波段毫米波雷达。汽车前防撞系统也有用到,K波段毫米波雷达是一种多普勒运动传感器,能够准确测量物体移动速度,和移动方向,除了军事上外、在安防、灯控、智能家居,自动化控制领域也有用的。 24GHz是一个ISM 规定的全球通用的一个雷达工作频段,在此频段上工作时干扰较小,列如中国在一些军事上面的雷达是10GHZ,在某些场合会对其有干扰。K-LC2为瑞士RFbeam 公司生产,采用世界最先进的平面微带技术,具有体积小、集成化程度高、感应灵敏、探测距离远、休眠快速唤醒等特点。雷达传感器多工作于CW /FMCW /FSK模式,功能应用多样,包括:探测动态目标的速度、静态目标的距离、动态目标的距离和速度、目标的方位(角度测量)以及辨别运动的方向,非常适合应用在变道辅助系统上。 该模块输出为模拟的I和Q信号,最多可以达到30m的探测距离。其对应的频率表示目标速度,如44Hz(?D)﹦1km/h(v),8.8kHz(?D)﹦200km/h(v),当目标做靠近传感器的径向运动时,I 信号滞后于Q 信号90°;当目标做远离传感器的径向运动时,I信号超前于Q信号90°。 I和Q是一个幅度很小的微弱信号,必须经过运放,上图,其中一路的信号放大。 I和Q放大后接入STM32的ADC上,STM32的ADC具有定时触发,规则通道,DMA等特性,提供FFT运算库,非常适合做I\Q这两路信号的分析。实测1024点的FFT运算仅需1~2毫米完成,远远小于10KHz的采样频率采集1024个点,采用双缓冲方式下基本不遗漏波形。 硬件成品 实测距离测车25m左右,测人10m左右。 毫米波雷达

【CN209266394U】一种90度电桥微波集成电路芯片结构【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920218935.5 (22)申请日 2019.02.21 (73)专利权人 华芯智造微电子(重庆)股份有限 公司 地址 401420 重庆市綦江县古南街道金福 大道57号5幢 (72)发明人 彭朝亮  (51)Int.Cl. H01L 23/40(2006.01) H01L 23/467(2006.01) H01L 23/367(2006.01) H01L 23/00(2006.01) (54)实用新型名称 一种90度电桥微波集成电路芯片结构 (57)摘要 本实用新型公开了一种90度电桥微波集成 电路芯片结构,包括基板所述基板的顶部通过第 一减震机构连接有两个对称设置的第一微带,两 个所述第一微带顶部通过金属带连接,所述基板 的顶部通过第二减震机构连接有第二微带,所述 第一微带的底部固定连接有散热机构。本实用新 型通过固定杆和第一弹簧的弹性势能,对外部震 动进行削弱,同时利用滑块辅助固定杆的上下移 动,再利用连接杆、转轴、活动块和第二弹簧的弹 性势能对外部震动进行抵消,同时利用震动的动 能带动转轴上下移动,使扇叶带动转轴转动,从 而将微波集成电路芯片的热量通过散热口排出 基板外,同时利用防尘网进行防尘,防止灰尘干 扰本装置运行。权利要求书1页 说明书3页 附图2页CN 209266394 U 2019.08.16 C N 209266394 U

权 利 要 求 书1/1页CN 209266394 U 1.一种90度电桥微波集成电路芯片结构,包括基板(1),其特征在于,所述基板(1)的顶部通过第一减震机构连接有两个对称设置的第一微带(2),两个所述第一微带(2)顶部通过金属带(3)连接,所述基板(1)的顶部通过第二减震机构连接有第二微带(4),所述第一微带(2)的底部固定连接有散热机构。 2.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第一减震机构包括固定连接在第一微带(2)的底部的固定杆(5),所述基板(1)的底部设有与固定杆(5)对应的连接槽,所述固定杆(5)的两侧均固定连接有滑块(6),所述连接槽的内侧壁设有与滑块(6)对应的滑槽,所述固定杆(5)的底部通过第一弹簧(7)与连接槽的内底部固定连接。 3.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述散热机构包括转动连接在第一微带(2)底部的转轴(8),所述转轴(8)远离第一微带(2)底部的一端固定连接有扇叶(9),所述基板(1)的内设有与扇叶(9)对应的散热口。 4.根据权利要求3所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述散热口的内侧壁固定连接有防尘网(10)。 5.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第二减震机构包括转动连接在第二微带(4)上的连接杆(11),所述连接杆(11)远离第二微带(4)的一端转动连接有活动块(12),所述基板(1)上设有与活动块(12)对应的活动槽,所述活动槽的内侧壁固定连接有活动轴(13),所述活动块(12)滑动套接在活动轴(13)上,所述活动轴(13)上套设有第二弹簧(16),所述第二弹簧(16)的两端分别与活动块(12)和活动槽的内侧壁固定连接。 6.根据权利要求5所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第二微带(4)的底部和活动块(12)的底部均固定连接有安装座(14),所述安装座(14)的内侧壁固定连接有转动轴(15),所述连接杆(11)的两端分别转动套接在两个转动轴(15)上。 2

微波毫米波系统应用

微波毫米波系统应用 ——微波毫米波测试仪器技术的新进展 摘要:电子测量仪器是一个国家的战略性装备,其发展水平已成为一个国家科技水平、综合国力和国际竞争力的标志。 在通信、雷达、导航、电子对抗、空间技术、测控和航空航天等领域中,微波毫米波测试仪器是必不可少的测量手段。它复杂程 度高,技术难度大,工艺要求严格,一直备受关注并取得了突飞猛进的发展。本文介绍了微波毫米波网络分析仪、信号发生器 和信号分析仪设计技术的新进展和发展趋势,涉及到双端口和多端口网络分析仪及误差修正、非线性网络分析、频率合成、正交数字调制与解调等关键技术。 关键词:微波毫米波测试仪器;网络分析仪;信号发生器;信号分析仪 1微波毫米波网络分析仪技术 1.1双端口网络分析仪及误差修正技术 在突破扫频测量与误差修正等关键技术后,矢量网络分析仪(VNA)在高效、快速和多参数测量方面取得了显著进步。分体式矢网20世纪90年代趋于成熟并一直作为工业标准使用,虽然分体式VNA构成比较繁杂,但频段覆盖很宽,达到0.045~110GHz,测量精度也很高。一体化结构的VNA集成了激励信号源、S参数测试装置和多通道高灵敏度幅相接收机,实现了高性能和超宽带分析。全新的硬件设计方案使测量速度和性能有了极大的提高,具有奔腾芯片的嵌入式计算机和Windows操作系统的引入,使互连性和自动化程度有了质的飞跃。在测量速度、测试精度、动态范围、人机界面、智能化程度、稳定性、可靠性和重复性等方面具有明显的优势。二端口VNA的指标达到:频率范围10MHz~20/40/67/110GHz(可扩到325GHz)、频率分辨率1Hz、动态范围61~122dB、迹线噪声0.006dB/0.1°,具有频域和时域测试能力。67~110GHz还是分体式,但已大大简化了系统结构。 从VNA的设计原理来看,幅相接收机部分仍采用窄带锁相接收和同步检波技术。目前大都采用数字滤波和数字同步检波技术,接收机等效带宽最小达1Hz,测量精度和动态范围都有很大的提高。VNA的频率变换采用传统的取样变频法,虽然有成本低和易于实现的优势,但变频损耗较大,限制了VNA的动态范围。新型VNA采用基波/谐波混频法实现频率变换,它减小了变频损耗,动态范围提高约20dB;没有假响应进入锁相环路,有效地避免了假锁;本振源和激励源具有同样的调谐灵敏度,开环频率跟踪误差降低,加快了锁相捕获速度、扫描速度和跟踪速度。 误差修正技术是VNA的核心技术,通过测量校准和误差修正将校准件的精度转移到VNA 上。误差修正技术包括误差模型的建立、校准件的定标和误差参数的提取。模型是基于将一个非理想的VNA等效为一个理想的VNA与测量参考面之间插入一个两端口的误差适配器,误差适配器的参数将表征所有的系统误差。图1是VNA的12项误差模型[1],模型中下标带A 的S参数为被测(DUT)的实际S参数,下标带M的S参数为VNA测出的S参数。12项误差为:有效方向性误差EDF和EDR,传输跟踪误差ETF和ETR,反向测量跟踪误差ERF和ERR,通道隔离度误差EXF和EXR,等效源失配误差ESF和ESR,等效负载失配误差ELF和ELR。利用模型可以获得DUT网络包括12个误差项在内的测量值的解析表达式,VNA通过对一系列已知S参数的校准件的测量,求解系统的误差系数,从而获得DUT网络的实际S参数。

微波毫米波单片集成电路综述论文

微波毫米波单片集成电路综述论文 摘要 微波集成电路(Microwave Integrated Circuit缩写为MIC)是工作在微波波段和毫米波波段即30GHz~300GHz频率范围,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。微波集成电路起始于20世纪50年代。微波电路技术由同轴线、波导元件及其组成的系统转向平面型电路的一个重要原因,是微波固态器件的发展。60~70年代采用氧化铝基片和厚膜薄膜工艺;80年代开始有单片集成电路。 微波集成电路大致可以分为两种电路:混合微波集成电路和单片微波集成电路。 混合微波集成电路是用厚膜技术或薄膜技术将各种微波功能电路制作在适合传输微波信号的介质(如高氧化铝瓷、蓝宝石、石英等)上,再将分立有源元件安装在相应位置上组成微波集成电路。这种电路的特点是根据微波整机的要求和微波波段的划分进行设计和制造,所用集成电路多是专用的。常用的混合微波集成电路有微带混频器、微波低噪声放大器、功率放大器、倍频器、相控阵单元等各种宽带微波电路。 单片微波集成电路(Monolithic Microwave Integrated Circuit缩写为MMIC)则是将微波功能电路用半导体工艺制作在砷化镓或其他半导体芯片上的集成电路。这种电路的设计主要围绕微波信号的产生、放大、控制和信息处理等功能进行,大部分电路都是根据不同整机的要求和微波频段的特点设计的,专用性很强。在这类器件中,作为反馈和直流偏置元件的各个电阻器都采用具有高频特性的薄膜电阻,并且与各有源器件一起封装在一个芯片上,这使得各零件之间几乎无连线,从而使电路的感抗降至最低,且分布电容也极小,因而可用在工作频率和频宽都很高的MMIC 放大器中。 目前,MMIC的工作频率已可做到40GHz,频宽也已达到15GHz,因而可广泛应用于通信和GPS, 等各类设备的射频、中频和本振电路中。 本文主要从单片微波集成电路工艺、基于Si的单片微波集成电路的电路结构的

微波混合集成电路 合成频率源-编制说明

国家标准《微波混合集成电路合成频率源》(征求意见稿)编制说明 1工作简况 1.1任务来源 本项目是国家质量基础(NQI)项目中的一项。本国家标准的制定任务已列入2018年国家标准制修订项目,项目名称为《微波混合集成电路合成频率源》,项目编号为:20192058-T-339。本标准由中国电子科技集团公司第十三研究所负责组织制定,标准归口单位为全国半导体器件标准化技术委员会集成电路分技术委员会(TC78/SC2)。 1.2主要工作过程 接到编制任务,项目牵头单位中国电子科技集团公司第十三研究所成立了标准编制组。中国电子技术标准化研究院等相关单位参与标准编制工作。编制组落实了各单位职责,并制定编制计划。 编制组查找了国际、国内集成电路相关标准,认真研究了现行混合集成电路标准体系和相关标准技术内容,在此基础上形成了标准征求意见稿。 2标准编制原则和确定主要内容的论据及解决的主要问题 2.1本标准制定原则 本标准遵循“科学性、实用性、统一性、规范性”的原则进行编制,依据GB/T 1.1-2009规则起草,确立了标准范围、规范性引用文件、术语和定义、分类、技术要求、电特性测试方法、检验规则、标志、定货信息、交货准备等一系列合成频率源的技术指标。 2.2标准的主要内容与依据 2.2.1本标准的定位 目前我国混合集成电路相关标准主要有GB/T 8976-1996《膜集成电路和混合膜集成电路总规范》、GB/T 11498-2018 《半导体器件集成电路第21部分:膜集成电路和混合膜集成电路分规范(采用鉴定批准程序)》、GB/T 13062-2018 《半导体器件集成电路第21-1部分:膜集成电路和混合膜集成电路空白详细规范(采用鉴定批准程序)》等。 从目前微波混合集成电路合成频率源的技术发展来看,还未有相关合成源的相关规范,只有相关测试要求,如:GB/T 35002-2018《微波电路频率源测试方法》。本标准给出了合成频率源的指标体系,并规定产品分类、检验规则、参数测试方法、标志、包装、贮存、运输等要求,可作为合成频率源一类产品的空白详细规范使用。下面对标准技术内容详细说明。 2.2.2术语和定义

微波元器件常见单词(参数)中英文对照表

微波元器件常见单词/参数中英文对照表 元器件销售工程师必备手册 工作在微波波段(频率为300~300000兆赫)的器件,称为微波器件。微波器件按其功能可分为微波振荡器(微波源)、功率放大器、混频器、检波器、微波天线、微波传输线等。通过电路设计,可将这些器件组合成各种有特定功能的微波电路,例如,利用这些器件组装成发射机、接收机、天线系统、显示器等,用于雷达、电子战系统和通信系统等电子装备。微波器件按其工作原理和所用材料、工艺不同,又可分为微波电真空器件、微波半导体器件、微波集成电路(固态器件)和微波功率模块。微波电真空器件包括速调管、行波管、磁控管、返波管、回旋管、虚阴极振荡器等,利用电子在真空中运动及与外围电路相互作用产生振荡、放大、混频等各种功能。微波半导体器件包括微波晶体管和微波二极管,具有体积小、重量轻、可靠性好、耗电省等优点,但在高频、大功率情况下,不能完全取代电真空器件。微波集成电路是将具有微波功能的电路用半导体工艺制作在砷化镓或其他半导体材料芯片上,形成功能块,在固态相控阵雷达、电子对抗设备、导弹电子设备、微波通信系统和超高速计算机中,有着广阔的应用前景。 英文 中文 ACCURACY 精度 ACCURACY OVERALL 总体精度 ADAPTER 适配器 ANTENNA MOUNT 天线支架 ATTENUATION 衰减 ATTENUATION STEPS 衰减步进 Attenuators 衰减器 AVERAGE 平均值 AVERAGE POWER 平均功率 BANANA PLUG 香蕉插头 BASE STATIONS 基站 BIAS “TEE” 偏置T形器 BIAS PORT 偏置端口 BINDING POSTS 接线端子 BROADBAND 宽带 BULKHEAD 穿墙 BULLET 插塞式 Chain 链路 COAX ADAPTERS 同轴适配器 Coaxial Cable 同轴电缆 CODE 代码 CONNECTOR 连接器 COUPLED 耦合的 COUPLING 耦合 CW 连续波 CABLE ASSEMBLIES 电缆组件 D SUBMINIATUR E PLUG 超小型 D 插头

零件结构的工艺性

零件结构的工艺性 一、零件结构工艺性概念 机械加工零件的结构工艺性 由于一般情况下切削加工的劳动耗费最多.因而零件结构的切削加工工艺性更为重要。下面将就单件小批生产中对它考虑的一般原则及实例进行简要分析。 ①尽量减少不必要的加工面积 减少加工面积不仅可减少机械加工的劳动量,而且还可以减少刀具的损耗,提高装配质量。图 2(b)中的轴承座减少了底面的加工面积,降低了修配的工作量,保证配合面的接触。图3(b)中减少了精加工的面积,又避免了深孔加工。 (a) (b) 图2 减少轴承座底面加工面积 设计零件 设计结构 选择材料 确定尺寸 使用性能:能用、好用、耐用 工艺要求:好做、好装、好修

(a) 错误(b) 正确 (a) (b) 图3 避免深孔加工的方法 (a) 错误 (b) 正确 ②尽量避免或简化内表面的加工 因为外表面的加工要比内表面加工方便经济,又便于测量。因此,在零件设计时应力求避免在零件内腔进行加工。如图4所示,将图(a)中件2上的内沟槽a加工,改成图(b)中件1的外沟槽加工,这样加工与测量就都很方便。 3、有利于提高劳动生产率 (a) (b) 图5 退刀槽尺寸一致 (a) 错误(b) 正确 ①零件的有关尺寸应力求一致,并能用标准刀具加工。如图5(b)中改为退刀槽尺寸一致,则减少了刀具的种类,节省了换刀时间。如图6(b)采用凸台高度等高,则减少了加工过程中刀具的调整。如图7(b)

的结构,能采用标准钻头钻孔,从而方便了加工。 (a) (b) 图6 凸台高度相等 (a) 错误(b) 正确 (a) (b) 图7 便于采用标准钻头 (a) 错误(b) 正确 ②减少零件的安装次数:零件的加工表面应尽量分布在同一方向,或互相平行或互相垂直的表面上;次要表面应尽可能与主要表面分布在同一方向上,以便在加工主要表面时,同时将次要表面也加工出来;孔端的加工表面应为圆形凸台或沉孔,以便在加工孔时同时将凸台或沉孔全锪出来。如:图8(b)中的钻孔方向应一致;图9(b)中键槽的方位应一致。

微波传输线理论及应用

第一章:引言 随着时代的发展,微波技术以及工艺在近年来等到了飞速的发展,这主要是得益于新的微波器件以及新一代的微波传输线的发展。 在微波系统中,单刀双掷开关作为最简单,最常用的微波控制器件在大型的微波设计中起着很重要的作用,我在指导老师刘老师和何老师的悉心指导下,我参阅了一些有关的设计资料,完成了对单刀双掷开关的研制。 在本文中,我将从原理开始,具体分析和介绍研制的过程。在第二章中,主要介绍单刀双掷开关的基本构造,主要参数,匹配网络等等。在第三章中,主要介绍本次设计所使用的软件MicroWave Office,其操作形式,优化方法和自己的一些使用心得。第四章,将着重介绍本次设计的图形,参数的测量、优化指标。 第三章微波固态电路介绍 微波固态电路的发展与微波集成电路技术密切相关,而微型化技术则是以提高集成度为基础的。目前对雷达,电子战和通讯等电子设备中微波电路“微型化”的呼声甚高;“微型化”的含义远比其名词本身寓意要广泛,它至少还意味着:一致性,低价格和高可靠。微波集成电路(MIC)的概念来自低频集成电路(IC),其发展也是遵循着低频的途径。60年代后期随着各种微波半导体器件的问世以及微带传输线理论和薄膜工艺的成熟,以混合集成电路(HMIC)的形式出现。

是采用薄膜或厚膜工艺在介质衬底表面制作以分布参数为主的微波电路,其中有源器件和集总参数元件(电容,电阻等)通过键合,焊接或压接加到衬底表面。70年代HMIC发展迅速,应用广泛,使原先用分立元件实现的微波系统在小型化,轻量化方面起了变革,性能与价格方面也有所得益,而且逐渐出现了集成度提高的多功能HMIC。HMIC的发展对微波技术本身起了推动作用,并为单片微波集成电路的研制奠定了基础。MMIC的含义是采用半导体多层工艺(如外延,离子注入,溅射,蒸发,扩散等方法或这些方法与其他方法的结合)将所有的微波或毫米波有源器件或无源元件(包括连接线)制成一整体或制作于半绝缘衬底表面以实现单个芯片的功能部件或整件。近10年来,MMIC事业蓬勃发展,归因于:性能优良的GaAs 半绝缘衬底材料的大量应用及外延,离子注入等工艺的成熟,MESFET的大力开发并已成为多用途器件;肖特基势垒二极管与各种MESFET(包括双栅FET)可用相同工艺在同一衬底上制作;特别是可进行精确定模和优化设计的CAD工具日臻完善。与功能相同的HMIC相比,MMIC的体积,重量可减至1/100或更小(频率愈低,减少愈多,在L波段可减至1/1000,或更小)。因MMIC适于批加工,在材料均匀性好和工艺成熟的前提下可实现良好的电性能一致。由于大大减少接插件,联线和外接元器件,可靠性改善因数可达20---100,由于寄生参量减至最小,MMIC具有宽带本能,其抗辐射能力也较强。但MMIC也有其缺点。首先。采用半导体工艺在衬底上制成的电路,从占有面积来看,无源元件比有源元件大,因此不仅价格高,也不利

MMIC单片微波集成电路

单片微波集成电路(MMIC),有时也称射频集成电路(RFIC),它是随着半导体制造技术的发展,特别是离子注入控制水平的提高和晶体管自我排列工艺的成熟而出现的一类高频放大器件。 微波集成电路 Microwave Integrated Circuit 工作在300M赫~300G赫频率范围内的集成电路。简称MIC。分为混合微波集成电路和单片微波集成电路。前者是用厚膜技术或薄膜技术将各种微波功能电路制作在适合传输微波信号的介质(如高氧化铝瓷、蓝宝石、石英等)上,再将分立有源元件安装在相应位置上组成微波集成电路。这种电路的特点是根据微波整机的要求和微波波段的划分进行设计和制造,所用集成电路多是专用的。单片微波集成电路则是将微波功能电路用半导体工艺制作在砷化镓或其他半导体芯片上的集成电路。这种电路的设计主要围绕微波信号的产生、放大、控制和信息处理等功能进行,大部分电路都是根据不同整机的要求和微波频段的特点设计的,专用性很强。 在这类器件中,作为反馈和直流偏置元件的各个电阻器都采用具有高频特性的薄膜电阻,并且与各有源器件一起封装在一个芯片上,这使得各零件之间几乎无连线,从而使电路的感抗降至最低,且分布电容也极小,因而可用在工作频率和频宽都很高的MMIC放大器中。 目前,MMIC的工作频率已可做到40GHz,频宽也已达到15GHz,因而可广泛应用于通信和GPS, 等各类设备的射频、中频和本振电路中。 根据制作材料和内部电路结构的不同,MMIC可以分成两大类:一类是基于硅Silicon晶体管的MMIC,另一类是基于砷化镓场效应管(GaAs FET)的MMIC。GaAs FET类MMIC具有工作频率高、频率范围宽、动态范围大、噪声低的特点,但价格昂贵,因此应用场合较少;而硅晶体管的MMIC性能优越、使用方便,而且价格低廉,因而应用非常广泛. 微波集成电路是工作在微波波段和毫米波波段,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。可分为混合微波集成电路和单片微波集成电路。 微波集成电路起始于20世纪50年代。微波电路技术由同轴线、波导元件及其组成的系统转向平面型电路的一个重要原因,是微波固态器件的发展。60~70年代采用氧化铝基片和厚膜薄膜工艺;80年代开始有单片集成电路。 微波集成电路的分类 混合微波集成电路是采用薄膜或厚膜技术,将无源微波电路制作在适合传输微波信号的基片上的功能块。电路是根据系统的需要而设计制造的。常用的混合微波集成电路有微带混频器、微波低噪声放大器、功率放大器、倍频器、相控阵单元等各种宽带微波电路。

2018年微波毫米波器件行业分析报告

2018年微波毫米波器件行业分析报告 2018年3月

目录 一、军民微波/毫米波器件的进展 (5) 1、微波/毫米波技术简介 (5) 2、微波器件:处理/变换微波信号的关键器件 (7) 二、微波/毫米波器件:从军工到民用 (9) 1、国防需求推动微波技术,微波器件不断发展 (9) (1)微波技术,起源于军工 (9) ①雷达依然是微波技术的典型应用 (11) ②电子对抗 (12) ③微波武器 (13) (2)国防需求推动微波器件不断向小型化、多功能、集成化发展 (14) 2、微波/毫米波技术:从航天军工到民用5G+自动驾驶 (16) 3、5G高频化,微波/毫米波器件民用市场广阔 (20) (1)基站射频市场 (21) ①宏基站 (21) ②小基站 (21) ③基站射频器件 (22) (2)终端射频市场 (24) (3)军用单位技术积累深,各有优势,竞争有序 (26) 三、相关企业简况 (29) 1、红相电力:切入军用微波器件领域,形成电力检测+轨交+军工三大主业 (29) 2、金信诺:收购相控阵雷达国产芯片标的,布局“5G+军工” (31) 3、盛路通信:天线射频企业龙头,切入军用微波器件领域 (33)

四、主要风险 (34) 1、5G高频段的技术研发不及预期 (34) 2、微波器件/组件民用化过程不及预期 (34) 3、收购企业业绩不达标和商誉减值风险 (34)

微波技术起源于军工,随着通信向高频发展,将在民用领域得到广泛的应用。微波具有波长短、频带宽、穿透能力强、抗干扰、不易受环境影响特点。自上世纪40年代逐步应用于军用雷达以来,在电子对抗、微波武器、通信、微波检测等军用领域方面应用广泛。微波技术,本身作为军民两用技术,其民用价值不断被研究和发掘,如微波能应用、无线通信、个人通信网、直播卫星接收、甚小孔径终端卫星系统。随着通信逐步向高频段发展和器件工艺的成熟,曾在军用领域大展神威的微波和毫米波技术,将逐步应用到5G高频段、毫米波雷达等民用领域。特别是,5G的关键技术毫米波技术、MIMO(大规模天线)以及波束形成等技术与军用的相控阵雷达技术同源。 微波器件/组件是微波技术的关键组成部分,受国防需求驱动,技术、工艺不断发展,在军工领域起步较早、经验较丰富,具备“军转民”技术基础。微波器件/组件主要功能是处理和变换微波能量和信号,是整机系统的重要组成部分。随着武器装备逐渐向小型化、多功能化、轻量化和集成化发展,推动着微波器件/组件的技术和工艺等不断向前发展。因此,微波器件在军工领域起步较早,相关军工科研单位等在微波器件的研发、生产工艺等方面积累了较多的经验,技术实力较为深厚,具备“军转民”技术基础。 在通信5G和毫米波雷达等民用领域,微波器件/组件市场空间广阔。工信部公告我国5G使用中频率频段,并将位于毫米波的高频率波段作为技术研发试验波段。未来随5G建设的逐渐启动,5G基站的规模化铺设将催生对射频微波器件的大量需求,尤其是对应用于高频

相关文档