文档库 最新最全的文档下载
当前位置:文档库 › 孔板、文丘里流量计校核实验

孔板、文丘里流量计校核实验

孔板、文丘里流量计校核实验
孔板、文丘里流量计校核实验

五、数据处理

1.数据记录

计量水箱规格:长 400mm ;宽 308mm 管径d (mm ):25 孔板取喉径d 0(mm ):15.347 文丘里管取喉径d 0(mm ):16.462

查出实验温度下水的物性:

20摄氏度时水的密度:ρ=998.2kg ·m-3,水的粘度 μ=100.50×10-5Pa ·s; 重力加速度:g=9.81m ·s-2

2.数据处理

d V d

V d du πμρ

πμρμρ44Re 2

=?==

ρ/20000p A C A u V ?== 则 ρ

/200p u C ?=

孔板流量计实验数据处理

1)数据记录

Co 平均值=0.7224

2)作出R-Qv 双对数关系图和Co-Re 单对数关系图

0.040.060.08

0.10.120.140.16

0.18l g R

lgQv

孔板流量计R-Qv 双对数坐标图y=-0.10294+1164.85716x

0.2

0.30.40.50.60.70.80.91.0C o

logRe

孔板流量计C0与Re 的单对数关系图

文丘里流量计实验数据处理

Cv平均值=

2)作出R-Qv 双对数关系图和Cv —Re 单对数关系图

1E-30.01

0.1

R

Qv

R-Qv 双对数关系图y=9.50373+2.77622x

0.20.30.40.50.6

0.70.80.9C v

logRe

Cv —Re 单对数关系图

3.结果分析

0C 和Cv 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定。根据上图得当Re 数增大到一定值后,0C 和Cv 不再随着Re 而变,成为一个和孔径与管径之比有关的常数。

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

中国石油大学(华东)流量计实验报告

中国石油大学(华东)工程流体力学实验报告18-19-2 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1 2 3 文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它1-12 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3),22 1 2 22 111212()()= 22p p v v h h h z z g g ααγ γ ?=-=+ -+ - 如果假设动能修正系数1210.αα==,则最终得到理论流量为: Q μ= =理

式中 K= μ=,A为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因黏性造成的水头损失,流量应修正为: Qα = 实 其中 1.0 α<,称为流量计的流量系数。 数 1

2.实验数据记录及处理见表1-3-1。 表1-3-1 实验数据记录及处理表 (4)= 6867.01 cm3/s (5)流量系数:α== = 0.67

孔板流量计简易计算公式应用

孔板流量计简易计算公式应用 介绍孔板流量计的计算公式,通过将简易公式和通用公式的对比,发现简易公式更直观,而且计量误差很小,能够满足生产要求,为维护提供了方便。 关键词计量学;孔板;流量;公式;误差 孔板是典型的差压式流量计,它结构简单,制造方便,使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度(情况)在孔板前后发生了很大的变化,从而在孔板前后形成了差压,通过测量差压可以反映流体流量大小。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 其中Q ——体积流量,Nm3/h; Qmax——设计最大流量,Nm3/h;? P ——实际差压,Pa; ? P设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动(变化)较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。 在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流

量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1、孔板流量计计算公式; 1.1 通用计算公式: 其中Q----体积流量,Nm3/h; K----系数; d----工况下节流件开孔直径,mm;ε----膨胀系数;α----流量系数;? P----实际差压,Pa;ρ----介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方 程,有(3) P ----压力,单位Pa;V ----体积,单位m3;T ----绝对温度,K; n ----物质的量;R ----气体常数。 相同(一定)质量的气体在温度和压力发生变化时,有: P1----某种状态下气体压强,Pa;V1----某种状态下气体体积,m3;T1----某种状态下气体绝对温度,K;又:

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

孔板流量计的选型与使用方法

淮安科昊自动化控制工程有限公司是一家专业从事节流装 置研究、开发、生产、销售、工程技术服务于一体的高科技企业。现代化的生产设备、优质的加工工艺、严格的现场管理、一流的售后服务,使公司的技术优势一直居于国内同行业领先地位,达到国际先进水平。致力于我国流量计量行业,努力为我国的流体计量行业发展做更大的贡献。如今,公司产品已经广泛应用于市政建设、环保、石油化工、轻工、冶金、电力、天然气建设和造纸等行业,并深受广大用户的好评与欢迎。我们的服务信念是在确保产品质量的同时,也必将提供优质的售后服务。 法兰环孔型号:KH-LG 适用压力:PN0.01~PN2.5Mpa 适用管径:DN40~DN600 用途及特点:使用于气体、液体和蒸汽等流量测量,控制和调节。它具有测量精度高、造价低、安装简单、维护方便等特点。 角接环室取压标准孔板-法环孔型号:KH-LG 适用压力:PN2.5~PN6.3Mpa 适用管径:DN40~DN600 用途及特点:使用于较高工作压力气体、液体和蒸汽等流量

测量,控制和调节。它具有测量精度高、使用寿命长、安装维护方便等特点。 角接取压标准孔板--法孔型号:KH-LG 适用压力:PN6.3~PN10Mpa 适用管径:DN40~DN500 用途及特点:使用于高压下气体、液体和蒸汽等流量测量,控制和调节。它具有测量精度高、安装使用、维护方便等特点。 角接取压标准孔板-环孔型号:KH-LG 适用压力:PN2.5~PN32.0Mpa 适用管径:DN15~DN500 用途及特点:使用于高温高压下的液体,蒸汽及热网管道的流量测量,控制和调节。它具有耐冲击,孔板或喷嘴不易变形,测量精度高、密封性能好,使用寿命长等特点。 角接钻孔取压标准孔板型号:KH-LG 适用压力:PN0.01~PN2.5Mpa 适用管径:DN400~DN2000 用途及特点:适用于气体、液体等介质的大管径的流量测量控制和调节。它具有测量精度高、安装使用方便,造价低等

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

孔板流量计计算公式

0 引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获

得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1 孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。

孔板流量计计算公式

孔板流量计计算公式-CAL-FENGHAI.-(YICAI)-Company One1

0引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。

1孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。 相同( 一定) 质量的气体在温度和压力发生变化时,有:

流体力学实验 文丘里实验报告单

文丘里流量计实验 一、实验目的和要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技能; 2.掌握气一水多管压差计量测压差的技能; 3.通过实验与量纲分析,了解应用量纲分析与实验结台研究水力学问题的途径,进而掌握文丘里流量计水力特征。 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文丘里管过水能力关系式 h K p Z p Z g d d d q V ?=+-+-= )]/()/[(21 )( 422114 2 12 1 γγπ ‘ (6-9) 1)/(/ 24 4 212 1 -= d d g d K π )()(2 21 1γ γ p Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。 由于阻力的存在,实际通过的流量V q 恒小于' V q 。今引入一无量纲系数’ V V q q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即 h K q q V V ?=' =μμ (6-10) 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图6-10 所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1.自循环供水器; 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.有色水水管 6.稳水孔板 7.文丘里实验管段 8.测压计气阀 9.测压计10.滑尺11.多管压差计12.实验流量调节阀 图6—10文丘里流量计实验装置图 四、实验方法与步骤 1.测记各有关常数。 2.开电源开关,全关阀12,检核测管液面读数 4321h h h h -+-是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm ,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm ,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。 五、实验结果处理及分析 1.记录计算有关常数。 实验装置台号No____ =1d m , =2d m , 水温=t ℃, =ν m 2/s , 水箱液面标尺值=?0 cm , 管轴线高程标尺值=? cm 。 2 整理记录计算表6-9 6-10

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

流体力学实验报告 流量计实验报告

中国石油大学(华东)流量计实验实验报告 实验日期:2011.4.18 成绩: 班级:石工09-13班学号:09021614 姓名:石海山教师: 同组者:尚斌宋玉良武希涛杜姗姗 实验三、流量计实验 一、实验目的 1、掌握孔板、文丘利节流式流量计的工作原理及用途; 2、测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3、了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。 二、实验装置 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。 F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图3-1 管流综合实验装置流程图

三、实验原理 1、文丘利流量计 文丘利管是一种常用的两侧有管道流量的装置,属压差式流量计(见图3-2)。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的官道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。 2、孔板流量计 如图3-3所示,在管道上设置空板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上压差计,通过量测两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。孔板流量计也属于压差式流量计,其特点是结构简单。 图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图 3、理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即压差计液面高差h ?),因此,通过量测到的h ?建立了两个断面平均流速1v 和2v 之间的关系: h ?=1h -2h =(1z + γ 1 p )-(2z + γ 2 p )= g v 22 2 2α- g v 22 1 1α (3-1) 如果假设动能修正系数1α=2α=1.0,则最终得到理论流量为: 理Q = ) ( 1 2 A A A A A -h g △2=h K △μ 其中:K =g A 2

孔板流量计的设计制作与标定

实验六 孔板流量计的设计、制作与标定(~20学时) 一、实验目的 动手能力是青年学生综合素质的一个重要方面,理科实验教学内容偏重验证课堂讲授的知识,且由于教学时数的限制,仪器、药品都已具备,学生自己设计,自己动手的机会相对较少。 本实验从孔板流量计的设计、安装、标定,到流量计曲线的绘制,都由学生自己处理。通过自己的设计、自己制作并标定,以及数据处理写出使用说明书,动手能力及数据处理能力都可以得到锻炼。 此外,尽管我们的教学设施日益齐备,但学生在未来教学或科研工作中自己动手制作一些小设备、小仪器的情况不可避免,该实验可培养学生自己动手的思维意识,解决实验中某些仪器设备的困难。当然,自己制作对孔板流量计的测试原理、制作关键都可以加深理解。 二、制作原理 孔板流量计的测试原理是流体通过孔板的锐孔时,由于孔板的滞流作用,造成流体内机械能的相互转换,即静压能转化为动能。在孔板前,管道内完全充满流体,且具有稳定的边界层,当流体流过孔板的锐孔后,边界层发生分离,主体流体四周被旋涡环绕,流体直径缩小,直径最小处称为缩脉,然后又逐渐变大。显然,孔板前后流体内发生了机械能转换。 图1.标准孔板流量计 图2.孔板流量计原理示意图 1. 测压环 2.孔板 3.导管 4.压差计 根据机械能衡算式,可导出孔板流量计的测量计算公式。如图2所示,在孔板前导管上取一截面为1-1,在孔板后的缩脉处另取一截面为2-2。在截面1-1,2-2之间进行能量衡算: 由于衡算系统内没有轴功,所以 ,又由于管子是水平的,所以ΔZ=0;而且假定流体为不可压缩的理想流体,则 =0,而 F · -w s =0·

流量计校核实验报告

流量计校核实验报告 一、实验目的 1、熟悉孔板流量计和文氏流量计的构造及工作原理; 2、掌握流量计标定方法之一——称量法; 3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律; 4、测定孔板流量计和文氏流量计的流量与压差的关系。 二、实验原理 常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。 孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。 (一)孔板流量计 孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。 孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。 若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。 在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得: 222112 2u u p p ρ --= (1) 或 = (2) 由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。因此,用孔板孔径处流速0u 来代替式(2)中的 2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。式(2)就 可改写为: 图1-1 孔板流量计构造原理图

孔板流量计使用和安装说明

孔板流量计使用和安装说明 一、用途 FKL型径距取压法设计的孔板流量计,是煤矿计量抽放管路中瓦斯流量的装置,其结构简单,安装容易,测量精度高。 二、结构 FKL型孔板流量计主要由孔板、钢管、法兰盘、橡胶垫圈及测量嘴等部件组成。各部件安装结构如图1所示。 图1 FKL型孔板流量计安装结构图 1—孔板;2—橡胶垫圈;3—法兰盘;4—测量嘴;5—钢管 三、规格 通过估算抽放瓦斯量和水柱压差?h值的测量范围,合理选择孔板直径的大小。一般孔板压差?h值测量范围应在100~1000Pa。 本孔板流量计为系列产品,其规格如表1所示,用户可根据瓦斯抽放泵站吸气管路的内径或瓦斯抽放管路内径选择相应型号的孔板流量计。 表1 四、安装及使用注意事项 1、孔板安装应使孔口与管道同心,端面与管道轴线垂直,同轴度小于1%。 2、孔板小口朝向钻孔方向,喇叭口对准抽放泵方向。 3、孔板安装地点应尽量选择在平直地段。但对于受条件限制的局部地点,直线段距离应是管径的 20倍以上。 4、在孔板前方10m处应安设一个放水器和金属网,以防止积水引起压差?h值波动和煤、岩等杂物 堵塞孔板。 5、孔板要定期拆卸清洗,保持清洁。

五、煤矿标准孔板混合瓦斯量计算公式 1、精确计算公式 Γ T ?= δδh kb Q H 81 .91 式中 H Q ——用标准孔板观测时的混合瓦斯量,m 3 /min ; k ——孔板实际流量特性系数; h ?——孔板前后端压差,Pa ; T δ——温度校正系数; T δ= t +273293 t ——测定地点管道内气体温度,o C ; Γδ——压力校正系数; 325 .101325.101j i D p p p = ±=Γδ D p ——测定地点的大气压力,KPa ; i p ——观测点管道内的压力,负压为“-” ;正压为“+”;KPa ; j P ——孔板进气侧管道内的绝对压力,KPa ; 101.325——标准大气压,KPa ; b ——瓦斯浓度校正系数; x r r b 00446.011 -= = 标 空标 空标r ——在101.325 KPa 、20 o C 时的空气容量,为1.2047kg/m 3 ; 标r ——在101.325KPa 、20 o C 时的瓦斯容量,为0.6673 kg/m 3 ; x ——混合气体中的瓦斯浓度,%。 六、气体流量简易计算公式 h k V ??= (min /3 m ) 式中 V 气体流量,min /3 m ; h ?:U 型管水柱压差值,若为水银柱应乘以13.6㎜; k :孔板系数(见表1) 七、计算纯瓦斯量的公式

石大流量计实验报告

石大流量计实验报告

实验日期:成绩: 姓名:教师: 班级:_学号:_ 同组者: 实验三、流量计实验 一、实验目的 1.掌握孔板、文丘利节流式流量计的工作原理及用途。 2.测量孔板流量计的流量系数a,绘制流量计的校正曲 线。 3.了解两用式压差计的结构及工作原理,掌握两用式压 差计的使用方法。 实验装置 本实验采用管流综合实验装置。管流综合实 验装置包括六根实验管路、电磁流量计、文丘利 流量计、孔板流量计,其结构如图1- 3-1示

稳m水箱 离心泵 F1 文丘利流量计____ ; F2 孑L板流量计;F3 电磁流量计C——量水箱:V——阀门:K——局部阻力实验管路

三、实验原理 1.文丘利流量计。 文丘利流量计是一种常用的测量有压管道流量的装置,属压差式流量计(见图1-3-2)。它包括收缩段,喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q,再经修正即可得到实际流量。 2.孔板流量计 如图1-3-3所示,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面 2-2上设测压空孔,并接上压差计,通过测量两个断面的测压管水头差可以计算管道的理论流量Q,再经修正即可得到实际流量。孔板流量计也属于压差式流量计,其特点是结构简单。

3.理论流量 (1-3-1) 云弘如果假设动能修正系数到的理论流量为: Q理=——A .. 2g「h =八h (△占 r A2 A , 图1-3-3孔板流量计示意图 :1 = 2 =1. 0,则最终得 图1-3-2文丘利流量计示意图

6 文丘里流量计实验

文丘里流量计实验 一、实验目的要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技术和应用气—水多管压差计量测压差的技术; 2.通过实验与量纲分析,了解应用量纲分析与实验结合研究水力学问题的途径,进而掌握文丘里流量计的水力特性。 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文 丘里实验管段8. 测压计气阀9. 测压计10. 滑尺11. 多管压差计 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式

式中: 为两断面测压管水头差。 由于阻力的存在,实际通过的流量 恒小于 。今引入一无量纲系数 (μ称为 流量系数),对计算所得的流量值进行修正。 即 另,由水静力学基本方程可得气—水多管压差计的为 三、实验方法与步骤 1.测记各有关常数。 2.打开电源开关,全关阀12,检核测管液面读数h 1-h 2+h 3-h 4是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步序调节:拧开气阀8,将清水注入测管2、3,待h 2=h 3≈24cm,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至h 1=h 2≈28.5cm,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各测压管的液面读数h 1、h 2、h 3、h 4,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。

孔板流量计简易计算公式应用

孔板流量计简易计算公式 应用 Prepared on 24 November 2020

孔板流量计简易计算公式应用 介绍孔板流量计的计算公式,通过将简易公式和通用公式的对比,发现简易公式更直观,而且计量误差很小,能够满足生产要求,为维护提供了方便。 关键词计量学;孔板;流量;公式;误差 孔板是典型的差压式流量计,它结构简单,制造方便,使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度(情况)在孔板前后发生了很大的变化,从而在孔板前后形成了差压,通过测量差压可以反映流体流量大小。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 其中Q——体积流量,Nm3/h; Qmax——设计最大流量,Nm3/h;P——实际差压,Pa; P设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动(变化)较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。 在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比

较复杂;经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1、孔板流量计计算公式; 通用计算公式: 其中Q----体积流量,Nm3/h; K----系数; d----工况下节流件开孔直径,mm;ε----膨胀系数;α----流量系数;P----实际差压,Pa;ρ----介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有(3) P----压力,单位Pa; V----体积,单位m3; T----绝对温度,K; n----物质的量; R----气体常数。 相同(一定)质量的气体在温度和压力发生变化时,有: P1----某种状态下气体压强,Pa;V1----某种状态下气体体积,m3;T1----某种状态下气体绝对温度,K;又: 其中K'为常数。这样,从式(9)可以看出,流量的变化随压力、温度和孔板前后差压变化而变化。该公式涉及到很多参数,计算过程复杂,不利于检查。 简易计算公式 其中Qmax----设计最大流量,Nm3/h;P----实际差压,Pa; P0----设计差压,Pa; P0----设计工作压力,Pa; P标----标准大气压力,一般取;

新版流量计标定实验讲义

实验二 流量计的标定 一、实验目的 1、了解孔板流量计和文丘里流量计的操作原理和特性,掌握流量计的一般标定方法; 2、测定孔板流量计和文丘里流量计的流量系数的C 0和Cv 与管内Re 的关系。 3、通过C 0和Cv 与管内Re 的关系,比较两种流量计。 二、基本原理 工厂生产的流量计大都是按标准规范生产的,出厂时一般都在标准技术状况下(101325Pa ,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,或将流量读数直接刻在显示仪表上。然而在使用时,所处温度、压强及被测介质的性质与标定状况多数并不相同,因此为了测量准确和方便使用,应在现场进行流量计的标定或校正。对已校正过的流量计,在长时间使用磨损较大时也需要再次校正。对于自制的非标准流量计,则必须进行校正,以确定其流量系数C 0或C v 。本实验通过改变流体流量q 和压差ΔP f ,获得一系列Re 与C 0或C v ,采用半对数坐标绘制出C 0或C v 与Re 的关系曲线进而实现流量计的标定或校正。 1、流体在管内Re 的测定: 式中:ρ、μ— 流体在测量温度下的密度和粘度 [Kg/m 3 ]、[Pa ·s] q — 管内流体体积流量 [m 3/s] 2、孔板流量计和文丘里流量计 孔板流量计和文丘里流量计是应用最广的节流式流量计,其结构如图2-1所示。 a 孔板流量计 b 文丘里流量计 图2-1 节流式流量计结构 孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代价的。孔板的开孔越小、通过孔口的平均流速u 0越大,孔前后的压差ΔP 也越大,阻力损失也随之增大。为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆角。因此孔板流量计的安装是有方向的。若是方向弄反,不光是能耗增大,同时其流量系数也将改变,实际上这样使用没有意义。 以孔板流量计为例,若用f P ?表示节流前后两截面之间的压差,根据两截面之间的柏努利方程,可知: 222222121 1u P gZ u P gZ ++=++ρρ,则有:ρ f P u u ?=-22122 以孔口速度u 0代替上式中的u 2,并将质量守恒式u 1A 1= u 0A 0代入,得:

相关文档
相关文档 最新文档