文档库 最新最全的文档下载
当前位置:文档库 › 有机污染物在土壤和地下水中迁移建模

有机污染物在土壤和地下水中迁移建模

有机污染物在土壤和地下水中迁移建模
有机污染物在土壤和地下水中迁移建模

3.2水中无机污染物的迁移转化(4)

第三章:水环境化学——污染物存在形态 第二节、水中无机污染物的迁移转化 一、颗粒物与水之间的迁移、二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原 五、配合作用 1、概述 ● 污染物特别是重金属污染物,大部分以配合物形态存在于水体,其迁移、转化及毒 性等均与配合作用有密切关系。重金属容易形成配合物的原因是重金属为过渡性元素,最外层为s 轨道电子数目为2或1,次外层为d 轨道或f 轨道电子,数目为1-9,为充满,则过渡金属元素失去外层s 轨道电子后,未充满的d 轨道仍旧可以接受外来电子,形成配合的络合物或者螯合物。 ● 天然水体中有许多阳离子,其中某些阳离子是良好的配合物中心体,某些阴离子则 可作为配位体。 ● 天然水体中重要的无机配位体有OH -、Cl -、CO 32-、HCO 3-、F -、S 2-。它们易与硬酸 进行配合。如OH -在水溶液中将优先与某些作为中心离子的硬酸结合(如Fe 3+、Mn 3+等),形成羧基配合离子或氢氧化物沉淀,而S 2-离子则更易和重金属如Hg 2+、Ag +等形成多硫配合离子或硫化物沉淀。 ● 有机配位体情况比较复杂,天然水体中包括动植物组织的天然降解产物,如氨基酸、 糖、腐殖酸,以及生活废水中的洗涤剂、清洁剂、EDTA 、农药和大分子环状化合物等。这些有机物相当一部分具有配合能力。 ● 举例:Cr(24):1S 22S 22P 63S 23P 63d 54S 1(3d 轨道填充10个电子才满) Cd(48):1S 22S 22P 63S 23P 63d 104S 24P 64d 104f 05S 2(4f 轨道填充14个电子才满) 水配合物 CL -络合物 H 2O H 2O H 2 Cl - Cl - Cl -

067.地下水有机污染研究进展

地下水有机污染研究进展 宋晓薇1,张立宏1,赵侣璇1 (1.广西壮族自治区环境保护科学研究院,广西南宁530022) 摘要:地下水是重要的水资源,地下水的有机污染已引起了包括中国在内的许多国家的重视。本文 主要论述了地下水有机污染的状况,并对地下水中有机污染物的来源、影响地下水有机污染物迁移转 化的作用与因素、地下水有机污染自然衰减和主动修复技术等进行了讨论。 关键字:地下水,有机污染,污染来源,降解机理 地下水是人类赖以生存的饮用水源,随着工农业的发展和人们生活水平的提高,对地下水的需求量越来越大,而且对水质也有了更高的要求。但是在人类工业化和城市化进程中,各种有机废水的排放、生活污水管道滴漏、垃圾填埋场垃圾渗滤液下渗、地下输油管道的破裂、以及农业生产过程中农药和化肥的大量使用等,都导致了地下水严重的有机污染。有机污染物不仅种类繁多,而且由于其在水中的浓度一般很小,不易察觉,例行的水质分析不易检出。而且,许多有机污染物对人体健康有严重影响,具有“三致”作用。因此研究地下水有机污染状况,对地下水水质进行监测并预测其发展趋势,制定相应的措施以及修复已污染的地下水,已成为环境保护工作的重要内容之一。 1地下水有机污染状况 1.1国外地下水有机污染状况 关于地下水中有机污染的研究,自上世纪七十年代以来在发达国家已广泛开展。1977年,美国缅因州Gray镇在饮用水井中发现8种以上人工合成有机物,从而导致16眼水井关闭。到1986年,美国饮用水井中至少检出33种有机化合物[1]。从污染范围来看,美国50个州均有微量有机污染的报道,且污染物的种类很多,远远大于无机污染物的种类。1987年美国地下水中已发现了175种有机化合物[2]。美国地质勘探局(USGS)对全美农村地区1926眼生活饮用水井在1986~1999年间的检测资料进行了收集整理,其中至少有一种VOCs检出的井为232眼,检出率为12%。 日本东京的地下水中于1974年首次发现有TCE存在。随后的调查表明,日本15个工业城市的30%的水井受到TCE和PCE的污染[3]。欧洲的地下水中广泛检出了农药,如莠去津[4]。日本的问题对于迅速工业化的其它亚洲国家来说同样存在,随着检测技术的提高问题会变得明显。 1.2国内地下水有机污染状况 在我国,中国科学院环境化学研究所对京津唐地区地下水有机污染的初步研究表明,该地区地下水中有机物种类达133种[5]。最近的成果表明,我国地下水中的单环芳烃、卤代烃、有机氯农药污染已不容忽视[6]。根据1985年北京市高碑店污水系统污染综合防治研究报告,在北京市东南部污灌区浅水井和深水井中均检出有机物,其中,深水井中有机物58种,浅水井中有机物51种(如芳烃类、卤代烃类等)有害成分超标,其中不少是众所周知的致癌物(如三氯甲烷、苯等)。而且多年的地下水监测资料表明,地下水质受污染程度有逐渐扩大和加重的趋势。 山东淄博市大武水源地是我国北方一个特大型裂隙岩溶水源地,近几年来,由于齐鲁石化公司的三十万吨乙烯厂区位于大武水源地地下水的补给迳流带上,厂区内土层厚度小,防污性能差,

地下水有机污染调查与评估

地下水有机污染调查与评估 姓名:王学良学号:110924 专业:自动化成绩; (北京石油化工科学院自动化系,北京102617) 摘要:随着经济的发展,人们生活中制造的垃圾也急剧提升,从最原始的灰尘到白色污染的塑料和生活中的废弃物,都是越来越多。在我国主要城市,其中有机污染物的占有率更是越来越多,那么对这些有机物污染的处理问题与技术也是越来越迫在眉睫,在当今社会,对有机污染物的处理技术到底处于何种间断,这是我们这里需要讨论和研究的重点。,采用一些技术进行评价,并对不同方法评价和评价结果进行分析,同时,提高全社会的科技意识,环保意识和参与意识,这样才是提高资源综合利用水平的途径。本文主要论述地下水有机污染的状况,和对地下水的有机污染物的影响地下水有机污染物迁移转化的作用和因素、地下水有机污染自然衰减和主动修复技术等进行了讨论。 关键词:地下水;有机污染;技术评估 一、地下水有机污染的来源与状况 人类在生产实践活动中对有机物的不合理排放及不适当处理,导致其进入地质环境,造成地下水的有机污染。近年来,由于我国城市急剧扩张,导致城市污水排放量的大幅增加,由于管网建设相对滞后、维护保养不及时,管网漏损导致污水外渗,部分进入地下水体;雨污分流不彻底,汛期污水随雨水溢流,造成地下水污染。 部分行业威胁地下水环境安全,2009 年全国5亿多吨生活与工业有机废物未得到有效综合利用或处置,生活有机废气液体渗漏污染地下水事件时有发生;石油化工行业勘探、开采及生产等活动显著影响地下水水质,加油站渗漏污染地下水问题日益显现;部分工业企业通过渗井、渗坑和裂隙排放、倾倒工业废水,造成地下水污染;部分地下水工程设施及活动止水措施不完善,导致地表污水直接污染含水层,以及不同含水层之间交叉污染。 在国内,地表水污染对地下水影响日益加重,特别是在黄河、辽河、海河及太湖等地表水污染较严重地区,因地表水与地下水相互连通,地下水污染十分严重。部分沿海地区地下水超采,破坏了海岸带含水层中淡水和咸水的平衡,引起了沿海地区地下水的海水入侵。 在国外,据已有调查资料,美国的50个州均有微量有机物的报道,且污染物的种类很多,远远大于无机污染物的种类。1987年美国地下水中已发现了175种有机化合。从统计数据来看,三氯乙烯和四氯乙烯是地下水中检出率很高的有机污染物。日本东京的地下水中于1974年首次发现有"ICE存在。随后的调查表

石油类污染物在土壤和地下水中的污染模拟

2、土壤污染模拟 土壤是一个多相的疏松的多孔介质,固相中有大量的有机和无机胶体。石油是一种天然的粘油状液体,主要成分为烃类化合物(占80%一90%)。烃类化合物是非极性有机物,其偶极矩<1,介电常数<3,在土壤中有一定的吸附作用。地表的石油可以在重力作用下入渗,也可能随地面水或雨水沿着土壤毛细管孔隙向下渗透污染土壤,甚至进一步向下淋滤污染地下水。石油类污染物质在土壤入渗过程中,由于土壤中存在着大量的有机和无机的胶体,使得进入土壤中的污染物不断地被吸附。吸附能力与土壤的质地、石油的性质有密切联系。通常,石油烃类在土壤介质吸附程度以分配系数Kd来表示。 式中:Cs为平衡时固相中的浓度(mg/kg);Ce为平衡时液相中的浓度(mg/l)根据土壤中溶质运移模型和石油类污染物质在土壤中的迁移转化过程,考虑吸附作用而忽略石油的挥发,建立石油类污染物质在土壤中迁移转化二维综合模型。它包括水运动方程和石油运动方程。 土壤中水运动方程: 土壤中石油类运动方程: 式中:C(h)为比水容量(cm-1);K x、K z分别为横向纵向水力传导系数(cm/d);Dxx、Dzz分别为横向纵向弥散系数(cm2/d);Rd为滞留因子;c为液相中石油的浓度(mg/l);qx、qz分别为x和z方向的达西流速(cm/d);θ为含水量(%);λ为降解系数(d-1);h为土壤中压力水头(cm)。 初始条件和边界条件 根据监测的结果和落地油的分布特征,预测石油类在土壤中迁移过程及石油是否会对地下水造成污染,选择预测范围为:长80m,深6m剖面区域。并对部分问题可进行简化处理,作一些基本假设。假设土壤水最初不含石油,即未受到污染,但土壤中存在一定的本底值,经取样测定取平均值为40.3mg/kg。在土壤的预测范围内,土壤被认为是均质的。 对水运动方程上边界确定为Cauchy边界,下边界为Neumann边界。

污染物在环境中的迁移和转化(1)

污染物在环境中的迁移和转化 第一节概述 一、污染物的迁移和转化的定义 污染物在环境中发生的各种变化过程称之为污染物的迁移和转化(transport and transformation of pollutants),有时也称之为污染物的环境行为(environmental behavior)或环境转归(environmental fate)。 二、研究污染物在环境中迁移和转化过程及其规律性的意义 1. 可阐明污染物种类,接触的浓度、时间、途径、方式和条件,从而研究相关毒作用。 研究污染物在环境中的迁移和转化的过程及其规律性,对于阐明人类在环境中接触的是什么污染物,接触的浓度、时间、途径、方式和条件等都具有十分重要的环境毒理学意义,否则就不能阐明有预谋中接触而导致的一系列毒作用。 2. 环境毒理学的许多基本问题在一定程度上也取决于对污染物在环境中的迁移和转化规律的认识。 例如:污染物的物质形态、联合作用、毒作用的影响因素、剂量效应关系等,都要涉及到接触污染物的真实情况的确定。 第二节环境污染物的迁移 一、概念 污染物的迁移(transport of pollutants)是指污染物在环境中发生的空间位置的相对移动过程。迁移的结果导致局部环境中污染物的种类、数量和综合毒性强度发生变化。 二、机械性迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水的、和重力机械性迁移三种作用。 1.气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬运的作用。 其影响因素有:气象条件、地形地貌、排放浓度、排放高度。 一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合高度成反比。 2.水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬运作用。 一般规律:污染物在水体中的浓度与污染源的排放量成正比,与平均流速和距污染源的距离成反比。3.重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的搬运作用。 三、物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用风化淋溶作用是指环境中的水在重力作用下运动时通过水解作用使岩石、矿物中的化学元素溶入水中的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用降水、固体废弃物水溶性成份的溶解;VOC 3.酸碱作用(常表现为环境pH值的变化) ①酸性环境促进了污染物的迁移,使大多数污染物形成易溶性化学物质。如酸雨:加速岩石和矿物风化、淋溶的速度;促使土壤中铝的活化。 ②环境pH值偏高时,许多污染物就可能沉淀下来,在沉积物中,形成相对富集。 4.络合作用(改变毒物吸附和溶解的能力)络合物的形成大大改变了污染物的迁移能力和归宿。 例如:当含有Hg2+的河水流入海洋时,水中氯离子浓度逐渐增高,河口水体中的Hg2+逐次形成Hg(OH)2→Hg(OH)Cl →HgCl2→HgCl3- →HgCl42-。其中的Hg(OH)Cl与水体中的悬浮态黏土矿物和氧化物吸附力最强,而HgCl2的吸附力最差。因而,Hg(OH)Cl部分的汞大量转移到悬浮态固相或沉积物中,而部分的汞仍留在水体中。

第二节 水中无机污染物的迁移转化

第二节水中无机污染物的迁移转化 水中无机污染物特别是重金属污染物进入水体,不能被生物降解,主要是通过沉淀-溶解、氧化-还原、配合作用、胶体形成、吸附-解吸等作用进行迁移转化。 一、颗粒物与水之间的迁移 1、矿物颗粒物和黏土颗粒物 常见矿物颗粒物为石英、长石、云母及黏土矿物等硅酸盐矿物,主要由物理作用形成。 2、金属水合氧化物:铝、铁、锰、硅等金属以无机高分子及溶胶等形态存在。 例:铝在岩土中是丰量元素,在水中浓度低,<0.1mg/L。水解,主要形态是:Al3+Al(OH)2+Al2(OH)24+Al(OH)22+Al(OH)3+等 铁水合氧化物:Fe3+Fe(OH)2+Fe(OH)2+ Fe2(OH)24+Fe(OH)3等 硅酸聚合物:Si n O2n-m(OH)2m 3、腐殖质 是一种代负电的高分子弱电解质。 4、水体悬浮沉积物 是以矿物微粒为核心骨架,有机物和金属水合氧化物结合在矿物微粒表面上,经絮凝成为较粗颗粒而沉积在底部。 5、其它 藻类、细菌、病毒、表面活性剂、油滴等。 二、水环境中颗粒物的吸附作用 1、表面吸附:胶体具有巨大的表面积和表面能;属物理吸附,胶体表面积 越大,吸附越强。 2、离子吸附:由于胶体表面的电荷引力。 3、专属吸附:除了化学键以外,尚有加强的憎水键及范德华力或氢键起作 用。 水锰矿对Co、Cu、Ni、K和Na离子的吸附及其随pH的变化图: 对于碱金属离子,在低浓度时,体系pH在水锰矿ZPC以上时发生吸附。表

明其为离子吸附。而Co 、Cu 、Ni 等在体系pH 在ZPC 处或小于时都能进行吸附,这表明不带电荷或带正电均能吸附过渡金属。 4、吸附理论――有效层流脱理论 5、吸附方向和推动力 6、吸附等温线和等温式 (1) 等温吸附经验式――弗罗因德利希式 Freundlich 型等温式为: G =kC 1/n 两边取对数: log G =log k +1/nlog C , n kP P k n Γ=Γ--吸附量-吸附压力常数 (2) 单分子层吸附理论――兰格缪尔吸附等温式 单分子层吸附 吸附剂表面是均匀 被吸附的分子与其它同气体分子无作用力 吸附是一个动态平衡 φ被吸附质分子覆盖的吸附表面积 覆盖率()= 吸附剂的总表面积 Langmuir 型吸附等温线:G =G 0C /(A +C ) 1/G =1/G 0+(A /G 0)(1/C ) G0------单位表面上达到饱和时间的最大吸附量; A-------常数 (3)Henry 型吸附等温线为直线,等温式为: G =kC k------分配系数 影响吸附作用的因素: (a) pH 值的影响: 一般情况下,吸附量随pH 升高而增大。当溶液pH 超过某元素的临界pH 时,则该元素在溶液中的水解、沉淀起主要作用。 (b) 颗粒物的粒度和浓度的影响 吸附量随粒度增大而减少,吸附量随颗粒物浓度增大而减少。 (2) 氧化物表面吸附的配合模式: 由于表面离子配位不饱和,金属氧化物与水配位,水发生离解吸附而生成羟基化表面。 ≡MeOH2+ ≡MeOH + H +

环境化学第三章水环境化学复习知识点

第三章水环境化学 1、水中八大离子:K+、Na+、Ca2+、Mg2+、HCO 3-、NO 3 -、Cl-和SO 4 2-为常见八种离子 2、溶解气体与Henry定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G与气体的溶解度的比表现为常数关系,称为Henry定律,该常数称为Henry定律常数K H。 [G(aq)] = K H PG K H-气体在一定温度下的亨利定理常数 (mol/L.Pa) PG -各种气体的分压 (Pa) 3、水体中可能存在的碳酸组分 CO 2、CO 3 2-、HCO 3 -、H 2 CO 3 ( H 2 CO 3 *) 4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH-)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。 5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+ 6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐)(2)金属水合氧化物(铝、铁、锰、硅等金属)(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等) 影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH。 7、水环境中胶体颗粒物的吸附作用有表面吸附、化学吸附、离子交换吸附和专属吸附。 8、天然水的PE随水中溶解氧的减少而降低,因而表层水呈氧化性环境。 9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L-型、F-型和H-型。 10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。 11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性。 pe影响因素:1)天然水的pE随水中溶解氧的减少而降低;2)天然水的pE随其pH减少而增大。 12、什么是电子活度pE,以及pE和pH的区别。 答:定义电极上电子有效浓度为电子活度,记作E,其负对数记作pE。电子活度越大或pE 越小,电子供出电子的倾向越大。在电化学研究中,通常用电极电位表示电极供出或接受电子的倾向,当给出电子活度E 和电子活度的负对数pE 明确的热力学意义之后,就可以明确地表示不同电对在反应条件下供出或接受电子能力的相对大小。 在一定温度下,pE 与电极电位成直线关系,pE越大,电子活度越小,电极的氧化能力或接受电子的能力越强,供出电子能力越弱,pE与电子活度的关系同pH与H+活度的关系相似。 pH亦称氢离子浓度指数,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。pH值越趋向于0表示溶液酸性越强,反之,越趋向于14表示溶液碱性越强,pH=7的溶液为中性溶液。 若水体的PE值高,有利于下列Cr、Mn在水体中迁移。 13、腐殖质的组成:由生物体物质在土壤、水体和沉积物中经腐败作用后的分解产物,是一种凝胶性有机高分子物质。分为腐殖酸:溶于稀碱但不溶于酸的部分;富里酸:即可溶于碱又可溶于酸的部分;腐黑物:不能被酸和碱提取的部分。一般认为,当浓度较高时,金属离子与腐殖质的反应以溶解为主,当金属离子浓度较低时,则以沉淀和凝聚为主。 14、沉淀物中重金属重新释放诱发因素:①盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗粒上的金属离子交换出来。②氧化还原条件的变化:有机物增多,产生厌氧环境,铁猛氧化物还原溶解,使结合在其中的金属释放出来。③pH值降低:氢离子的竞争吸附作用、金属在低pH值条件下致使金属难溶盐类以及配合物的溶解。④增加水中配合剂的含量:天然或合成的配合剂使用量增加,能和重金属形成可溶性配合物,有时这种配合物稳

农药在土壤中的迁移转化

农药在土壤中的迁移转化 1、土壤对农药的吸附 土壤是一个由无机胶体、有机胶体以及有机- 无机胶体所组成的胶体体系,其具有较强的吸附性能。在酸性土壤下,土壤胶体带正电荷,在碱性条件下,则带负电荷。进入土壤的化学农药可以通过物理吸附、化学吸附、氢键结合和配位价键结合等形式吸附在土壤颗粒表面。农药被土壤吸附后,移动性和生理毒性随之发生变化。所以土壤对农药的吸附作用,在某种意义上就是土壤对农药的净化。但这种净化作用是有限度的,土壤胶体的种类和数量,胶体的阳离子组成,化学农药的物质成分和性质等都直接药性到土壤对农药的吸附能力,吸附能力越强,农药在土壤中的有效行越低,则净化效果越好。影响土壤吸附能力的一些因素有: (1)土壤胶体 进入土壤的化学农药,在土壤中一般解离为有机阳离子,故为带负电荷的土壤胶体所吸附,其吸附容量往往与土壤有机胶体和无机胶体的阳离子吸附容量有关,据研究,不同的土壤胶体对农药的吸附能力是不一样的。一般情况是:有机胶体>蛭石>蒙脱石>伊利石>绿泥石>高岭石。但有一些农药对土壤的吸附具有选择性,如高岭石对除草剂24-D的吸附能力要高于蒙脱石,杀草快和白草枯可被粘土矿物强烈吸附,而有机胶体对它们的吸附能力较弱。 (2)胶体的阳离子组成 土壤胶体的阳离子组成,对农药的吸附交换也有影响。如钠饱和的蛭石对农药的吸附能力比钙饱和的要大。钾离子可将吸附在蛭石上的杀草快代换出98%而吸附在蒙脱石的杀草快,仅能代换出44%。 (3)农药性质 农药本身的化学性质可直接影响土壤对它的吸附作用。土壤对不同分子结构的农药的吸附能力差别是很大的,如土壤对带-NH2农药吸附能力极强。此外,同一类型的农药,分子愈大,吸附能力愈强。在溶液中溶解度小的农药,土壤对其吸附力也愈大。 (4)土壤pH 在不同酸碱度条件下农药解离成阳离子或有机阴离子,而被带负电荷或电正电荷的土壤胶体所吸附。例如:24-D在pH3-4的条件下离解成有机阴离子,而被带负电的土壤胶体所吸附;在pH6-7的条件下则离解为有机阳离子,被带正电的土壤胶体所吸附。 最后,我们还应该看到这种土壤吸附净化作用也是不稳定的,农药既可被土粒吸附,又

石油烃类污染物在天然水体中的迁移转化

石油烃类污染物在天然水体中的迁移转化 成员:王逸夫、袁康庄、汤明亮、张书浩 一、绪论 石油地质组成复杂,主要包括饱和与不饱和烃、芳烃类化合物、沥青质、树脂类等。 石油的开采、冶炼、使用和运输过程的污染和遗漏事故,以及含油废水的排放、污水灌溉、各种石油制品的挥发、不完全燃烧物飘落等引起一系列石油污染问题。石油烃是由碳氢化合物组成的复杂混合体,没有明显的总体特征,主要由烃类组成,目前对环境污染构成威胁的主要分为(1)烷烃,可分为直链烃、支链烃和环烃;(2)芳烃、多环芳烃。 石油烃中不同的馏分会对人类和动植物产生不同影响。 当石油类污染发生时,污染物往往不是单一组分,而是多种污染物共存的复合污染,各组份间往往会发生各种相互作用,并对水体的迁移转化过程产生影响,如不同组分在含水层介质的吸附上,往往会发生竞争吸附,从而改变部分组分的迁移性和生物降解特性。以往对于复合污染物迁移转化研究主要集中在多环芳烃类(芘、萘、菲),以及苯系物(BTEX)的复合污染等,组分之间从分子结构、化学性质、作用机制方面均具有一定的相似性,而对组分种类、理化性质、作用机制差别较大的芳香烃和氯代烷烃复合污染所开展的研究则较少,此类复合污染物对地下水的污染机制和在地下水中的迁移转化机理尚不明确,诸如地下水中多组分竞争吸附规律、含水层介质中有机质对污染物吸附作用机理、污染场地包气带、含水层微生物多样性等。 由于资料匮乏,以及关于石油烃类污染物在水体中效应的研究不够完善,并且石油类污染物一般相对集中在特定区域的地下水、废水、以及水体沉积物中。故本文主要对这三种环境中的石油烃污染物的迁移转化机理进行论述和总结。 二、浅层地下水中石油烃污染物迁移转化机理 1.迁移转化方式 当芳香烃、氯代烷烃污染物进入地下水系统后,所发生的迁移转化作用主要包括对流弥散、吸附、降解、挥发等几个过程。污染物的迁移转化作用除受自身特性 影响外,同时受污染场地的地下水环境因素、地质、水文地质条件等要素的影响。 目前国内外关于有机污染物在地下水中的迁移转化机理研究主要集中在吸附作用 和生物降解作用两方面。 弥散迁移,又称水动力弥散,研究单个流体粒子的运动速度偏离于平均渗流速度的效应。当污染物在地下水中存在浓度梯度时,污染物粒子将受到扩散作用的影 响,但与对流作用相比,扩散项通常非常小,只有当流速极低时,扩散作用影响才 会显现。 吸附作用:孔隙介质中含有溶解某种物质的地下水时,该溶质会受到静电或化学力的作用离开溶剂,并被固定于空隙介质固体基质的表面或内部,这个过程称为 吸附作用。固体对溶质的亲和吸附作用主要分为三种基本作用力,通过静电引力和 范德华力引起的吸附作用叫物理吸附;通过固体表面和溶质之间化学键力引起的吸 附称为化学吸附,而介质对污染物的吸附往往是多种吸附共同作用的结果。有机物 在土壤上的吸附,主要分为两部分,一部分被矿物质吸附,另一部分被有机质吸附。 由于土壤中矿物质颗粒通常具有极性,在水溶液中发生偶极作用,使水分子在极性 作用下同有机污染物发生竞争吸附,占据矿物颗粒表面的吸附位,非极性的有机物 则较难与矿物质结合,因此有机质对污染物的吸附起到了更加主要的作用。

无机污染物迁移、转化和归宿

无机污染物进入河流中的迁移、转化和归宿对无机污染物而言,特别是重金属和准金属等污染物,一旦进入水环境,均不能被生物降解,而其他大部分无机污染物经过分解,转化形态之后可以组成生物细胞的成分而被彻底利用,包括无机元素与金属元素。无机污染物(以重金属为主体)主要是以简单的离子、络离子或可溶性分子的形式在水环境中通过一系列物理化学作用,如溶解--沉淀作用、氧化--还原作用、水解作用、络合和螯合作用、吸附--解吸作用等实现的迁移和转化,参与和干扰各种环境化学过程和物质循环过程。重金属(Hg、Cd等)在迁移过程中可富集于底泥,成为长期潜在的有害污染源或通过食物链富集。 污染物在迁移转化的过程中,主要受污染物自身的理化性质以及外界环境的物理化学条件和自然地理条件影响。简单的内部因素可主要为组成化合物的能力、形成不同价位离子的能力、水解能力、形成络合物的能力和被胶体吸附的能力。一般来说,由共价键结合的污染物容易进行气迁移;由离子键结合容易进行水迁移。外部因素主要指环境的酸碱环境、氧化还原条件、交替种类以及数量和性质等。如酸性环境有利于钙、锶、钡、锌、镉等迁移;碱性环境则有利于硒、钼和五价钒的迁移。氧化条件有利于铬、钒、硫的迁移;还原环境有利于铁、锰等的迁移。 从微生物的角度以及水体溶解氧的情况(水体复氧及耗氧)来分析无机污染物进入河流的迁移转化问题,我们需要考虑到,在河流表层部分,溶解氧较充足,处于较高的氧化还原电位,主要存在好养性微生物,其元素将以氧化态存在,碳成为CO2,氮成为NO3-,铁成为Fe(OH)3沉淀,硫成为SO42-;在中间部分,溶解氧相对较少,是一个兼型层,兼有氧化和还原作用,主要由兼性微生物生存;在底层,水体处于还原环境,其元素都将以还原形态存在,碳还原成CH4,氮形成NH4+,硫形成H2S,铁形成可溶性Fe2+。在相应微生物作用下,完成相应元素的物质循环。 综上分析,污染物的转化,往往与迁移相伴进行,并且实现污染物迁移的途径是彼此相互作用的,是一个统一体,并不能将其独立开来,对于自净体系而言,无机污染物迁移转化的过程较为复杂,下图简以说明。

农药在土壤中的迁移转化过程

农药在土壤中的迁移转化过程 农药进入土壤后会进行一系列复杂的物理\化学和生物过程,包括土壤吸附和解吸附\挥发\化学和生物降解\植物吸收\地表径流损失或者淋溶等(图1)[3],其中土壤吸附-解吸附和降解是两个最主要的过程。土壤农残的迁移转化过程取决于农药本身的性质(如溶解性)\土壤理化性质(如微生物活性\有机质含量)和环境条件(如温度\降雨)的影响,土壤农残的行为和归趋取决于多种过程的综合作用。 1 吸附作用 农药的吸附作用是指在离子键\氢键\电荷转移\共价键\范德华力\配体交换\疏水吸附和分配\电荷-偶极和偶极-偶极等作用力的共同作用下,农药吸附到土壤颗粒表面的过程[21],如阳离子农药百草枯和敌草隆可以与黏土矿物形成离子键而被强烈吸附,同时还能通过电荷转移和范德华力增强吸附。农药吸附特性由吸附常数(kd)和有机碳标准化分配系数(koc)表示[22],kd表示土壤对农药的吸附能力,值越大则吸附能力越强。农药自身的分子结构和理化特性均影响其在土壤中的吸附性[21]。土壤理化性质包括有机质含量\黏土成分\PH\土壤的颗粒度等,这些指标均影响土壤的吸附作用,其中有机质是最大影响因素。土壤有机质对有机农药有增溶和溶解作用,而且土壤有机质的腐殖酸结构中具有能与有机农药结合的特殊位点,其对有机农药还具有表面吸附作用,因此有机质含量越高吸附性能越高[23,24],研究发现吸附常数(kd)值与土壤有机质含量呈正相关[25]。土壤PH对农药吸附性的影响与土壤成分和农药性质有关,土壤PH会影响弱酸\弱碱性物质的吸附,但是对非离子型化合物的吸附性影响较小[26]。 2 降解作用 农药的降解又可分为生物降解和非生物降解2种方式。在光\热及化学因子作用下发生的降解现象为非生物降解,非生物降解主要受土壤PH\湿度和温度的影响,而生物体作用下的降解过程属生物降解[26],生物降解是土壤农残的主要降解方式,一般表层土壤的生物降解速率更高。研究发现,有机质是影响拟除虫菊酯降解的最主要因素,有机质含量越高降解速率越快,其次为PH,碱性越高降解速度越快[27]。 3 蒸发和迁移作用 土壤中的农药无论是易挥发还是不易挥发,都可以通过蒸发作用进入到大气环境中。农药的挥发过程主要受

化学农药在土壤中的迁移与转化

化学农药在土壤中的迁移与转化 https://www.wendangku.net/doc/ba318775.html,/chinapengkun 前言 直接向土壤或植物表面喷撒农药,是使用农药最 常见的一种方式,也是造成土壤污染的重要原因。研究表明,一般农田土壤均受不到不同程度的污染。化学农药在使用过程中,只有一部分附着于植物体上。对不同作物,采用不同的施用方式喷撒农药,除被植物体吸收外,大约有20%一50%左右进入土壤 直接进入土壤的农药,大部分可被吸附,残留于 土壤中的农药,由于生物的作用,经历着转化和降解过程,形成具有不同稳定性的中间产物,或最终成为 无机物。 1 土壤对化学农药的吸附作用 土壤吸附化学农药的机理有以下两种途径: 1.1 物理吸附 土壤胶体扩散层的阳离子通过”水桥“吸附极性 农药分子。 1.2 物理化学吸附 是土壤对农药的主要吸附作用。土壤胶体的物理 化学吸附能力大小顺序为:有机胶体>蛭石>蒙胶石> 伊利石>绿泥石>高岭石。 由于农药种类极多,性质各不相同,对土壤吸附 有很大影响。一般农药的分子越大,越易被土壤吸附。 农药在水中的溶解度强弱也对吸附有影响,如DDT 在水中溶解度很小,在土壤中吸附力则很强;而一些有机磷农药,在水中的溶解度很大,吸附能力则很弱。 大量资料表明,非常易挥发的农药,及不易挥发 的农药(有机氯),都可以从土壤、水及植物表面大量蒸发。对于低水溶性和特久性的化学农药来说,蒸发是它们进入大气的重要途径。通过蒸发作用而迁移的农药量比径流迁移和作物吸收等方面都要大。 化学农药在土壤中的蒸发决定于农药本身的溶 解度、蒸汽压和接近地表空气层的扩散速度以及土壤温度、湿度和质地。如砂土,由于吸附能力小于壤土,故农药的蒸发损失较壤土为大,土温增高,也能促进 农药的蒸发。 农药的蒸发与土壤含水量有密切关系。土壤干燥时,农药不扩散,主要被土体表面所吸附,随着土壤水分的增加,由于水的极性大于有机物农药,因此水占据了土壤矿物质表面;把农药从土壤表面置走,使农药的挥发性大大增加。当土壤含水量达4~7o时,扩散最快。溶解于有机质中的农药不受土壤含水量的影响,因此含水量增加时,土壤残留的农药主要溶解在有机

土壤中主要的农药残留及其迁移方式

土 壤 中 主 要 的 农 药 残 留 及 其 迁 移 方 式 系别:XXXXXXXX 专业:XXXX 班级:XXXXXXX 学号:XXXXXXXXX 姓名:XXX 土壤中主要的农药残留及其迁移方式

土壤是生态环境的重要组成部分,是人类赖以生存的主要资源之一。研究发现,农药在土壤中的残留是导致农药对环境造成污染和生物危害的根源。土壤已经成为农药的重要“储存库”和“集散地”之一,当土壤中农药残留积累到一定程度,便会对土壤生物造成不同程度的毒害。土壤中的残留农药还可通过挥发、扩散、质流产生转移,污染植物、大气、地表水体和地下水,并可通过生物富集和食物链使农药的残留浓度在生物体内富集,最终危及人体健康。同时也有一部分农药被土壤中的有机颗粒物等吸附,其可提取性和生物有效性降低,暂时退出循环过程,即发生老化现象。 一:土壤中主要的农药残留 以持久性有机污染物(POPs)等为主要特征的土壤、大气和水体污染是当前人类面临的最为突出的生态与环境问题之一,不仅危害土壤和水体生态系统的结构和功能,而且对农林牧副渔业的生产安全、区域生态安全、人类的生存与健康及经济和社会的可持续发展构成巨大威胁。POPs是一组具有毒性、持久性、易于在生物体内富集、能进行长距离迁移和沉积、对源头附近或远方环境与人体产生损害的有机化合物。在该组有机化合物中OCPs尤其能够通过农产品、水体以及食物链放大效应进入人体而积累在人体内肝、肾、心脏等脂肪较多的组织,严重威胁着人类的健康与生存,因此,土壤OCPs残留、迁移和生态风险评价成为当前土壤学、生态学和环境科学的重要研究内容。 作为土壤、大气和水体中POPs的重要来源,OCPs包括氯苯类和

第三节 土中农药的迁移和转化

第三节 土壤中农药的迁移和转化 农药的作用:防治虫害,提高农作物产量;环卫家居,除蚊灭鼠。 农药的危害:残留问题:DDT 残留4-30年;毒性大;危害天敌及益虫。 一、 土壤中农药的迁移 迁移过程: 扩散 质体流动 1、扩散 气态 非气态 溶液中 气-液 气-固 气态发生(挥发) 农药在田间中的损失主要途径是挥发,如:颗粒状的农药撒到干土表面上,几小时内几乎无损失;而将其喷雾时,雾滴复干的10分钟内,损失达20%。 非气态发生 指土壤中气-液、气-固界面上发生的扩散作用。由于土壤系统复杂,扩散物质在土壤表面可能存在吸附和解吸平衡,土壤性质不同,有机物性质不同都影响扩散作用。 Shearer 等根据农药在土壤中的扩散特性提出了农药的扩散方程式 22x c D t c v s ??=??

影响农药扩散的主要因素: 农药(物理化学性质、浓度、扩散速率)土壤(含水量、吸附性) 环境(温度、气流速度)等 土壤水分含量的影响:

P.289图4-5: 含单分子层水时不再挥发。在水分含量减少的范围,挥发与含水量有关。(土壤含水量与土壤水吸力呈负相关,随含水量升高,土壤水吸力降低。) 土壤吸附的影响 吸附作用是农药与土壤固相之间相互作用的主要过程,直接影响其他过程的发生。如土壤对除草剂2,4-D的化学吸附,使其有效扩散系数降低。 土壤的紧实度 是影响土壤孔隙率和界面性质的参数,紧实度高,土壤的充气孔隙率降低,扩散系数也降低。 温度 温度升高,有机物的蒸汽密度升高,总的效应是扩散系数增大,如林丹的扩散系数随温度的升高而呈指数增大。 气流速度:一般增加气流促进土壤水分含量降低,使挥发速度加快。 农药种类:不同农药扩散行为不同。 2、质体流动 吸附:吸附强的流动困难。 有机质、矿物含量:含量增加,渗透深度减小。 农药的水溶性低,随质体移动少。 二、非离子型农药与土壤有机质的作用

水体污染物的迁移转化

水体污染物的迁移转化 摘要:水是人类生存所必须,因而水体遭到污染则人类生存的环境品质就会大大的受损。本文探讨了水体污染物的概念,总结了一下目前世界上所发现的水体污染物的主要种类,并且总结了水体污染物迁移转化的过程和方法,从中得出对水体污染物处理的一些解决方法。 关键词:迁移转化水体污染物 1.水体污染物的概念 水体污染物是指造成水体水质、水中生物群落以及水体底泥质量恶化的各种有害物质(或能量)。水体污染物从化学角度可分为无机有害物、无机有毒物、有机有害物、有机有毒物4类。 2.水体污染物的分类和介绍 2.1 耗氧污染物 在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。 2.2 植物营养物 植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。 植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。每人每天带进污水中的氮约50g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 藻类及其他浮游生物残体在腐烂过程中,又把生物所需的氮、磷等营养物质释放到水中,供新的一代藻类等生物利用。因此,水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其

相关文档
相关文档 最新文档