文档库 最新最全的文档下载
当前位置:文档库 › 浙教版九年级数学 第三章 圆的基本性质 33垂径定理同步讲义无答案

浙教版九年级数学 第三章 圆的基本性质 33垂径定理同步讲义无答案

浙教版九年级数学 第三章 圆的基本性质 33垂径定理同步讲义无答案
浙教版九年级数学 第三章 圆的基本性质 33垂径定理同步讲义无答案

3.3 垂径定理1:利用垂径定理求线段的长度考查角度132的长为

(AB= 在弦,点CAB上,且AC=)AB,则OC【例1】如图所示,?的半径为2,弦O472332 C.D.A. B. 23)CD = 6,则DE等于(1:如图所示,AB是?的直径,AB 丄CD于点E,若检测O D.6

C.5 B. 4

A. 3

OE = 3cm,则①CDAB丄于点E,?中,CD是?的直径,弦AB的长为8 cm,2检测:如图所示,已知在OO cm.

弧=AD;②?的半径为,BC = 弧O

.

CD= ,则OC= ,AB = 6检测3:如图所示,DE是?的直径,弦AB丄ED,垂足为C,若,CE= 1O:利用垂径定理求角的度数考查角度22AED?. ,则= 交于点?的直径AB与弦CD E,AE=5,BE=1,CD=4 2【例】如图,O3?OMN 的度数MN的距离及.

,半径OM = 4,求圆心O到弦检测4:如图所示,?中弦MN的长为4O考查角度3:利用垂径定理进行有关证明

?OCD为等腰三角形,求证:. 是直线,DAB上两点,且AC=BD【例3】如图,在?中,AB为?的弦,C OO?CD,垂足分别为E,F,求证CDO的直径,是弦,AE丄CD,BE:EC = FD.

检测5:如图所示,AB是半圆考查角度4:利用垂径定理作图

【例4】如图,已知弧AB,求作弧AB的中点M,并找出弧AB所在圆的圆心.

检测6:如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友作玩具?考查角度5:在运用垂径定理解题时思考问题不严密,出现漏解的情况

【例5】用圆形纸片剪一个梯形ABCD,AB ∕∕CD,若AB = 48,CD = 20,?的半径为26,则剪

下的梯形ABCD的面O积是多少?

检测7:已知?的半径为13 cm,弦AB//CD,AB = 10 cm,CD = 24 cm,,求AB与CD间的距离.

O考查角度6:利用垂径定理的推论进行有关证明

【例6】如图所示,在?中,已知C是弧AB的中点,且OA = AC,AB,OC交于点P,求证:四边形OACB是菱形. O?OMN??ONM. 的中点,且AB,CD分别是,中的两条弦,?CDAB8检测:如图①所示,,是MN O(1)求证:AB = CD;

页 1 第,求证:于QP,延长ON交?交(2)如图②,延长OM?于OO考

查角度7:利用垂径定理的推论进行有关计算

O的半径等于(?),则?的弦AB = 8,M是AB的中点,且OM = 3【例7】如图,O A. 8 B.

4 C. 10

D. 5

检测9:如图所示,将半径为2 cm的圆形纸片折叠后,圆弧恰好经好经过圆O,则折痕AB的长为.

考查角度8:在运用垂径定理的推论时思考问题不严密,出现漏解的情况(易错点)

【例8】已知等腰三角形的三个顶点都在半径为5的?上,如果底边BC的长为8,求BC边上的高.

O拔尖角度1:利用垂径定理及其推论进行证明

【例9】如图所示,D,E分别是的弧AB,弧AC的中点,DE交AB于点M,交AC于N,求证:AM = AN.

检测10:如图所示,P是?外一点,PB、PD分别与?相交于点A,B,C,D.

OO?BPD②AB = CD;③OE丄CD,OF丄PO①平分AB;④OE = OF.从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明.

拔尖角度2:利用垂径定理及其推论进行计算

?AED = 30°,. ,若AE = 5,CE = 1相交于点【例10】如图所示,?的直径AB与弦CDE O(1)求OE

和OA的长;

(2)求CD的长.

检测11:—座桥,桥拱是圆弧形(水面上的部分),测童时,只测到桥拱下水面宽AB为16 m,如图所示,桥拱最高处离水面4 m.

(1)求桥拱半径;

(2)若大雨过后,桥下水面宽为12m,问水面涨高了多少?

拔尖角度3:利用垂径定理等知识解决动点问题

【例11】如图所示,AB是半圆O的直径,BC是弦,点P从点A开始,沿点B以1 cm/s的速度移动,若AB的长为10 cm,点O到BC的距离为4 cm.

(1)求弦BC的长;

?BPC是等腰三角形(PB不能为底边)?(2)问经过几秒后

检测12:如图,AB、CD 是半径为5的?的两条弦,AB = 8,CD = 6,MN是直径,AB丄MJV于点E,CD丄MN O于点F,P为EF上的任意一点,则PA + PC的最小值为.

拔尖角度4:利用垂径定理等知识解决实际问题

【例12】课堂上,师生一起探究知识,可以用圆柱形管子的内径去测量球的半径,小明回家后把小皮球置于保温杯页 2 第

,经过思考找到了测量方法,并画出了草图,请你根据图中的数据,帮助小明计算小皮的长为8 cm)口上(内径AD.

球的半径,最大高度:某工厂准备建新的厂门,厂门要求设计成轴对称的拱形曲线。已知厂门的最大宽度AB = 12 m检测13,方案一:建成拋物线形)5. 8 m.现设计了两种方案(如图所示OC = 4 m,工厂的特种运输卡车的高度是3 m,宽度是.

你认为应采用哪种设计方案?请说明理由方案二:建成圆弧形状.为确保工厂的特种卡车在通过厂门时更安全,状;基础巩固训练)E?的直径,弦CD丄AB于点,则下列结论一

定正确的是(1.如图所示,AB是O;③;①CE = DE;②BE =

OE DAB???CAB AC = AD. ;⑤④①②③④⑤A.①③④⑤ B. ②③④⑤D. C.①②④⑤

),则OP的长为(的5?O中,AB,CD是互相垂直的两条弦,垂足为P,且AB = CD2.如图所示,在半径为22 C. 3D. 4 A. 3 B. 4

3.一条排水管的截面如图所示,已知排水管的半径OB = 10,水面宽AB = 16,则截面圆圆心O到水面的距离OC是()

A.4

B.5

C.6

D.8

3.如图所示,AB是?O的弦,AB的长为8,P?O是上一个动点(不与A,B重合),过点O作0C丄AP于点C,OD丄PB于点D,则CD的长为.

?PAC=30°,在射线AC上顺次截取AD = 3 cm,DB = 10 cm,以DB为直径作?O交射线AP如图所

示,5.于E,F两点,则线段EF的长是cm.

6.如图所示,在?O中,已知CD是垂直平分半径0A的弦.

?A的度数;求(1)

(2)若弦CD=16 cm,求?O的半径.

页 3 第

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

浙教版初中数学九年级下册期末测试题

金华市婺城区中考数学调研卷(3) 试 卷 Ⅰ 一、选择题(本题有10小题,每小题3分,共30分) 1.计算2010 ) 1(-的结果是……………………………………………………………( ) A.-1 B.1 C.-2010 2.一堵8米长、3米高的墙上,有一个2米宽、1米高的窗户﹒下面图形所描述的可能 是这堵墙的是………………………………………………………………………( ) A. B . C. D. 3.在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是…( ) A.(5-,2-) B.(2-,5-) C.(2-,5) D.(2,5-) 4.若两圆的直径分别为2cm 和10cm ,圆心距是8cm ,则这两圆的位置关系是…( ) A.内切 B.相交 C.外切 D.外离 5.下面的图标列出了一项试验的统计数据,表示将皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系: 下面式子中能表示这种关系的是……………………………………………………( ) A.2 d b = B.d b 2= C.2 d b = D.25-=d b 6.已知关于x 方程062 =--kx x 的一个根是3=x ,则实数k 的值为……( ) B.-1 D.-2 7.将一副三角板按图中方式叠放,则角α等于…………( ) ° ° ° ° 8.如图,为了估计池塘岸边A 、B 两点间的距离,小明在池 塘一侧选取一点O ,现测得15=OA 米,10=OB 米,那 么A 、B 两点间的距离不可能...是( ) A.25米 B.15米 C.10米 D.6米 d 50 80 100 150 b 25 40 50 75 30° 45° α

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

2017年浙教版九年级数学上册知识点汇总

九年级(上册) 1. 二次函数 1.1. 二次函数 把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。 1.2. 二次函数的图象 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。 函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。 函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是???? ??--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。 1.3. 二次函数的性质 二次函数y=ax 2 (a ≠0)的图象具有如下性质: 1.4. 二次函数的应用 运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。 2. 简单事件的概率 2.1. 事件的可能性 把在一定条件下一定会发生的事件叫做必然事件;

把在一定条件下一定不会发生的事件叫做不可能事件; 把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。 2.2.简单事件的概率 把事件发生可能性的大小称为事件发生的概率,一般用P表示。事件A发生的概率记为P(A)。 必然事件发生的概率为100%,即P(必然事件)=1; 不可能事件发生的概率为0,即P(不可能事件)=0; 随机事件的概率介于0与1之间,即0r d ? 点在圆上; < 点在圆外;? = ? 不在同一直线上的三个点确定一个圆。 经过三角形各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。 三角形的外心是三角形三条边的垂直平分线的交点。 3.2.图形的旋转 一个图形变成另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转,这个固定的点叫做旋转中心。 图形的旋转具有以下性质: 图形经过旋转所得到的图形和原图形相等。 对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。 3.3.垂径定理 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 分一条弦成相等的两条弧的点,叫做这条弧的中点。

年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版 【本讲教育信息】 一. 教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O ,垂足M ,弦中点M ,劣弧中点D ,优弧中点C ,五点共线。(M 点是两点重合的一点,代表两层意义) 3. 应用以上定理主要是解直角三角形△AOM ,在Rt △AOM 中,AO 为圆半径,OM 为弦AB 的弦心距,AM 为弦AB 的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt △AOM 时,注意巧添弦心距,或 半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()()1234??? 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。 二. 重点、难点: 垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。 【典型例题】 例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。 点悟:本例的关键在于正确理解什么是O 点到AB 的距离。 解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示: ∴==?=OE AB cm 121 2 126() 由垂径定理知:AE BE cm ==6 ∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90° 由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm 点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。 例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。 求证:AD BD a b ·=-2 2 证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==, 在Rt AOE ?中,AE OA OE 2 2 2 =- 在Rt COE ?中,CE OC OE 2 2 2 =- ()() ∴-=---AE CE OA OE OC OE 222222 =-=-OA OC a b 22 2 2 即()()AE CE AE CE a b +-=-22 BD AC ED CE ==, AD ED AE CE AE =+=+∴ BD AC CE AE ==- 即2 2b a BD AD -=? 点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。 例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cm B. 6cm C. 63cm D. 123cm (2001年辽宁) 解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ( ) 2632321632 2 2 2 -=-=()cm 故选C 。 例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm , 矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ? 上,且EF C O A B M D O

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定 理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的 应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。希望同学们认真学习,为后面圆 的其他内容理解奠定良好基础。 知识梳理 讲解用时:15分钟 垂径定理及其推论 (1)垂径定理 如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平 分这条弦所对的弧。 (2)相关推论 ①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这 条弦,并且平分这条弦所对的弧; ①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦; ①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平 分这条弦所对的弧;

①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心, 并且垂直于这条弦; ①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线 经过圆心,并且平分这条弦。 总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关 系也成立。

课堂精讲精练 【例题1】 下列判断中,正确的是()。 A.平分一条弦所对的弧的直线必垂直于这条弦 B.不与直径垂直的弦不能被该直径平分 C.互相平分的两条弦必定是圆的两条直径 D.同圆中,相等的弦所对的弧也相等 【答案】C 【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理 同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误; 任意两条直径互相平分,故B错误; 同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。 讲解用时:3分钟 解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。 教学建议:基本概念题,逐项排除。 难度:3 适应场景:当堂例题例题来源:无年份:2018 【练习1】 下列说法正确的个数是()。 ①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对 的优弧和劣弧分别相等。 A.1个B.2个C.3个D.4个 【答案】B 【解析】本题主要考查了垂径定理以及圆的基本性质, ①垂直于弦的直径平分弦;故错误; ①平分弦(不是直径)的直径垂直于弦;故错误;

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

最新浙教版九年级数学上册《圆心角2》教学设计(精品教案)

圆心角2 教学目标: 1.经历探索圆心角定理的逆定理的过程; 2.掌握”在同圆或等圆中,如果两个圆心角、两条弧、两条弦, 两个圆心距中有一对量相等,那么它们所对应的其余各对量都相等”这个圆的性质; 3.会运用关于圆心角,弧,弦,弦心距之间相互关系的定理解决简 单的几何问题.. 教学重点与难点: 教学难点: 关于圆心角,弧,弦,弦心距之间相互关系的性质 教学难点:例2(1)题,例3涉及四边形,圆等较多知识点,且思路不易形成,是本节的教学难点 教学过程: 一.复习旧知,创设情景: 1.圆具有什么性质? 2.如图,已知:⊙O上有两点A、B,连结OA、OB,作∠AOB的角平 分线交⊙O于点C,连结AC、BC.图中有哪些量是相等的? C B A O

B E D A F C O 复习圆心角定理的内容. 3. 请写出圆心角定理的逆命题,并证明它们的正确性. (1).逆命题 : 在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等。 (2) 逆命题 : 在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,弦的弦心距相等。 (3)逆命题 : 在同圆或等圆中,相等的弦心距对应弦相等,弦所对的圆心角相等,所对的 弧相等。 结合图形说出已知和求证并给出简要的证明过程 由此引出新课. 二. 新课讲解

1、运用上面的结论来解决下面的问题: 已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD 的弦心距,根据本节定理及推论填空: (1)如果AB=CD,那么 _____________,________,____________。 (2)如果OE=OF,那么 _____________,________,____________。 (3)如果弧AB=弧CD 那么 ______________,__________,____________。 (4)如果∠AOB=∠COD,那么 _________,________,_________。 2.上面的练习说明: 以下的四个量中只要有一个量相等,就可以得到 其余的量相等: ⑴∠AOB=∠COD⑵AB=CD

九年级数学上垂径定理练习题

B F E O D C A O D C B A A B C D O 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 变式2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求: AOB ∠的度数和圆的半径。. 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、2、 3. 求BAC ∠的度数。 (三)、相交问题 如 图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°, 求CD 的长. (四)平行问题 (南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E , GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm . 变式一:圆内两条互相平行的弦AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。 2、 如图,圆柱形水管内原有积水的水平面宽 CD=20cm ,水深GF=2cm .若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少? (五)同心圆问题 O A B C D E A C B D O A B C D O C A D E

2015年浙教版九年级数学下册期中试题及答案解析

期中检测题 【本检测题满分:120分,时间:120分钟】 一、选择题(每小题3分,共30分) 1.在直角三角形 中,如果各边长度都扩大2倍,则锐角的正弦值和正切值( ) A.都缩小12 B.都扩大2倍 C.都没有变化 D.不能确定 2. 如图是教学用的直角三角板,边AC =30 cm ,∠C =90°, tan ∠BAC =,则边BC 的长为( ) A.30 cm B.20 cm C.10 cm D.5 cm 3.一辆汽车沿坡角为的斜坡前进500米,则它上升的高度为( ) A.500sin B.500sin α C.500cos D.500cos α 4.如图,在△中,=10,∠=60°,∠=45°, 则点 到的距离是( ) A.10 C.15 D.15 105. tan 60? 的值等于( ) A.1 D.2 6.计算6tan 452cos 60?-? 的结果是( ) A. B.4 C. D.5 7.如图,在ABC △中,90,5,3,∠C AB BC =?== 则sin A 的值是( ) A.34 B.34 C.35 D.45 8.上午9时,一船从处出发,以每小时40海里的速度向正东方向航行,9时30 分到达处,如图所示,从,两处分别测得小岛在北偏东45°和北偏东15°方向,那么处与小岛的距离为( ) A.20海里 海里 第7题图 A B 第2题图

9. (2012?山西中考)如图,AB 是⊙O 的直径,C 、D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 第9题图 10. 如图, 是的直径,是的切线,为切点,连结交⊙于点,连结,若∠=45°,则下列结论正确的是( ) A . B. C. D. 二、填空题(每小题3分,共24分) 11.在离旗杆20 m 的地方用测角仪测得旗杆杆顶的仰角为,如果测角仪高1.5 m , 那么 旗杆的高为________m. 12.如果sin =,则锐角的余角是__________. 13.已知∠为锐角,且sin =817 ,则tan 的值为__________. 14.如图,在离地面高度为5 m 的处引拉线固定电线杆,拉线与地面成角, 则拉线 的长为__________m(用的三角函数值表示). 15.(2014·成都中考)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,第14题图

初三数学垂径定理讲义

学科教师辅导讲义 体系搭建 一、知识梳理

二、知识概念 垂径定理 1、内容:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 2、逆定理:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 3、推论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 在同圆或者等圆中,两条平行弦所夹的弧相等 4、使用条件:一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论 (1)平分弦所对的弧 (2)平分弦 (不是直径) (3)垂直于弦 (4)经过圆心 考点一:垂径定理及其推论 例1、下列说法不正确的是() A.圆是轴对称图形,它有无数条对称轴 B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等 D.垂直于弦的直径平分这条弦,并且平分弦所对的弧 例2、如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影 部分的面积为() A.B.π C.2πD.4π

例3、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A 的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标 是() A.(0,0)B.(﹣1,1) C.(﹣1,0)D.(﹣1,﹣1) 例4、如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点 D.若OC=3,CD=2,则圆心O到弦AB的距离是() A.6B.9﹣ C.D.25﹣3 例5、如图,⊙O的半径为5,弦AB=8,则圆上到弦AB所在的直线距离为2的点 有()个. A.1B.2C.3D.0 考点二:应用垂径定理解决实际问题 例1、李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?

九年级数学垂径定理练习题

1 垂径定理练习题一 一.选择题 1、如图2,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) A 、10 B 、8 C 、6 D 、4 2.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( ) A .2.5 B .3.5 C .4.5 D .5.5 3.高速公路的隧道和桥梁最多.图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10 米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C .375 D .37 7 4.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 二.填空题 1.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是 mm . 2.如图,⊙O 的半径OA =10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm . 3.如图,⊙O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 . 4.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是 cm 的管道. 5.如图5,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与A B ,不重合)连结AP PB ,,过点O 分别作OE AP ⊥于点E ,OF PB ⊥ 于点F ,则EF = . 三.解答题 已知:如图1,30PAC ∠=?,在射线AC 上顺次截取AD =3cm ,DB =10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两 点,求圆心O 到AP 的距离及EF 的长. 垂径定理练习题二 1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。 2、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。 3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。 4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。 5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为 6cm ,则这两条弦之间的距离为_____ _。 6、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 7、如图,一条公路的转弯处是一段圆弧 ,点O 是 的圆心,E 为 上一点,OE ⊥CD ,垂足为F .已 知CD = 600m ,EF = 100m ,求这段弯路的半径. 8、我市某居民区一处圆形地下水管道破裂,修理工人准备更换一段新管 道,经测量得到如图所示的数据,修理工人应准备内径多大的管道?若此题只知下面弓形的高和AB 的长,你仍然会做吗? C A B D E O A B 60cm 10cm C O D E F A B O M 第2题图3 O D A B C 第4题图 O A D B C E F P 图1

浙教版九年级数学下册知识点重点难点汇总

九年级(下册) 1. 解直角三角形 1.1. 锐角三角函数 锐角a 的正弦、余弦和正切统称∠a 的三角函数。 如果∠a 是Rt △ABC 的一个锐角,则有 ;t ;c ;sin 的邻边 的对边斜边 的邻边斜边的对边A A anA A osA A A ∠∠=∠=∠= 1.2. 锐角三角函数的计算 1.3. 解直角三角形 在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。 2. 直线与圆的位置关系 2.1. 直线与圆的位置关系 当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有唯一公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。 直线与圆的位置关系有以下定理: 相离;直线与相切; 直线与相交; 直线与,那么, 的距离为到直线,圆心的半径为如果O ⊙r d O ⊙r d O ⊙r d d l O r O ⊙?>?=?<

直线与圆相切的判定定理: 经过半径的外端并且垂直这条半径的直线是圆的切线。 圆的切线性质: 经过切点的半径垂直于圆的切线。 2.2.切线长定理 从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。 切线长定理:过圆外一点所作的圆的两条切线长相等。 2.3.三角形的内切圆 与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。 3.三视图与表面展开图 3.1.投影 物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。 可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。 3.2.简单几何体的三视图 物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。 主视图、左视图和俯视图合称三视图。 产生主视图的投影线方向也叫做主视方向。 3.3.由三视图描述几何体 三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。 3.4.简单几何体的表面展开图 将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。 圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧

浙教版九年级数学下册知识点汇总

九年级(下册) 1. 解直角三角形 1.1. 锐角三角函数 锐角a 的正弦、余弦和正切统称∠a 的三角函数。 如果∠a 是Rt △ABC 的一个锐角,则有 ;t ;c ;sin 的邻边的对边斜边 的邻边斜边 的对边A A anA A osA A A ∠∠=∠=∠= 1.2. 锐角三角函数的计算 1.3. 解直角三角形 在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。 2. 直线与圆的位置关系 2.1. 直线与圆的位置关系 当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有唯一公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。 直线与圆的位置关系有以下定理: 相离; 直线与相切; 直线与相交; 直线与,那么, 的距离为到直线,圆心的半径为如果O ⊙r d O ⊙r d O ⊙r d d l O r O ⊙?>?=?< 直线与圆相切的判定定理: 经过半径的外端并且垂直这条半径的直线是圆的切线。 圆的切线性质: 经过切点的半径垂直于圆的切线。 2.2. 切线长定理 从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。 切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3. 三角形的内切圆 与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。 3. 三视图与表面展开图 3.1. 投影 物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。 可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。 3.2. 简单几何体的三视图 物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。 主视图、左视图和俯视图合称三视图。 产生主视图的投影线方向也叫做主视方向。 3.3. 由三视图描述几何体 三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。 3.4. 简单几何体的表面展开图 将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。 圆柱可以看做由一个矩形ABCD 绕它的一条边BC 旋转一周,其余各边所成的面围成的几何体。AB 、CD 旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD 旋转所成的面就是圆柱的侧面,AD 不论转动到哪个位置,都是圆柱的母线。 圆锥可以看做将一根直角三角形ACB 绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC 旋转所成的面就是圆锥的底面,斜边AB 旋转所成的面就是圆锥的侧面,斜边AB 不论转动到哪个位置,都叫做圆锥的母线。 一个底面半径为r ,母线长为l 的圆锥,它的侧面展开图是一个半径为母线长l ,弧长为底面圆周长r π2的扇形,由此得到的圆锥的侧面积和全面积公式为: ;; 全侧rl r S rl S πππ+==2 若设圆锥的侧面展开图扇形的圆心角为θ,则由r l o πθπ2180=,得到圆锥侧面展开图扇形的圆心角 度数的计算公式: o l 360r ?=θ

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲

圆精讲 一. 教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

相关文档
相关文档 最新文档