文档库 最新最全的文档下载
当前位置:文档库 › GCMS-谱图解析基础

GCMS-谱图解析基础

GCMS-谱图解析基础
GCMS-谱图解析基础

有机质谱解析

第一章导论

第一节引言

质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。如用电子轰击有机化合物(M),使其产生离子的过程如下:

每一离子的质量与所带电荷的比称为质荷比(m/z ,曾用m/e)。不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱

质谱分析中常用术语和缩写式如下:

游离基阳离子,奇电子离子(例如CH4)

电子对转移

α断裂αY

;与奇电子原子邻接原子的键断裂(不是它们间

的键断裂)

“A”元素只有一种同位素的元素(氢也归入“A”元素)。

“A+1”元素某种元素,它只含有比最高丰度同位素高1amu 的同位素。

“A+2”元素某种元素,它含有比最高丰度同位素高2 amu的同位素。

A峰元素组成只含有最高丰度同位素的质谱峰。

A+1峰比A峰高一个质量单位的峰。

分子离子(M)失去一个电荷形成的离子,其质荷比相当于该分子的分子量。

碎片离子:分子或分子离子裂解产生的离子。包括正离子(A+)及游离基离子(A+.)。

同位素离子:元素组成中含有非最高天然丰度同位素的离子。

亚稳离子(m*)离子在质谱仪的无场漂移区中分解而形成的较低质量的离子。

质谱图上反应各离子的质荷比及丰度的峰被称为某离子峰。

基峰:谱图中丰度最高离子的峰

绝对丰度:每一离子的丰度占所有离子丰度总和的百分比,记作%∑。

相对丰度:每一离子与丰度最高离子的丰度百分比。

第二章谱图中的离子

第一节分子离子

分子离子(M+)是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。

一、分子离子的形成

分子失去一个电子后形成分子离子。一般来讲,从分子中失去的电子应该是分子中束缚最弱的电子,如双键或叁键的π电子,杂原子上的非键电子。失去电子的难易顺序为:

杂原子> C = C > C — C > C —H

易难

分子离子的丰度主要取决于其稳定性和分子电离所需要的能量。易失去电子的化合物,如环状化合物,双键化合物等,其分子离子稳定,分子离子峰较强;而长碳链烷烃,支链烷烃等正与此相反。有机化合物在质谱中的分子离子稳定度有如下次序:芳香环> 共轭烯> 烯>环状化合物> 羰基化合物> 醚>酯> 胺> 酸> 醇>高度分支的烃类。

二、分子离子峰的判别。

通常,化合物的分子量用其所含元素的最大丰度质量来计算。假如一个纯化合物的EI 质谱图中有分子离子的话,它应该出现在谱图的最高质荷比区,但是,质谱图上质荷比最高的离子不一定就是分子离子,仍需进一步检验确定,以便排除各种干扰。

为判别分子离子,前人总结了很多经验。在一个纯化合物质谱(不含本底和离子分子反应等产生的附加峰)中,作为一个分子离子必要的但非充分的条件是:

1、它必要是谱图中最高质量的离子

分子失去一个电子,形成分子离子,自然它的质量数(质荷比)应为最高。但是,某些含氧含氮的化合物,如醚,酯,胺、酰胺、氨基酸酯、氰化物等,往往在比母峰多一个质量单位处出现一个峰,称为m+1峰,这是由于分子离子在电离室碰撞过程中捕获一个H 而形成的。 同样,有些分子易失去一个氢而生成M-1离子,例如,六氢吡啶的M-1峰比M 峰要高得多。

在实际工作中,情况往往很复杂,例如测量误差会对低丰度元素的计算带来较大影响,使推导出的元素组成有一种以上的可能性,这样,还需结合碎片离子及其他数据综合分析。

M

N H N H

/z 85

M -1

+

m /z 84

此外,由于某些元素的重同位素的存在,质谱图中也会出现某些离子的质荷比高于分子离子的情况。对同位素离子的说名见下节。

2、分子离子必须是奇电子离子

样品分子失去一个电子而被电离成离子,因而分子离子是一个游离基离子,由于带有未成对电子,所以被称为奇电子离子(OE )

,用符号表示。例如甲烷的分子离了形

成过程如下:

C H

H

H

H e

C H

H

H 或

CH

上式中符号只指带未成对电子的离子,并不是指另有一个电子加到所表示的分

子上。

3、含氮的有机化合物,分子离子的质荷比符含“氮规则”。

在有机化合物中常见的多数元素,其最大丰度同位素质量和价健之间有一个巧合,即除氮原子外,两者或均为偶数或均为奇数。由此可以推导出“氮规则”:假若一个化合物含有偶数个氮原子,则分子离子的质量为偶数。反之,可以推论出:含奇数个氮原子的化合物,分子离子的质量为奇数,其他有机化合物,分子离子的质量一般为偶数。

4、分子离子必须能够通过丢失合理的中性碎片,产生谱图中高质量区的重要离子。

分子离子分解过程中,通常仅有少数几种低质量中性碎片被失去。例如,饱合烷烃可以失去甲基或一个氢原子,出现质荷比为M-15及M-1的离子,但不可能失去个氢,出现质荷此为M-5的离子。通常,巧合,低质量中性碎片破失去。例如,饱合烷烃可以失去甲基或一个氢原子,出现质荷 比为M —15及M —1的离子,但不可能失去5个氢,

出现质荷比为M—5的离子。通常,分子离子不可能失去质量为4~14和21~25的中性碎片而产生重要的峰。下图为一烷烃的图谱,每m/z 57与m/z 43的离子相距14个质量数,而完整的有机化合物分子不可能丢失一个·CH2离子,所以m/z 57不是分子离子峰,而是由m/z 72的离子失去甲基(M—15)形成的。经过谱图解析,证明这个化合物是季戊烷[CH3—C(CH3)3],由于它不稳定,在电子轰击下易断裂,所以没出现分子离子峰。

M-15(.CH3), M-16(O), M-17(.OH,NH3), M-18(H2O),

M-26(CN,HCCH), M-27(CHNH2.CHCH2), M-28(CO,CH2CH2),

M-29(CHO,C2H5), M-30(CH2O,NO), M-31(OCH3,CH2OH),

M-32(CH3OH,S,O2), M-33(CH3+H2O), M-34(H2S), M-35(CL),

M-36(2H2O,HCL), M-41(C3H5),

对于不易出现分子离子的化合物,可采用其他辅助分析手段。

1、低能电子:通常EI谱的电子轰击能量为70ev,逐步降低轰击电子的能量,可以减少分子的平均内能使其碎断几率相应减少,由此提高分子离子的相对丰度。但需要注意的是,降低轰击电子能量,也就降低了所有离子的绝对丰度,使仪器灵敏度随之下降。能量过低,对辨别分子离子峰同样是不利的。

2、化学电离等软电离技术:

在化学电离条件下,样品分子与“反应气”离子在离子源中发生离子—分子反应。通常,样品分子得到一个氢或失去一个氢,得到质荷比为[M±1]的偶电子离子(OE)+,这些偶电子离了一般具有较低的内能。因此用EI得不到分子离子的化合物,大多数在CI条件下,可以产生能指明分子量的离子。除CI外,常用的软电离技术还有FI(场电离)FD(场解吸)及FAB(快原子轰去)等。

3、测定衍生物的质谱:

用化方法把一个化合物转变为适当的衍生物来提高化合物的蒸汽压,从而得到低挥发性化合物的衍生物质谱图,如羧酸,在EI谱上,只能得到[M-COOH]的峰,将羧酸进行甲酯化反应后,得到[M-H+CH3]的峰,进而推测化合物的分子量。

第二节同位素离子

在自然界,很多元素的组成不是单一的。这样,由它们组成的化学纯的有机化合物,由于组成它们的元素不是同位素纯的,只能得到一张混合物的质谱图。其中含有丰度较小的同位素的离子被称为同位素离子。它的丰度与离子中存在该元素的原子数目及该同位素的天然丰度有关,借助这些知识,可以推测分子离子或碎片离子的元素组成。

一、天然元素中同位素的相对丰度

下表中列举了组成有机化合物的常见元素在自然界中存在的同位素及其丰度。这些化合物被分为三类:“A”,只有一个天然丰度的同位素;“A+1”,有两个同位素的元素,其中第二个同位素比丰度最大的同位素重一个质量单位;“A+2”,这类元素含有比丰度最大同位素重二个质量单位的同位素。

②1.1±0.02,取决于来源。

二、重同位素峰丰度的近似计算法。

“A+2”·元素,

这类元素包括氧、硅、硫、氯和溴。除氧以外,其他元素的重同位素丰度都较高,如果有机物含有硅、硫、氯和溴,则分子离子区出现的同位素峰的强度可由二项式的展开式来计算。

......!3/)2)(1(!2/)1()(3

3

22

1

+--+

-++=+---b a

n n n b a

n n b na

a b a n n n n

n

式中a :轻同位素相对丰度 b :重同位素相对丰度

n :分子中该元素的原子数目

例如:含一个氯原子的化合物CH 3CL ,由CH 335CL (M=50)及CH 337CL (M+2=52)组成,其中35CL 与37CL 的丰度比为3:1,则上式为

(3+1)1

=3+1

CH 335CL 与CH 337CL 的丰度比,即

m/m+2=3:1

而含三个氯的CHCL 3,同位素峰丰度计算如下: 1

927273

1

)23)(13(32

1

3)13(313331

2

1

3)13(31333)13()(3

2

33

2

2

3

3

3

+++=?--+

??-+

??+=+∴?-+

??+=+=+b a

同样,可知含一个溴原子的有机化合物,其m/m+2的丰度比为1:1,含二个溴原

子时,m:m+2:m+4=1:2:1。

当化合物含有两种或两种以上“A+2”元素时,先根据上式计算每一种元素的丰度比,而后时它们进行排列组合,例如对于含一个氯原子及两个溴原子的化合物,用3:1含一个(氯原子的丰度比),与1:2:1(含两个溴原子的丰度比)组合,可知它的m:m+2:m+4:m+6 =3:7:5:1。

氧原子的A+2同位素相对丰度很低(0.2%),当离子中存在多数个碳原子时,会对m+2

峰产生影响,对于含有W 个碳原子及五个氧原子的化合物,其m+2峰的相对丰度的理论便可用下形式计算,%20.0200)11(%22??

?

???+?=+Z W m

在实际测量中,由于18O 含 量低,测量误差往往较大。

以上介绍了已知“A+2”元素原子的个数时,如何计算同位素样的样相对强度。反

之,通过质谱测定,已知同位素丰度时,也可推测元素的种类及含量,但由于对氧元素的测量误差不易控制。往往在确定了“A+1”元素和其他“A+2”元素之后再计算氧原子数据,也可以否定某些元素的存在。如m+2/m<3%时,即可否定此峰不会Si 、S 、CL 、Br 元素。

2.“A+1”元素

“A+1”元素包括碳、氢和氮。但2

H/1

H 的比例非常小,常常把氢做为A 元素,对化合物C w H x N y O E 的同位元素峰计算,可用下式。

[]%04.038.0016.008.1%1E Y X W m +++=+

因为17O 及2

H 相对含量极低,上式可简化为 (m+1)%=[1.1W+0.38Y]%

含有两个以上碳原子的化合物,其m+2峰相对丰度的计算方法为: []%38.01.1)%2(Y W m +=+

3“A ”元素

“A ”元素包括氢、氟、磷及碘,根据实验数据确定或或估计了每种“A+2”和“A+1”元素的数目后,这个离子峰余下的质量一定由“A ”元素提供。根据价键规律,利用上述数据,可完成对分子的组成(或几个可能组成)的确定。

三、利用同位素峰推测元素组成及分子式 表中为某一化合物的高质量区测试结果。

m/E 相对丰度 归一化 S 1 O 1 C 8 C 9 13

CS 1 139 0.5 2 140 25 100 100 100 100 100 141 2.5 ±0.25 10±1.0 0.8 0.0 8.8 9.9 8.8 142 1.2±0.2 4.8±0.8 4.4 0.2 0.3 0.3 0.1 143 0.1±0.2 0.4±0.8

0.4 第一栏为分子离子峰及同位素峰的质荷此,第二栏为相对丰度,其归一化的结果列于第三栏,根据m+1/m 及m+2/m 的值可以推测此化合物可能含一个硫原子或者含一至三个氧原子。先假设化合物含一个氧原子。尔后考虑“A+1”元素。如果含一个硫原子,33

S 的相对丰度为0.8(%),从m/m+1的总量中除去0.8,17O 的丰度比仅占0.04(%),可以忽略不计。从m/m+1的总量中除去0.8,可知碳同位素对m+1的贡献为8.2~10.2,那么它可能含8个或9个碳原子,分别计算它们的m+1峰及m+2峰与m 峰的比值。填到表中第六七栏。因为分子量为140amu 而S 1和C 9总共为140amu ,而有机化合物的组成不可能为C 9S 。所以推测此化合物含八个炭。C 8S 1的质量数为128,140-128=12,这样也就排除了含氧的可能,其余下这12amu ,应用“A ”元素补是,A 元素中F 、P 、碘的原子量大于12,所以分子了式只能为C 8H 12S 。

除上述方法上,还可以能过,Beynod 表 决定化合化合物的级成及分子式、Beynon 表中记载了元素组成不同,分子量不同的各种离子的m 、m+1及m+2的比值,F 表为Beywon 表节录的一部分。

分子林

M+1 M+2 C 7H 10N 4 9.25 0.38 C 8H 8NO 2 9.23 0.78 C S H 10N 2O 9.61 0.61 C 8H 12N 3 9.98 0.45 C 9H 10O 2 9.96 0.84 C 9H 12NO 10.34 0.68 C 9H 14N 2 10.71 0.52

某化合物,其m 、m+1 ,与m+2的丰度比见表。根据

m

m 2+为0.88,可知此化合

物下含s 、a 及Br 。在Beynon 表中,分子量为150的组合共29个,其中m+1/m 的百分

比在9—11之间的组合7个。根据“氮规则”,可以排除C 8H 8NO 2,C 3H 12N 3及C 9H 1002

的同位素峰丰度比与实测值接近,可以推测该化合物的分子式应为C 9H 10O 2。

在实际工作中,情况往往很复杂,例如测量误差会对低丰度元素的计算带来较大影响,使推导出的元素组成有一种以上的可能性,这样,还需结合碎片离子及其他数据综合分析。

第三节 碎片离子

碎片离子的质荷比及其丰度在质谱数据中占很大比例。碎片离子的相对丰度与分子结构有密切关系,高丰度的碎片峰代表分子中易于裂解的部分,如果有几个主要碎片峰,并且代表着分子的不同部分,则由这些碎片峰就可以粗略地把分子骨架拼凑起来。质谱解析的大量工作就是分析碎片离子的形成过程。

一、碎片离子的形式

质谱反应属于单分子反应,离子源中的样品蒸汽压通常低到足以忽略双分子(离子—分子)或其他碰撞反应的程度,所形成的分子离子具有范围较宽的内能。那些是足够“冷”的离子不会在被收集前分解,在质谱图上以分子离子(

M

)的形式出现;而处

于高激发态的分子离子,将进一步分解,产生一个离子和中性碎片。如果这个初级产物的离子有足够的能量,还可以进一步分解。

ABCD

ABCD A

+BCD

A +BC

+D

反应中也可以发生异构化

ABCD AD

+BC

碎片离子的丰度主要取决于该离子的稳定性。主要的离子稳定形式是杂原子中未成键轨道的电子共享和共振稳定。此外,丰度与离子的电离能有关。电离能低的碎片离子形成几率高。

二、离子分解反应的类型及反应机理

反应的分类方法有很多种,此处采用F 、W 、Mclafferty 的分类方法。 1. σ键的断裂

化合物中某个单键失去电子,则在此处易进一步发生断裂反应,例如烷烃。

R

+RCR

3

CR 3

CR 3

σ

能够稳定正电荷的离子丰度较高,如

CH 3

CH 2CH 3-e

C H 3 3C 2CH 33

C

3

3

C CH 2CH 3σ

+

甲基为供电基,叔丁基与三个甲基相连,对稳定正电荷最有利,所上上述反应中 (CH 3)3C +离子的丰度为100%,即基峰。

2.游离基中心引发的断裂反应(α断裂)

分子失去电子,形成游离基离子,它的电子有强烈的成对倾向,电子转移与邻近原子形成一个新键,同时邻近原子的α键断裂。因此,这种断裂通常称为“α”断裂反应,以下分别举例说明各种化合物α断裂过程。

① 游离基离子为饱合中心原子

R

2YR

R +CR 2

YR

杂原子(Y )的孤对电子电离能较低,很容易去失,形成游离基离子,进而发生α断裂,如

R

2R'

R

+CH 2O

R'

② 游离基离子为不饱含杂原子

R

+C R

'

α

Y

例如羰基化合物的α 裂解

R

+C

O

R'

α

③ 烯烃类的烯丙位裂解

H

2

R

+CH 2

CH

CH 2

CH 2

CH

CH 2

上述反应的进行与游离基中心给电子倾向有密切的关系。氮原子给电子能力很强,α断裂在脂肪族胺中占主导地位,其次是氧族元素,由给电子能力的差别造成的α断裂反应的难易程度按下列顺序排列:N>S 、O 、π,R ﹒>Cl 、Br>H 。当一个化合物有几个α键时,最容易去失的是最大的烷基游离基,例如3-甲基-3已醇有3个α键,α断裂后应在m/z 73、87及101处出现特征峰;其中M-C 3H 7的峰丰度最高,而后是m-C 2H 5,m-CH 3丰度最低

C 3H C 2H 5

OH

C 2H 5C CH 3OH

C 3H 7C CH 3

OH

C 3H 7C -

>> C 2H 5

m /z 73,100%m /z 87,50%

m /z 101,10%

3、电荷中心引发的反应(诱导断裂,i ) ①奇电子离子(

OE )

a. 饱合中心

R

Y R'

R +

i

YR

例如:

C 2H 2H 5

C 2H 5+O C 2H 5

m /z 29,40%

i

b. 不饱合中心

R

C R'

C

R'O

i

R

+R'

C

O

如:

C 2H C 2H 2H 5+C 2H 5C

O

m /z 29

上述反应由正电荷对一对电子的吸引所推动,反应发生的难易与该元素的诱导效应有关,一般为卤素>O 、S >> N 、C ;许多碘代烷烃,溴代仲和叔烷烃及氯代叔烷烃,

较易产生这个反应。

CH 3CH 2CH

CH3

4H 9+Br m /z 57

i

在影响α或i 反应的能力方面,氧属于中等水平,例如:

CH 3CH 3CH 2O

CH 2+CH 3

m /z 59

CH 3CH 2+

O

CH 2

CH 3

i

m /z 29α

α反应与i 反应机理不同,形成的离子也不同,两者互为互补离子。由于i 断裂需要电荷转够,与α断裂相比较难进行。上述反应中m/z59的丰度大于 m/z 29的丰度

②偶电子离子(EE +)

偶电子离子反应往往产生一个新的偶电子离子及一个中性分子。 a. 饱合中心

R

2i

R +YH2

化学电离(CI )产生的初始离子,主要是EE +离子,如(M+H )+和(M-H )+,而后

产生i 反应。例如麻黄素在化学电离中先形成(m+1)+离子,再脱H 2O :

CH

OH CH NH CH 3

CH 3CI

H 2CH NH CH 3

CH 3m +1

i

C CH NH CH 3CH 3+

H 2O

m /z 148

H

b :不饱合中心

2

i R +Y

CH 2

CH 3CH 2O CH 2

m /z 59

CH 3CH 2O

CH 2

+

+

m /z 29

分子离子为奇电子离子(

OE ),经过α断裂产生偶电子离子(EE +

),再发生i

断裂,如酯肪酮:

C R

O

R

+CO

i

4、游离基中心引发的重排

在质谱反应中,分子中原子的排列发生变化的反应被称为重排,由游离基中心引发的氢原子重排是常见的重排反应之一。

(1) γ-H 重排到不饱合基团上并伴随发生β断裂:(麦氏重排)。

+

Y

H +

H i

Y

未成对电子通过空间与邻近的一个原子(γ位上氢原子)形成新键,这个新键的第二个电子是由该邻近原子的另一个键转来的,其结果导致这个键断裂及氢原子通过六元过渡态转移。在这个过程中最初的断裂没有使离子中任一部分丢失,而只是引起游离基

中心位置的改变。新的游离基立即引发一个α断裂反应,导致原来游离基的β位碳碳键断裂;与此同时失去一个烯烃或其他稳定分子,形成奇电子离子,例如:

CH3H

3C

m/z 58,40%同样,新形成的游离基中心也可以诱发诱导断裂(i断裂),但由于i断裂需要电荷转移,进行比较困难。离子丰度大为降低。

CH3

H

i H3

+O

H

m/z 42,5%

然而,如果用苯基取代上述分子的甲基,诱导反应的趋势大大增强,这是由于苯基取代使电离能下降所造成。

②氢重排到饱合杂原子上并伴随邻键断裂。

饱合杂原子的游离基未成时电子与邻近的处于适当构型的氢原子形成一个新键,与此同时一个与氢原子相邻的键断裂。

H 24H 9

4H 9O

H H 24H 9+H 2C C α

O

m /z 73

O

通过α反应产生m/z73离子。由于产生的含杂原子的离子是饱合的,对电荷的争夺力很弱,使得电荷转移的i 反应发生更为普遍,尢其是对电负性强的集团:

C 2H H H

C 2H 5

+HCl m /z 70

上述反中形成了[M-HCl]离子,其它电离能较高的饱合小分子,如H 2O 、C 2H 4、CH 3OH 、H 2S 和HBr 等,常以这种方式丢失。

③置换反应(rd )

这是一种非氢重排的反应,分子内部两个原子或基团(常常是带游离基中心的)互相作用,形成一个新键,与此同时其中一个集团(或两者)的另一键断裂,例如:

rd

R +

Cl

m/z 91

5、电荷中心引发的重排

z d

z

y +A

B

z 为氢时常常看到这个类型的裂解,如二乙胺:

CH 3CH 22CH 2

H 2C

CH 2H 2N

CH 2

d

+m /z 58

m /z 30

上述反应中,z (氢)和y 的位置关系不一定,z 离子种种位置重排,在多数研究报告中认为是经过四元环过渡态。

酯类化合物常发生两个氢原子的重排,即麦氏重排与电荷中心诱发的重排,有时称为麦氏+1重排,例如:

rH

O R'

α

R

+

OH

O

R'

O

+

OH HO

R'

OH HO

R'

麦氏重排产生

OE

离子,而麦氏+1重排产生EE +离子,这个特征峰有利于辨认酯,

硫酯酰胺和磷酸酯等化合物。

以上介绍了各类裂解反应及其机理。质谱反应中,各类反应可以同时发生,但由于

化合物的性质不同,往往以1—2种反应为主,由此产生各类化合物的特征离子。各类化合物的质谱将在下章论述。

第四节 亚稳离子及多电荷离子

一、亚稳离子

在质谱图中,有时可以看到峰形较宽的峰,这是亚稳离子形成的。

质量为m 1的离子若在电离室中进一步开裂,生成质量为m 2的离子及一个中性碎片。 m 1 m 2 + 中性碎片

如果裂解不是在离子室中发生,而是在磁场之前的无场漂移区中飞行时发生的,那么离子的质量虽然仍为m 2,但由于一部分动量被中性碎片带走,故在较低的质荷比处出现一个低矮的宽峰。这个低动量的离子被称为亚稳离子(m*),它与m 1及m 2有如下

关系:

根据上式,可以利用出现的m*离子找到对应的m 1及m 2,同时也可以计算出失去的中性碎片的质量。这样,就可以辨认母离子(m 1)及子离子(m 2)的亲缘关系。

质谱图中出现的亚稳峰有各种形态,最常见的是弧形或丘形的,有时也见到不尖锐的等腰三角形。它的相对丰度一般很小,呈发散状,能跨几个质量数;往往以其中心为准计算亚稳离子的质荷比,多为非整数。下图为针枞酚的质谱图,图中可见m/z71.5的亚稳离子峰。

由5.7148.74121

93

2

≈=可知,m/z93由m/z121脱去质量数为28的中性碎片得来,

1

/*2

2m m m =

HO

3

O 3

HO

O -

m /z 136

m /z 121

m /z 93

亚稳离子在探讨有机分子的裂解途径方面,意义很大。它与离子的精确质量测定和质量位移技术相互验证相互补充,把看上去很复杂的质谱,排列成一系列有“亲缘关系”的家族,辨认出反应物,中间体及产物,从而可准确地写出裂解方式和裂解途径,获得分子结构的重要资料。 二、多电荷峰

有机分子受到电子流冲击,有时被打掉两个电子,生成两价离子,如黄酮类,双苄基四氢异喹啉类和蒽醌类化合物,常出现双电荷离子,其质荷比为m/2z ,在质谱图上出现在其质量数一半的地方。如果这个离子质量数为奇数,质荷比就不是整数;这样的两价离子比较容易发现。但一般的两价离子,质荷比为整数,而且离子峰很小,所以不容易发现。

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

有机波谱综合谱图解析

综合谱图解析 1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。并解释质谱中m/z 57和31的来源。

2?待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外 光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I )入max 223nm , S 4100; (II )入max 219nm 2300,试确定这两个化合物。 未之物(I )的谱图 127 100-1 - 10 10 曲 凹 M 亠亲) ? 册 -J P 科 J S W

未之物(II)的谱图

3、某未知物的分子式为C 9H 10O 2,紫外光谱数据表明:该物入max 在26 4、262 I? 257、252nm (&maxIOI 、158、147、194、153);红外、核磁数据如图所示,试 0 LOtMio. sopoiggg 翌g 嚴效 却31卿]卿丄电00 uyo iw mo 推断其结构,并说明理 由。 ! \ \ 「 1 CCh 1 I J —' 1 1 _■ ____ __ _ ,B . _ ,- T J.亠」亠亠」亠 | * --------------- U 5>0 4. 0 d/ppm

4.某未知物C ii H i6的UV 、IR 、中NMR 、MS 谱图及13C NMR 数据如下,推导 未知物结构。 序号 S c ( ppm ) 碳原子个数 序号 S c ( ppm ) 碳原子个数 1 143.0 1 6 32.0 1 2 128.5 2 7 31.5 1 3 128.0 2 8 22.5 1 4 125.5 1 9 10.0 1 5 36.0 1 MS(E[] 100 so 30D A/tnn 350 血 >0624*68<)2 4 內 OS n 2 2 98765^43211 0SU 'H bMRfCDCI^

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

综合谱图解析

1、某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。 1 : 2 : 9 [解] 从分子式C5H12O,求得不饱和度为零,故未知物应为饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液的红外光谱在3640cm-1处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在

3360cm -1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。 质谱中从分子离子峰失去质量31(-CH 2OH )部分而形成基峰m/e57的事实为上述看法提供了证据,因此,未知物的结构是 C CH 3 H 3C CH 3 CH 2OH 根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。 C CH 3 H 3C CH 3 CH 2OH +. C + CH 3 CH 3 H 3C CH 2 OH + m/e31m/e88 m/e57 -2H -CH 3 -CH 3-H CH 3 C CH 2 + m/e29 m/e73 m/e41 2、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm 以上没有吸收,确定此未知物。

226 3 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未知物分子含奇数个氮原子。根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

综合谱图解析

1、某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,它的125紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。 1 : 2 : 9 [解] 从分子式CHO,求得不饱和度为零,故未知物应为饱和脂肪族化合物。125未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液的红外光谱44-1处有1尖峰,这是游离O H基的特征吸收峰。样品的在3640cmCCl浓溶液在4word

编辑版. -1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知13360cm处有处的宽峰,经重水交换后消失。上述事实确定,未知物分4. 1物核磁共振谱中δ子中存在着羟基。个质子,可看成是连在同3未知物核磁共振谱中δ0.9处的单峰,积分值相当个亚甲基,12个质子,对应个甲基。一碳原子上的3δ3.2处的单峰,积分值相当看来该次甲基在分子中位于特丁基和羟基之间。的事OHCH)部分而形成基峰m/e57质谱中从分子离子峰失去质量31(-2实为上述看法提供了证据,因此,未知物的结构是CH3OHCHC CH23CH3根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。CHCH3+3.++CCHOH CH OHCHC CH m/e31CHCH33m/e88m/e57-2H-CH-H-CH33m/e29CHCCHm/e7323+m/e41 3232 2、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm以上没有吸收,确定此未知物。 word 编辑 版.

3622 个丰度很小的峰,应为分子离处有在未知物的质谱图中最高质荷比1311] [解。由于分子量为奇数,所以未知物分子含奇数个子峰,即未知物的分子量为131氮 原子。根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。-1-1典型的红外光谱中在1748 cm处有一强羰基吸收带,在1235 cm1附近有-1处的吸--宽强COC1040 cm伸缩振动 吸收带,可见未知物分子中含有酯基。word 编辑版. 收带则进一步指出未知物可能是伯醇乙酸酯。个甲基。从它的化学位移来看, 11.95处的单峰(3H),相当核磁共振谱中δ提供了C=O)很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子(CH3并且它们的裂距相等,的三重峰,在核磁共振谱中有2个等面积(2H)有力的证据。,其中去-2个相连的亚甲-CHCH相当于AA'XX'系统。有理由认为它们是22屏蔽较大的亚甲基与酯基上的氧原子相连。至此,可知未知物具有下述的部分结构:OCHCHCHOC322个

四大谱图综合解析6

11 某一未知化合物的质谱、红外光谱和核磁共振谱见图2-16. 2-1'l和2 18。也测定了它的紫外光谱数据:在200nm以上没有吸收。试确定该化合物的结构。 质谱数据 [解] 根据M+1=7.8, M+2=0.5,从Beynon表找出有关式子,然后排除含有奇数个氮原子的式子(因为未知物的分子量为偶数),剩余的列出: C5H14N2 72

和C 6H 14O 也较为接近。考虑到未知物的紫外光谱在200 nm 以上没有吸收,核磁共振谱在芳环特征吸收区域中也没有吸收峰等事实,说明未知物是脂肪族化合物。根据这一点,上述三个式子只有C 6H 14O 可以作为未知物的分子式。从分子式可知该化合物不饱和度为零。 在未知物的红外光谱中,没有羰基或羟基的特征吸收,但分子式中又含有氧原子,故未知物为醚的可能性很大。在1130cm -1~ 1110 cm -1之间有一个带有裂分的吸收带,可以认为是C —O —C 的伸缩振动吸收。 另一方面,核磁共振谱中除了在δ1. 15处的双峰和δ3.75处的对称七重峰(它们的积分比为6:1)以外没有其它峰,这非常明确地指出了未知物存在着2个对称的异丙基。对于这一点,红外光谱中的1380 cm -1和1370 cm -1处的双峰,提供了另一个证据。 根据上述分析得到的信息,未知物的结构式可立即确定为: CH H 3C H 3C O CH CH 3CH 3 按照这个结构式,未知物质谱中的主要碎片离子可以得到满意的解释: CH H 3C H 3C O CH 3 CH 3 +· C H H 3C CH 3 O C H CH 3 ++ 基峰 m/z 45 CH H 3C H 3C CH H 3C H 3C O H C CH 3 +++O CH CH 3 CH 3 ·m/z 43 m/z 87 +·CH 3 CH 3CH=OH 12 某一未知化合物,其分子式为C 10H 10O 。已测定它的紫外吸收光谱、红外光谱(KBr 压片)以及核磁共振谱,见图确定该化合物结构。

综合热分析

寒假—综合热分析 物质加热后发生化学的或物理的变化时,会表现出吸热、放热等能量的转变,或重量、体积等的变化,不同的物质有不同的组成和结构,加热后有特定的热效应,当物质发生相变化时,就会在特定热效应中反应出来。因此,可以用对物质加热的方法进行相分析。 热重法 材料在加热过程中脱水、氧化、蒸发、升华或燃烧等都会发生重量的变化。 调节和控制加热速度,记录材料重量变化与时间或温度的关系、重量变化的大小,称为热重分析。 热差分析 用二种物质在一定的温度范围内加热,其中一种物质加热后不发生相变化,如果另一种物质加热过程也无相变化,则二种物质之问无热量差;如果其中有一种物质在加热过程中产生相变化,由于吸热或放热,会产生与另一种物质的热量差,即差热。量测产生差热时的温度和差热大小,可以定性或定量分析该物质。加热时无相变化的物质称为参比样 一、脱水 以各种不同状态存在于材料中的水.在加热后失水时要吸收热量,因此不同状态的水的脱除为吸热反应。材料结构不同,水的存在形态不同,则脱水吸热的温度也不同。脱水后,材料失重二脱水温度取决于水在物质中的结合力。 二、分解 加热后,物质由一种化合物变成二种以上的化合物称为分解,破坏了原来的结构,吸收热量成为破坏动能。分解温度和吸收的热量取决于晶格结合的牢固程度。 三、结晶 物质由无定形转变为晶态,即无序→有序,内能减少,放出热量。如果结晶破坏转变为非晶态,则为吸热反应。

硫酸盐对混凝土的侵蚀: 分为化学侵蚀与物理侵蚀。化学侵蚀主要是硫酸盐与水泥水化产物发生化学反应导致混凝土膨胀破坏。物理侵蚀是指硫酸盐结晶对混凝土产生的破坏,这种破坏来自于盐结晶后体积膨胀,其本身未与水泥的水化产物发生化学反应。硅酸盐水泥主要水化产物有水化硅酸钙、水化硅酸钙凝胶、氢氧化钙和水化铝酸钙。 硫酸盐侵蚀是一个复杂的物理化学过程,它是典型的膨胀性腐蚀。以硫酸钠为例,当硫酸根离子的浓度较低时,主要膨胀性产物为钙矾石当硫酸根的浓度很高时,还会生成另一种膨胀产物石膏。其反应如下: 3CaO·Al 2O 3 ·CaSO 4 ·18H 2 O+2CaSO 4 +14H 2 O → 3CaO·Al 2 O 3 ·3CaSO 4 ·32H 2 O(钙矾石) Na 2S0 4 ·10H 2 O+Ca(OH) 2 → CaSO 4 ·2H 2 O+2NaOH+8H 2 O(石膏) Biczok等认为,对硫酸钠侵蚀而言,当硫酸盐浓度比较小时(< 1000mg/L SO 4 2-)侵蚀产物以钙矾石为主,而在高浓度下(> 8000mg/L SO42-)以石膏为主,在1000 —8000mg/L SO 4 2-范围内,石膏和钙矾石都被观察到。 钙矾石(3CaO·Al 2O 3 ·3CaSO 4 ·32H 2 O)在87℃时失去6个结晶水,135℃时失去21~ 22 个结晶水,225℃时失去全部结晶水。石膏(CaSO 4·2H 2 O)在165.6℃转变为CaS04。 (1/2)H 2O,在233 . 7 ℃时转变为无水CaSO 4 ,也有文献报道是123℃和130℃。 因试验原材料、试验条件和仪器型号及参数设置等的不同,不同文献得出的结论也有所差异。 综合目前文献可知 钙钒石主要脱水温度区间是80—130℃ 石膏的主要脱水温度区间是130—150℃ 420-500℃区间的峰对应Ca(OH) 2 的分解 700-850℃区间的峰对应CaCO 3 分解 综合热分析曲线:

(完整版)四大波谱基本概念以及解析

四大谱图基本原理及图谱解析 一质谱 1. 基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。它还会发生一些化学键的断裂生成各种 r =£ 碎片离子。带正电荷离子的运动轨迹:经整理可写成: m _ rjH2 电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范

DSC曲线解析

DSC曲线解析 傅树人(中国科学院广州化学研究所) DSC作为一种多用途;高效、快速、灵敏的分析测试手段已广泛用于研究物质的物理变化(如玻璃化变、熔融、结晶、晶型转变、升华、汽化、吸附等)和化学变化(如分解、降解、聚合、交联、氧化还原等)。这些变化是物质在加热或冷却过程中发生的,它在DSC曲线上表现为吸热或放热的峰或基线的不连续偏移。对于物质的这些DSC表征,尽管多年来通过热分析专家的解析积累了不少资料,也出版了一些热谱(如SADTLER热谱等).但热谱学的发展尚不够成熟,不可能象红外光谱那样将图谱的解析工作大部分变为图谱的查对工作,尤其是高聚物对热历史十分敏感,同一原始材料,由于加工成型条件不同往往有不同的DSC 曲线,这就结DSC曲线的解析带来了较大的困难。 解析DSC曲线决不只是一个技术问题,有时还是一个困难的研究课题。因为解析DSC 曲线所涉及的技术面和知识面较广。为了确定材料转变峰的性质,不但要利用DSC以外的其他热分析手段,如DSC-TGA联用,还要借助其他类型的手段,如DSC-GC联用,DSC 与显微镜联用,红外光谱及升降温原位红外光谱技术等。这就要求解析工作者不但要通晓热分析技术,还要对其他技术有相应的了解,在此基础上结合研究工作不断实践积累经验,提高解析技巧和水平。 作为DSC曲线的解析工作者起码应该知道通过DSC与TGA联用,可以从DSC曲线的吸热蜂和放热峰及与之相对应的TGA曲线有无失重或增重,判断材料可能发生的反应过程,从而初步确定转变峰的性质.如表1所示。 DSC曲线,还必须对材科的特性有较为深刻的了解,例如高聚物的结构和性能与其热历史、机械史、结晶过程密切相关,其DSC曲线会留下这些热历史的印记,谓之Previous history memory。从DSC曲线研究和表征这些历史记忆对材料的结构和性能的影响,实质上就是对

相关文档