文档库 最新最全的文档下载
当前位置:文档库 › 概率统计在土木工程中的应用

概率统计在土木工程中的应用

概率统计在土木工程中的应用
概率统计在土木工程中的应用

介绍你所知道的概率统计在你所学专业方面某一问题的应用

——概率极限状态设计法

从投资方和建设方的角度应对房屋的性能提出哪些要求?

是否存在绝对安全的结构?

如何量化对结构功能的要求?

如何判断结构可靠或失效?

疲劳破坏是否属于耐久性问题?

冻融循环破坏是否属于耐久性问题?

利用概率度量可靠性是否一定合理?

概率设计方法属于理想的设计方法吗?

概率论在土木过程中在安全性可靠性评估方面起着十分重要的作用。

一、结构可靠性理论的基本概念

结构设计方法历经了极限平衡设计法、容许应力设计法、破损阶段设计法、半概率极限状态设计法和近似概率极限状态设计法。半概率极限状态设计法首次应用数理统计方法确定荷载和材料强度的取值;目前的近似概率极限状态设计法则首次利用概率近似度量结构的可靠度,使建筑结构设计方法发生了本质变化。

建筑结构可靠性理论按可靠性的度量方法划分为三个水准:水准一(半概率法)、水准二(近似概率法)和水准三(全概率法)。目前的结构可靠性理论水平属水准二。

结构可靠性指在规定的时间内,在规定的条件下,结构完成预定功能的能力。对于设计中的拟建结构而言,“规定的时间”指设计使用年限;“规定的条件”指“正常设计、正常施工、正常使用和正常维护”;“预定的功能”包括安全性、适用性、耐久性三个方面;“能力”用概率来度量。对于使用中的现存结构,“规定的时间”指目标使用期;“规定的条件”不应再包含“正常设计和正常施工”。

“足够的耐久性能”:结构在规定的工作环境中,在预定时期内,其材料性能的恶化不致导致结构出现不可接受的失效概率;在正常维护条件下,结构能够正常使用到规定的设计使用年限。耐久性问题是可靠性中涉及材料性能退化的特殊问题。

二、概率极限状态设计流程

容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力;破坏阶段法设计原则是结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构建内力乘以安全

系数;极限状态法中将单一的安全系数转化为多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的数值上引入概率和统计数学的方法(半概率方法);概率(极限状态)设计法的准则是对于规定的极限状态,荷载引起的荷载效应(结构内力)大于抗力(结构承载力)的概率(失效概率)不应超过规定的限值。概率极限状态设计法更科学、更合理,但该法在运算过程中还带有一定程度近似,只能视作近似概率法。

以钢筋混凝土建筑物在地震中倒塌概率为例,理出极限状态概率设计法的流程图如下:

三、结构可靠度的计算方法

以随机变量X i表示影响结构可靠度的各项因素,如荷载、材料强度等等,以Z=g(X1,X2……X n)表示结构功能函数,则

当Z>0,结构可靠;

当Z=0,结构达到极限状态;

当Z<0,结构失效;

其中,

Z=g(X1,X2……X n)=0

称为结构的极限状态方程。

Z<0情况出现的概率称为结构的失效概率P f。

现以最简单的两个随机变量的情况来阐明失效概率的计算方法以及失效概率与可靠指标的关系。

若结构功能函数仅与综合荷载效应S及结构抗力R两个随机变量有关,且R和S 时独立的,则结构的承载能力极限状态方程为

Z=R-S=0

则结构的安全概率为P S=P(Z>0)=∫0f Z(z)d z

则结构的失效概率为P f=P(Z<=0)=∫0f Z(z)d z

结构可靠指标

β=?Φ-1(P f)

式中Φ-1为正太分布函数的反函数。

失效域

失效概率

P f=P(Z<=0)=P(R-S<=0)

=?r<=s f RS(r,s)d r d s=?r<=s f R(r)f S(s)d r d s

假定荷载效应S和抗力R都服从正态分布失效概率P f=P(Z<=0)=P(R-S<=0)

=?f RS(r,s)d r d s=?f R(r)f S(s)d r d s

国际上经多年研究,以概率理论为基础的结构极限状态设计方法已经开始进入实用阶段,已逐步成为一些国家制定规范标准的理论基础,我国以概率极限状态设计法为基础的《建筑结构设计统一标准》亦已编制完成。

要在我国房屋、桥梁、港工、水工等工程结构上更全面和深入应用概率方法,还需进行大量的工作以取得系统的统计资料,在理论上也有许多问题需要深入研究,例如载荷的随机过程概率模型,结构体系的可靠度等。尽管如此,概率方法的应用无疑为我国改进结构设计,特别是解决结果可靠度问题开辟了一条重要的途径。

参考文献:1、《建筑科学》1986年。《建筑结构概率极限状态设计法》、胡德炘2、《黑龙江交通科技》2010年第9期。《关于建筑结构抗震概念设计(概率极限状态设计法)》、金顺浩

概率论在经济中的应用

学科分类号: 本科毕业论文 题目(中文):概率论在经济中的应用 (英文):Probability theory in the application 姓名缪艳芳 学号 100200540102 院(系)数学与计算机科学学院 专业、年级数学与应用数学 指导教师雍进军职称讲师 二○一三年十二月

贵州师范学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名:(亲笔签名) 年月日

目录 摘要 (1) ABSTRACT (2) 1绪论 (3) 2在经济管理决策中的应用 (4) 2.1最大利润与投资风险(数学期望与方差的应用) (4) 2.2 概率论知识在彩票问题中的应用 (6) 3 概率论在商品生产与检验中的应用 (8) 3.1应用极大似然估计,确定商品合格率 (8) 3.2 两子样秩和检验法的应用 (9) 4 中心极限定理的应用 (11) 4.1在医疗保险中的应用 (11) 4.2在工业生产效率中的应用 (12) 5 贝叶斯公式在疾病中的应用 (14) 参考文献: (17) 致谢 (17) 附录A (18)

摘要 本论文共分为四个章节,内容包括数学期望及方差,随机变量,中心极限定律,极大似然估计,两个秩和检验,贝叶斯公式等的应用。概率论与数理统计就是研究随机现象的统计规律的数学学科,由于随机现象的普遍现象的普遍性,使得概率论与数理统计具有极其广泛的应用。近年来,一方面它为科学技术、工业农业生产等的现代化做出了重要贡献。本文通过实例讨论了概率论与数理统计方面的知识经济决策,最大利润,商品生产与检验,在医疗保险中的应用工业生产效率等多方面的介绍。 关键词:概率统计;经济;应用

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

《应用概率统计》张国权编课后答案详解习题一解答

习 题 一 解 答 1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生; (3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生. 解:(1)C B A (2)C AB (3)()C B A ? (4)BC A C AB ABC ?? (5)ABC (6)C B A C B A C B A ?? ――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41 ==i i A A , (2) A ,(3) B , (4) 32A A . 解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球 (4)第2次和第3次至少有一次取得白球 ――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ? (2)A B ? ――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A . 解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0 ――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问: (1) ABC表示什么事件? (2) 在什么条件下,有ABC=A成立? (3) C ?B表示什么意思? (4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书 (4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书 ――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系. (1) X < 20 与X ≥ 20 ; (2) X > 20与X < 18 ;

概率论在经济投资中的应用

概率论在经济投资中的应用 中文摘要:概率论起源于生活,同时也可以应用于生活,其已不仅是一门简单的数学学科。了解概率论在描述经济变化,证券和保险等经济投资方面的应用,对于我们了解经济变化趋势和合理的理财有着至关重要的作用。 关键字:概率论经济投资应用 正文: 概率论是古老而庞大的数学大家庭中一个年轻的分支学科, 它产生于十七世纪中后期, 至今只有短短的三百多年历史。年轻的概率论具有顽强的适应力,随着时代的变迁,近十几年来,由于金融学、保险学等经济学分支学科越来越普遍的应用,研究随机事件的概率论在经济学中得到越来越快的发展。同时由于概率论考虑了样本与总体之间的关系的这一特性,对实证经济学特别是经济计量学可以说起到了非常大的推动作用。甚至可以说,当代实证经济学的发展就是概率统计知识在经济模型中的实际应用,如果考虑在实证经济学领域的诺贝尔获奖者,那概率论对经济学的影响就更大了,包括第一届诺贝尔奖获得者丁博根、第二届诺贝尔获奖者萨谬尔森等在内,前前后后大约有20名经济学家研究和应用概率论在经济学中的应用因此概率论在经济学中有十分广泛的作用。

一、概率论在描述经济数据特征的应用 经济学的实证研究需要很多的数据来支撑,毕竟现代经济学不同于古典经济学的一个主要特征是现代经济学依靠数据来说明经济原理,而古典经济学依靠价值判断和逻辑推理来解释经济学。数据的性质直接决定了经济原理的结果,因此说明数据的统计特征成为大部分实证研究文章的第一步,我们以1992年到2005年我国经济增长率的数据为例(见下表),考查概率论的一些基本概念在经济数据描述方面的应用。 表-1992年到2005年中国经济增长率 根据表1的数据我们可以得到1992年到2005年我国的平均增长率为9.72%,高于潜在增长率8%,中间值为9.55%,在样本区间最大的增长率为13.3%,最小的增长率为7.4%,标准差为0.0194,大于显著性水平为5%的两倍标准差,说明在1992年到2005年之间我国的经济增长率是比较快的;同时根据正态分布统计量: 其中N为样本总数,、分别为三阶矩、四阶矩,计算结果为1.48,卡方统计量的显著性为0.48,统计检验的原假设为:该数据服从正态分布,备选假设为该数据不服从正态分布,由于

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

经济应用数学—概率论与数理统计马统一的习题1一5答案

习题er 1. 解 (1) 设学生数为n ,则 {0/,1/,2/,,100/}n n n n n Ω=L (2) 枚骰子点数之和为 {3,4,5,,18}Ω=L (3) 三只求放入三只不同A ,B ,C 盒子,每只盒子中有一个球的情况有 {(,,),(,,),(,,),(,,,),(,,),(,,)}a b c a c b b a c b c a c b a c a b Ω= 其中(,,)a b c 表示A 盒子放入的球为a ,B 盒子放入的球为b ,C 盒子放入的球为c ,其余类似. (4) 三只求放入三只不同A ,B ,C 盒子情况有 {(,0,0),(0,,0),(0,0,),(,,0),,(,,)}abc abc abc ab c c a b Ω=L 其中(0,,0)abc 表示A 盒子没有放入球,B 盒子放入的球为,,a b c ,C 盒子没有放入球,其余类似,共3 ||327Ω==个样本点. (5) 汽车通过某一定点的速度设为v {|0}v v Ω=>. (6) 将一尺长的棍折成三段,各段的长度为,,x y z {(,,)|0,0,0,1}x y z x y z x y z Ω=>>>++=. (7) 对产品检验四个产品,连续检验到两个产品为不合格品是,需停止检验,检验的 结果为 {(0,0),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1), (1,0,0),(1,0,1,0),(1,1,0,0),(1,0,1,1),(1,1,1,0),(1,1,1,1),(1,1,0,1)} Ω= 其中(0,1,0,0)表示第一次取到不合格品,第二次取到合格品,第三次取到不合格品,第四 次取到不合格品,其余类似. 2. 解 (1) 一只口袋中装有编号为1,2,3,4,5的五只球,任取三只,最小的为1的样本点有 {(123),(134),(135)}A = 其中(123)表示取出的球为编号为1,2,3的球(无顺序). (2) 抛一枚硬币两次, A =“第一次出现正面”的样本点有{(10),(11)}A =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. B =“两次出现不同的面”的样本点有{(10),(01)}B =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. C =“至少出现一次正面”的样本点有{(10),(0,1),(11)}C =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. (3) 检验一只灯泡的寿命,其寿命为t 不小于500小时, A =“灯泡寿命不小于500小时”的样本点有{|500}A t t =≥. (4) 某交换台在一分钟接到的呼唤次数不大于10, A =“某交换台在一分钟接到的呼唤次数不大于10”的样本点有{|0,1,2,,10}A n n ==L . (5) 重复抛掷一枚硬币,当出现正面时停止, A =“抛了偶数次时首次出现正面”的样本点有{(0,1),(0,0,0,1),(0,0,0,0,0,1),}A =L ,其中(0,1)表示第一次出现反面,第二次出现正面. 3. 解 (1) ABC AB C =-; (2) A B C U U ;

概率论在日常生活中的应用

概率论在日常生活中的应用 及数理统计在国民经济中的应用 021251班 马璁02125007

引言 概率论与数理统计是研究随机现象统计规律的一门学科,简单地说,就是一件事发生的可能性的大小.这门学科在社会生产和生活中起着非常重要的作用,概率统计几乎遍及所有的科学技术领域,工农业生产国民经济及日常生活各个方面,,比如:,在研究最大经济利润中寻求最佳生产方案,在检验生产产品合格率,在面试通过方面,在公交站台的侯车时间,打电话时间长短分配,在各种比赛赛制问题上,在生日概率问题上,以下通过具体的例子讨论概率论在生活中的应用。

目录 引言 (2) 日常生活的应用 (4) 一、生日概率问题 (4) 二、街边抽奖 (5) 国民经济中的应用 (6) 一、数学期望在企业经营中的应用 (6) 二、参数估计在商品进货中的应用 (7) 三、中心极限定理在保险业中的应用 (8)

日常生活的应用 一、生日概率问题 小时侯看《少年科学》,记得一个问题,就是在一群人中,你很有可能找到相同生日的人.而且你找到生日相同的人的可能性超过找不到生日相同的人的可能性,对这群人数的数字要求,可能并不像你想象中的那样高. 一个班有五十个人,我赌班上肯定有生日相同的一对同学.《少年科学》讲,胜算非常大.一直记不清人数达到多少时,有生日相同的人的可能性会超过百分之五十.终于看到答案:23人. 我们来看一个经典的生日概率问题.以1年365天计(不考虑闰年因素),你如果肯定在某人群中至少要有两人生日相同,那么需要多少人?大家不难得到结果,366人,只要人数超过365人,必然会有人生日相同.但如果一个班有50个人,他们中间有人生日相同的概率是多少?你可能想,大概20%~30%,错,有97%的可能! 它的计算方式是这样的: a、50个人可能的生日组合是365×365×365×……×365(共50个)个; b、50个人生日都不重复的组合是365×364×363×……×316(共50个)个; c、50个人生日有重复的概率是1-b a . 这里,50个人生日全不相同的概率是b a =0.03,因此50个人生日有重复的概 率是1-0.03=0.97,即97%. 根据概率公式计算,只要有23人在一起,其中两人生日相同的概率就达到51%! 但是,如果换一个角度,要求你遇到的人中至少有一人和你生日相同的概率大于50%,你最少要遇到253人才成.

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论在通信系统中的应用

概率论在通信系统中的应用 学院: 班级: 学号: 班内序号: 姓名:

概率论在通信系统中的应用 随着移动通信的快速大规模发展,通信领域所受到的门限也越来越高,所以目前,如何通过多学科间融合发展,来促进通信这一现代事业向前推进,成为了亟待解决的重中之重。而概率论与随机过程这门数学类基础课程,更是与通信密切相关的学科之一。 通信领域的信号处理在随机过程方面有极大的依赖性;由于频带带宽限制,如何通过概率论中的方法合理分配频段也是今后将要考虑的重点。不难发现,概率论这门课程在通信领域有的极大的影响力与很强的重要性,因此也有人这样总结:概率论功底达不到本科的通信就没法学,随机过程的功底达不到那通信方面的科研工作也没法做。 概率论在通信中主要应用在信号学,即研究系统在干扰输入信号系统的时候系统稳定性抵抗以及利用干扰进行信号传播。实际系统的干扰信号很多时候都可以研究出来其分布,系统在这些干扰的作用下如何保证稳定性,控制超调量,通过编码的改进控制错误的扩散性等问题是很关键性的问题。另外有些通信方式要借助一些特定的人为干扰,例如高斯白噪声(热噪声)。 通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息一种资源,只有通过广泛地传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。在通信系统的分析中,随机过程是非常重要的数学工具,因为通信系统中的信号与噪声都具有一定的随机性,需要用随机过程来描述。在自然界中,有一种现象,在发生之前只能知道该现象的各种可能性的发生结果,但是却无法确认具体将发生哪一个结果,这就是随机现象。例如,有n 台性能完全相同的通信机,其工作条件也相同,用n 部记录仪,记录各部通信机的输出噪声波形。测试的结果表明,在其中并不能找到两个完全相同的波形。研究可以发现,通信机输出的噪声电压随时间的变化时不可预知的,这是一个随机过程。而发送信号必须有一定的不可预知

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

概率论在现实生活中的应用

概率论在现实生活中的应用 郑梅琳 概率论的起源和发展 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”: 两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本? 诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 数学家们“参与”赌博 参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频 频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的

研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。 帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。 在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。 1713年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世8年之久。雅可布的侄子尼古拉·贝努利也

相关文档
相关文档 最新文档