文档库 最新最全的文档下载
当前位置:文档库 › 硅藻土_g_C3N4复合材料的制备及其可见光增强活性_王丹军

硅藻土_g_C3N4复合材料的制备及其可见光增强活性_王丹军

硅藻土_g_C3N4复合材料的制备及其可见光增强活性_王丹军
硅藻土_g_C3N4复合材料的制备及其可见光增强活性_王丹军

第31卷 第8期 无 机 材 料 学 报

V ol. 31

No. 8

2016年8月

Journal of Inorganic Materials Aug., 2016

Received date: 2016-01-06; Modified date: 2016-01-22

Foundation item: National Natural Science Foundation of China (21373159); Project of Science & Technology Office of Shananxi Province

Article ID: 1000-324X(2016)08-0881-09 DOI: 10.15541/jim20160015

Synthesis of Diatomite/g-C 3N 4 Composite with Enhanced

Visible-light-responsive Photocatalytic Activity

WANG Dan-Jun 1, SHEN Hui-Dong 1, GUO Li 1, 2, HE Xiao-Mei 1, ZHANG Jie 1, FU Feng 1

(1. School of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, China; 2. School of Materials Science & Engineering, Shaanxi Normal University, Xi’an 710119, China)

Abstract: Novel visible-light-responsive diatomite/g-C 3N 4 composite was successfully synthesized via a facile im-pregnation-calcination method. The sample was characterized by TG, XRD, FE-SEM, HR-TEM, FT-IR, XPS, UV-Vis-DRS, and PL spectra. The photocatalytic activities of samples were evaluated by degradation of RhB under visible light irradiation. Experimental results indicated that 2.32wt% diatomite/g-C 3N 4 composite exhibits high effi-ciency for the degradation of RhB. The photoreaction kinetics constant value is about 1.9 times as high as that of g-C 3N 4 under visible light irradiation. The radical trap experiments indicate that ·O 2- serves as the main active species for the photodegradation of RhB over 2.32wt% diatomite/g-C 3N 4 under visible light irradiation. The enhanced photo-activity is mainly attributed to the electrostatic interaction between g-C 3N 4 and negatively charged diatomite, synergis-tic effect lead to the efficient migration of the photogenerated electrons and holes of g-C 3N 4.

Key words: diatomite/g-C 3N 4 composite; impregnation-calcination method; visible-light-irradiation; electrostatic in-teraction

Up to now, it is still a difficult problem to treat dyes

wastewater due to its high stability and complicated com-positions. The conventional treatment methods, such as absorption, ultrafiltration, reverse osmosis, coagulation, etc . are ineffective for its decolorization and mineraliza-tion [1]. In order to cope with the growing environmental problems, new efficient environment purification tech-nologies have been developed, such as advanced oxidation processes [2]

. Photocatalytic technology is an efficient means which is applicable on completely degrading or-ganic pollutants in waste water but very challenging proc-ess to convert solar energy into chemical energy [3]. So, it is urgent and indispensable to utilize sunlight efficiently, development of more efficient, sustainable, visible-light- responsive photocatalytic materials. Recently, graphitic carbon nitride (g-C 3N 4) which is a metal-free polymeric photocatalyst, have attracted exten-sive attention because of its good photocatalytic perform-ance for hydrogen or oxygen production via water split-ting under visible light irradiation [4]. In general, the prepa-ration of g-C 3N 4 obtained by heating low-cost melamine

was investigated by Zou’s group [5]. The metal free g-C 3N 4

photocatalyst possesses very high thermal, optical, chemical

stability and exceptional electronic as well as biocompati-ble properties [6], which make it valuable for photocatalytic applications. However, the photocatalytic performance of

g-C 3N 4 has been restricted due to its optical moderate band gap (E g =2.7 eV) and the high recombination rate of

photogenerated electron hole pairs [7]. Therefore, scientists have made significant efforts to improve the photocata-lytic activity of g-C 3N 4. To this end, various strategies

have been developed, such as doping with metal/nonmetal

elements [8-11], formation of heterosjunction (e.g. CdS/g- C 3N 4[12], SmVO 4/g-C 3N 4[13], N-TiO 2/g-C 3N 4[14], g-C 3N 4/

Ag 3PO 4 [15], DyVO 4/g-C 3N 4[16], etc.), isotype heterostruc-ture and noble metal modification [17-18]. Up to now, it is still a challenge to construct g-C 3N 4 based photocatalyst with efficient utilization of visible light, suitable band edges for targeted reactions, high stability, environmental

friendliness, and low cost materials to modify g-C 3N 4. Diatomite is a naturally formed non-metallic siliceous

sedimentary material [19]. Due to its high porosity, specific

surface area, high adsorption capability, cheap, abundant, non-toxic and environmental friendly, diatomite represents an attractive substrate for immobilization of variety of photocatalysts [20-22]. Compared with other clay, it has 网络出版时间:2016-11-29 13:21:14

网络出版地址:https://www.wendangku.net/doc/b512294701.html,/kcms/detail/31.1363.TQ.20161129.1321.008.html

882 无机材料学报第31卷

natural ordered micro-/macroporous structures, high ad-sorption capacity and possesses abundant adsorption sites. These advantages make diatomites to be one of the most promising adsorption materials in processing wastewa-ter[23-25]. Furthermore, studies have confirmed that diato-mites is a good matrix for synthesizing composite photo-catalysts with higher photocatalytic activity, such as TiO2/diatomite[26-27],(PEG)/diatomite[28], Ce-TiO2/diato-mite[29], and PCM/diatomite[30].

Recently, Wang and co-worked reported that MoS2 with layered structure can promote the photocatalytic activity of g-C3N4[31]. Very recently, Li et al[32] reported the ben-tonite/g-C3N4, which exhibited a significantly enhance-ment photocatalytic activity, Si–OH on the surface of lay-ered bentonite can form strong forces with g-C3N4, which allow the prompt migration of light-induced charge. Herein, in view of the similar structure and composition of diatomite and bentonite, a impregnation-calcination route was employed to synthesize the novel visible-light- responsive diatomite/g-C3N4 composite. The photodegra-dation experiments were performed and the possible mechanisms of enhancement of diatomite/g-C3N4 compos-ite were also investigated.

1 Materials and methods

1.1 Sample preparation

All reagents were of analytical purity and were used without further purification. In a typical procedure, 1.0 g of diatomite was placed in a plastic beaker and mixed with 20 mL of 2.0 mol/L NaOH solution under magnetic stir-ring. After reaction for 12 h at ambient temperature, the sample was collected and washed until achieving pH of the solution was 7.0, then dried at 80℃ overnight, and ground into a powder in a mortar. The obtained product was denoted treated diatomite.

Synthesis of diatomite/g-C3N4. Firstly, in order to ob-tain well dispersed diatomite sheets, a certain amount of diatomite (0.01 g, 0.02 g, 0.04 g, 0.10 g, 0.20 g) was dis-persed in 30 mL methyl alcohol with 30 min continuous ultrasonic at room temperature. Subsequently, 4.0 g me-lamine was added to the diatomite suspension with stirring at 25 for 4 h. Then, the mixture was dried at 70

℃℃ for 6 h and the resulting dried mixtures were calcinated at 550℃for 4 h in a muffle furnace. The obtained products are grayish yellow, which were obtained from six reactant systems. According to thermogravimetric analysis (TG) results, the weight contents of diatomite in diatomite/g- C3N4 composites were estimated to be 1.22wt%, 2.32wt%, 5.46wt%, 13.88wt% and 25.21wt%, respectively. Bulk g-C3N4 was also prepared according to the similar above process. Based on the TG result of 2.32wt%diatomite/g-C3N4 composite, diatomite and g-C3N4 mechanical mixture were prepared by mixing diatomite (0.01 g) with g-C3N4 (0.55 g), which was de-noted as diatomite/g-C3N4 mixture. In addition, diato-mite/g-C3N4 (2.32wt%)sample was also prepared by using diatomite without alkali treated as material, and the resulted sample was denoted as untreateddiatomite/g-C3N4 (2.32wt%).

1.2 Characteration

The crystalline phases of diatomite/g-C3N4 composites were analyzed by XRD using a Shimadzu XRD-7000

X-ray diffractometer (CuKα, 0.15418 nm). The mor-phologies and structure of the obtained samples were ex-amined by FE-SEM (JSM-6700F) and HR-TEM (JEM-2100). FT-IR spectra of samples were recorded on a Nicolet Avatar-370 spectrometer at room temperature. The UV-Vis diffuse reflection spectra (UV-Vis-DRS) of the samples were measured using a Shimadzu UV-2550 UV-Vis spectrophotometer. BaSO4 was used as the re-flectance standard. X-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCA Lab MKII

X-ray photoelectron spectrometer. TG analysis was done

on STA-449C Jupiter (NETZSCH Corporation, Germany). 1.3 Photocatalytic experiment

The photocatalytic activities of diatomite/g-C3N4 were evaluated by using RhB as a model pollutant under irra-diation of a 400 W metal halide lamp with an optical filter to cut off the light below 420 nm. In a typical process, 200 mg of photocatalyst and 200 mL RhB solu-tion was stirred in dark for 1.0 h to establish an adsorp-tion/desorption equilibrium. At interval of 10 min, 10 mL solution was sampled and centrifuged to remove the catalyst particles. The concentration was analyzed by measuring the maximum absorbance at 554 nm for RhB using a Shimadzu UV-2550 spectrophotometer. In order

to further investigate the active species involved in the photocatalytic process, a series of quenching tests have been performed. EDTA-2Na (ethylenediamine tetraacetic acid disodium salt), IPA (isopropanol), BQ (p-benzoquinone) was used as a quencher for holes (h+), hydroxyl radicals (·OH) and superoxide radical (·O2-), respectively[33]. The concentration of quencher is 1 mmol/L in the solution.

2 Results and discussion

2.1 XRD, XPS and TG analysis

Fig. 1 shows the powder XRD patterns of raw diatomite, alkali treatment diatomite, g-C3N4 and various diato-mite/g-C3N4 composites. As can be seen from Fig. 1(a), two marked peaks can be ascribed to (100) and (002)

第8期

WANG Dan-Jun, et al : Synthesis of Diatomite/g-C 3N 4 Composite with Enhanced Visible-light-responsive (883)

characteristic diffraction planes of the g-C 3N 4[5-6]. For the

diatomite clay, the XRD pattern of raw diatomite revealed that the main phase of non-crystalline opal-A with the characteristic broad peak centered at the peak of 21.8°[24]. The XRD pattern of alkali treatment diatomite was similar to that of raw diatomite, indicating that the NaOH etching did not alter the diatomite mineral structure. In the case of diatomite/g-C 3N 4 composites, crystalline diatomite is not obviously observed with low diatomite loadings. However, in the enlarged Fig. 1(b) from 25°to 30°, the as-prepared diatomite/g-C 3N 4 composites with higher diatomite load-

ings (>2.32%), the peak intensity corresponding to (002) lattice plane decreased. This result suggested that the di-atomite/g-C 3N 4 composites are constituted by g -C 3N 4 and diatomite.

To investigate the valence states of various species, the diatomite/g-C 3N 4 (2.32wt%) was studied by X-ray photo-electron spectroscopy (XPS). XPS results indicate the presence elements of Si, C, N and O in the diato-mite/g-C 3N 4 (2.32wt%) composite (Fig. 2(a)). The C1s characteristic peaks at 288.08 eV and 284.58 eV , as shown in Fig. 2(b), are assigned to C–N–C coordination and the adventitious carbon, respectively [9]. Fig. 2(c) shows the N1s binding energy of g-C 3N 4 at 398.78 eV, which is assigned to nitrogen element of sample [9]. Both C1s and N1s binding energies of 2.32wt% diatomite/g-C 3N 4 show minor negative shifts compared to pure g-C 3N 4, indicating there exist the interaction force between di-atomite and g-C 3N 4.

Fig. 3 shows the weight loss of diatomite is negligible, which indicating very few residual water and organic impurities exist in diatomite, and the dehydroxylation of aluminosilicate is slightly. As for diatomite/g-C 3N 4 composites, they have no obvious difference in the ther-mal stability. The initial decomposition temperature of diatomite/g-C 3N 4 composites is at about 545℃, which is lower than that of g-C 3N 4 at 550℃. The reason may be attributed to the existence of fluffy sheets of g-C 3N 4 in the composites. However, the complete decomposition temperature of diatomite/g-C 3N 4 composites is at about 710℃, which is almost equal to that of g-C 3N 4. The quality score of diatomite was almost close to the theo-retical calculated value of diatomite/g-C 3N 4, for example (Table 1).

Fig. 1 XRD patterns of samples

(a) XRD patterns of diatomite, g -C 3N 4 and diatomite/g-C 3N 4 composite; (b) Enlarged XRD pattern of diatomite g-C 3N 4

and diatomite/g-C 3N 4 composites from 25° to 30°

The peaks marked by (●) in (a) are the characteristic of the Quartz impurity in the diatomite sample

Fig. 2 XPS spectra of g-C 3N 4 and diatomite/g-C 3N 4(2.32wt%)

(a) Survey spectra; (b) C1s; (c) N1s

884

无 机 材 料 学 报

第31卷

Table 1 Content in diatomite/g-C 3N 4 by TG curves analysis

Samples

Diatomite theoretical content /wt%

Diatomite experimental/wt%

Diatomite/g-C 3N 4 (1.22wt%)

1.79

1.22

Diatomite/g-C 3N 4 (2.32wt%) 3.56 2.32

Diatomite/g-C 3N 4 (5.46wt%) 6.78 5.46

Diatomite/g-C 3N 4 (13.88wt%) 15.38 13.88

Diatomite/g-C 3N 4 (25.21wt%) 26.67 25.21

Fig. 3 TG curves for heating diatomite, g-C 3N 4 and diato-mite/g-C 3N 4 composites

2.2 Morphology and structure analysis

Fig. 4 shows the size and morphology of g-C 3N 4, raw diatomite, alkali treatment diatomite and diatomite/g-C 3N 4 composites. It can be seen that diatomite sample has disk-like and highly developed macroporous structure. After NaOH washing, the morphology of raw diatomite

was preserved, while the size of the central macropores increased (Fig. 4(a)-(b)). After diatomite loading onto the surface of layered g-C 3N 4, the diatomite/g-C 3N 4 composite can be observed with abundant fluffy sheets (Fig. 4(c)). Fig. 4(d) is the TEM image of 2.32wt%diatomite/g-C 3N 4. It can be clearly observed that some diatomite particles was loaded on the surface of layered structure g-C 3N 4. In HR-TEM image(Fig. 4(f)), the border of diatomite and g-C 3N 4 can be observed clearly, suggesting diatomite lay-ers combining well with g-C 3N 4.

Fig. 5 shows the FT-IR spectra of diatomite, g-C 3N 4, and diatomite/g-C 3N 4 composites. As can be seen from Fig. 5, the intense peaks in the FTIR spectrum at 1629 cm -1, 1105 cm -1, 796 cm -1 and 467 cm -1 are observed for the raw diatomite, which are related to the structure of diatomite, the peak at 1105 cm -1 is due to vibration siloxane linkages Si–O–Si [34]. The band at 1629 cm -1 reflects H–O–H bonding vibration of structured water molecules of silica. The peaks ob-served at 796 cm -1 is assigned to vibration in the silica structure of the symmetric external Si–O bond [35]. Ac-cording to Elze and Rice’s report [36], occurrence of the band with a maximum at 467 cm -1 is characteristic of the

Fig. 4 FE-SEM and TEM images of samples

(a) FE-SEM image of diatomite; (b) FE-SEM image of alkali washed diatomite; (c) FE-SEM image of diatomite/g-C 3N 4 composite; (d) TEM of diato-mite/g-C 3N 4 composite; (e) SEAD pattern of g-C 3N 4; (f) Conjunction edge between flake-like g-C 3N 4 and diatomite particles

第8期 WANG Dan-Jun, et al: Synthesis of Diatomite/g-C3N4 Composite with Enhanced Visible-light-responsive (885)

Fig. 5 FT-IR spectra of diatomite, g-C3N4 and diatomite/g- C3N4 composites

Si–O bonds in silica minerals such as tridymite and cris-tobalite. All these characteristic peaks suggest that diato-mite is mainly composed of SiO2. For the g-C3N4 sample, peaks positions between 1200 and 1650 cm-1 regions are related to the stretching modes of CN heterocycles[37]. The peaks at 1642 cm-1 and 1561 cm-1 ascribed to the C≡N stretching vibrations modes[38], while the peaks at 1241 cm-1, 1322 cm-1 and 1405 cm-1 to the aromatic C–N strechings[39]. The peak located at 808 cm-1 was related to the characteristic breathing mode of triazine units[40]. In the case of diatomite/g-C3N4 composites, the wide band with intense absorption observed at 467 cm-1 is character-istic of the Si–O bonds in silica minerals. The FT-IR re-sults indicate that this diatomite/g-C3N4 composites con-tains two fundamental components of diatomite and g-C3N4 and that no appreciable chemical reaction occurred between diatomite and g-C3N4.

2.3 UV-Vis-DRS analysis

Fig. 6 shows the UV-Vis-DRS spectra of pure g-C3N4 and diatomite/g-C3N4 composites. In Fig. 6(a), the absorp-tion edge of pure g-C3N4

exhibited a strong absorption ability in the visible-light region. It can also be clearly seen that diatomite/g-C3N4 composites with different diatomite contents show differ-ent absorption abilities as compared with pure g-C3N4, indicating that there may be some interaction between diatomite and g-C3N4. In previous TEM analysis, the di-atomite/g-C3N4 composites show enlarged much fluffy layer structure. In view of the partly imperfect poly-mer-like structure of g-C3N4[41], the g-C3N4 in diato-mite/g-C3N4 might have more defects compared with the pure g-C3N4, which improves the utilization of light energy. The band gap energy (E g) of samples can be estimated from the plots of (αhν)1/2vs photon energy (Fig. 6(b)). Therefore, the visible light responses of diatomite/g-C3N4 composites are significant improved. 2.4 Photocatalytic activity

Fig. 7(A) shows the photocatalytic activity of samples for the degradation of RhB under visible light irradiation. It was found that RhB self-degradation was negligible, diatomite/g-C3N4 (2.32wt%) and diatomite/g-C3N4 (5.46wt%) exhibited higher photocatalytic activity than that of g-C3N4. After irradiation for 30 min, the photocatalytic degradation rate of RhB was 98.94% and 91.00% for for diatomite/g-C3N4 (2.32wt%) and pure g-C3N4, respectively. The photocatalytic activity of diatomite/g-C3N4 improved with increasing diatomite content, and the optimal di-atomite content was 2.32wt%. The photocatalytic activ-ity of diatomite/g-C3N4 mixture, untreated and treated diatomite/g-C3N4 (2.32wt%) was compared and listed in Fig. 7(B). It was clearly observed that diatomite/g-C3N4 (2.32wt%) sample exhibited the highest degradation. It may be ascribed to two reasons: firstly, alkali treatment can improve the specific surface area of diatomite, which is beneficial to absorb the RhB; secondly, alkali treatment can enhance the electrostatic interaction of g-C3N4 and diatomite. When g-C3N4/diatomite is dispersed in water, Na+ diffused away from the solid surface and left the negative charges on the diatomite surface. The negatively charged of diatomite can promote the immigration of elec-trons and holes, thus suppress the charge recombination. The alkali treated diatomite possesses more Na+ than that of untreated diatomite, which results in the treated diato-mite/g-C3N4 showing higher degradation than that of un-treated one.

Fig. 7(C) showed that the pseudo first order rate constant (k) for RhB degradation with g-C3N4 was 0.07618 min-1. For diatomite/g-C3N4 composites with diatomite contents of 1.22wt%, 2.32wt%, 5.46wt%, 13.88wt%, 25.21wt% and diatomite/g-C3N4 mixture, the corresponding k value were calculated to be 0.07758, 0.14239, 0.10701, 0.03183, 0.02353, and 0.06089 min-1, respectively. In the diato-mite/g-C3N4 composites, the k value of diatomite/g-C3N4 (2.32wt%) is 1.9 times as high as that of the pure g-C3N4. However, further increasing the proportion of diatomite, the k value shows a slight decrease due to the shading ef-fect. Therefore, excess loading of diatomite could prevent g-C3N4 from absorbing the light and result in a deceasing of catalytic activity. It can be seen from Fig. 7(D) that the absorptive property of diatomite/g-C3N4 increase re-markably with increasing diatomite content. However, the adsorption capacity of diatomite/g-C3N4 composites is not superior to that of diatomite and g-C3N4 mixture. It is ob-vious that the enhanced photocatalytic activity of diato-mite/g-C3N4 composites is not ascribed to the adsorption capability. The significant differences in the interface of the composite is responsible for the enhanced photocata-

886

无 机 材 料 学 报 第31卷

lytic activity of diatomite/g-C 3N 4 composite [32].

Fig. 7(E) shows temporal evolution of the spectral changes during photocatalytic degradation of RhB over diatomite/g-C 3N 4 (2.32wt%) composite. It can be seen that the intensity of the absorption peak decrease drastically within 30 min. On the other hand, from the viewpoint of practical application, it is important to evaluate the stabil-ity of the diatomite/g-C 3N 4 catalyst. The repeated experi-

ment results indicated that the photocatalytic activity of 2.32wt%diatomite/g-C 3N 4 composite showed negligible decreasing after five cycles and the crystal structure didn’t not change after the photocatalytic reaction(Fig. 7(F)).

2.5 Photocatalytic mechanism

Generally speaking, PL spectra analysis was a reliable method to investigate the fate of photogenerated electrons and holes [42]

. Therefore, in present study, PL spectrum was

Fig. 6 (a) UV-Vis spectra and (b) plot of (αh ν)1/2 vs energy (h ν) for the band gap energy of g-C 3N 4

and diatomite/g-C 3N 4 composites

Fig. 7 Photocatalytic activity of the samples

(A) Photocatalytic degradation efficiency of RhB by g-C 3N 4 and diatomite/g-C 3N 4 composites; (B) Comparison of mixted, treated and untreated diato-mite/g-C 3N 4(2.32wt%); (C) Kinetic fit for the degradation of RhB with g-C 3N 4 and diatomite/g-C 3N 4 composites (a, blank; b, g-C 3N 4; c, diatomite/g-C 3N 4 (1.22wt%); d, diatomite/g-C 3N 4 (2.32wt%); e, diatomite/g -C 3N 4 (5.46wt%); f, diatomite/g-C 3N 4 (13.88wt%); g, diatomite/g-C 3N 4 (25.21wt%); h, diato-mite/g- C 3N 4 mixture (2.32wt%); i, diatomite); (D) Adsorption percentage and rate constants; (E) Absorption spectral changes of RhB under visible

light irradiation using diatomite/g-C 3N 4 (2.32wt%) as photocatalyst; (F) XRD patterns of diatomite/g-C 3N 4 before and after being used

第8期 WANG Dan-Jun, et al: Synthesis of Diatomite/g-C3N4 Composite with Enhanced Visible-light-responsive (887)

employed to further verify the interfacial charge transfer dynamics between the hetero-geneous interface of pure g-C3N4 and the diatomite/g-C3N4 composites. As can be seen in Fig. 8, for the pure g-C3N4, one main emission peak appears at about 470 nm, which is attributed to the inner band gap of g-C3N4[4]. After introducing diatomite onto g-C3N4, the intensities of the PL signal for the diato-mite/g-C3N4 composites are lower than that of g-C3N4, indicating that the composites have a lower recombination rate of electrons and holes under visible-light irradiation. As a consequence, it is reasonable to conclude that diato-

mite loading can enhance photocatalytic activity of g-C3N4.

In addition, BQ, EDTA-2Na, and IPA were used as quenchers for ·O2- , holes (h+), and ·OH scavengers, re-spectively[43-44]. Fig. 9 shows the active species trapping experiment in photocatalytic process of diatomite/g-C3N4 (2.32wt%) composite. The experimental results indicated that the photodegradation of RhB was almost not affected by adding EDTA-2Na as quencher of h+, respectively. While IPA slightly suppressed the photocatalytic degrada-tion of RhB. Nevertheless, the activity of the diatomite/ g-C3N4 (2.32wt%) composite was largely suppressed by the addition of BQ. Thus, it could be inferred that ·O2-serve as the main active species for the photodegradation of RhB over diatomite/g-C3N4 (2.32wt%) under visible light irradiations, and the reaction was partly driven by the action of ·OH radicals. Considering the above re-sults, ·OH, ·O2-were established as the main reactive spe-cies for RhB degradation, as depicted in the following formule:

diatomite/g-C3N4+hγ→diatomite/g-C3N4(e-+h+) (1)

e- + O2→ O2–(2) 2e– + O2– + 2H+→ ·OH + OH–(3)

RhB + .O2– /.OH/ → CO2 + H2O+ (4)

As discussed above, three main reasons for the increase in the photocatalytic efficiency of coupled g-C3N4/diato-mite composites are: (i) the absorption edges of Fig. 8 PL spectra of g-C3N4 and diatomite/ g-C3N4 composites Fig. 9 Trapping experiment of active species during photocata-lytic degradation of RhB over diatomite/g-C3N4 (2.32wt%) under visible light irradiation

diatomite/g-C3N4 composites shift significantly to longer wavelengths compared with the pure g-C3N4, which indi-cates the composites can be excited by more visible light photons; (ii) the improved adsorptive activity of diato-mite/g-C3N4 composites compared with that of g-C3N4; (iii) the electrostatic interaction, the negatively charged of di-atomite can promote the immigration of electrons and holes, thus suppresses the charge recombination.

When g-C3N4/diatomite is dispersed in water, Na+ dif-fused away from the solid surface the exchangeable cations and left the negative charges on the diatomite sur-face. Under visible light irradiation, only g-C3N4 can be activated, the e-/h+ pairs of g-C3N4 should present on the g-C3N4 surface. The excited electrons and holes of g-C3N4 should be driven to migrate efficiently due to electrostatic interaction between g-C3N4 and the negatively charged diatomite. Thus, the charge recombination could be easily suppressed, leaving more charge carriers and enhancing the photocatalytic activity. Driven by the calcinations process, the layers of diatomite and g-C3N4 are splitted into many fluffy and thin sheets and a tight contact of di-atomite with g-C3N4 can be achieved[45-46]. Therefore, the high photoactivity of diatomite/g-C3N4 composite arises from the synergistic effects between diatomite and g-C3N4 interfaces.

3 Conclusions

A novel visible-light-responsive diatomite/g-C3N4 composite was successfully synthesized via a facile im-pregnation-calcination method. Photocatalytic experimen-tal result indicated that diatomite/g-C3N4 composites ex-hibited higher photocatalytic activity than pure g-C3N4 in the degradation of RhB. The radical trap experiments showed that the degradation of Rh

B was driven mainly by

888

无 机 材 料 学 报 第31卷

the ·O 2-, and partly by the action of ·OH radicals. The sig-nificant enhancement in the photocatalytic performance of diatomite/g-C 3N 4 composites is ascribed not only to its adsorptivity but also to the interaction between g-C 3N 4 and diatomite, this can promote the efficient migration of the photogenerated electrons and holes of g-C 3N 4 and conse-quently improves the photocatalytic activity. This strategy is expected to be extended to other g-C 3N 4 loaded materi-als, which might have potential applications in removing pollutant.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] with CdS quantum dots. J. Phys. Chem. C , 2012, 116(25): 13708–13714.

[13] LI T T, ZHAO L H, HE Y M, et al . Synthesis of g-C 3N 4/SmVO 4

composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B , 2013, 129: 255–263. [14] WANG X J, YANG W Y , LI F T, et al . In situ microwave-assisted

synthesis of porous N-TiO 2/g-C 3N 4 heterojunctions with enhanced visible-light photocatalytic properties. Ind. Eng. Chem. Res ., 2013, 52(48): 17140–17150.

[15] KATSUMATA H, SAKAI T, SUZUKI T, et al . Highly efficient

photocatalytic activity of g-C 3N 4/Ag 3PO 4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind. Eng. Chem. Res., 2014, 53(19): 8013–8025.

[16] HE Y M, CAI J, LI T T, et al . Synthesis, characterization, and ac-col (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Solar Energy Mater.

第8期

WANG Dan-Jun, et al : Synthesis of Diatomite/g-C 3N 4 Composite with Enhanced Visible-light-responsive (889)

Solar Cells, 2011, 95: 1647–1653.

[29] LIANG X H, FU X Y . Effect of the Ce-TiO 2/diatomite on the pho-to-catalysis degradation of MB. Mater. Sci. Forum., 2014, 789: 44–47.

[30] JEONG S G, JEON J, LEE J H, et al . Optimal preparation of

PCM/diatomite composites for enhancing thermal properties. Int. J. Heat Mass Trans., 2013, 62: 711–717.

[31] GUO S F, SHI L. Synthesis of succinic anhydride from maleic an-hydride on Ni/diatomite catalysts. Catal. Today , 2013, 212: 137–141.

[32] HOU Y , LAURSEN A B, ZHANG J, et al . Layered nanojunctions

[33] [34] [35] [36] [37] [38] lytic activity of Bi 2WO 6 hybridized with graphite-like C 3N 4. J. Mater. Chem ., 2012, 22(23): 11568–11573.

[39] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al .

Synthesis of spherical carbon nitride nanostructures. Nano Lett ., 2001, 1: 731–734.

[40] JIANG L, CHEN L L, ZHU J J, et al . Novel p-n heterojunction

photocatalyst constructed by porous graphite-like C 3N 4 and nanos-tructured BiOI: facile synthesis and enhanced photocatalytic activ-ity. Dalton Trans., 2013, 42(44): 15726–15734.

[41] ZHANG Y , THOMAS A, ANTONIETTI M, et al . Activation of

carbon nitride solids by protonation: morphology changes, en-院, 西安710119)

摘 要: 采用浸渍-焙烧法制备了具有可见光响应活性的硅藻土/g-C 3N 4复合光催化材料。利用TG 、XRD 、FE-SEM 、HR-TEM 、FT-IR 、XPS 、UV-Vis-DRS 和 PL 谱等手段对其物相组成、形貌和光吸收特性进行表征。以RhB 的光催化降解为探针反应评价催化剂的活性。光催化结果表明, 2.32wt%硅藻土/g-C 3N 4复合材料对RhB 有较高的催化活性, 光催化降解的速率常数是纯g-C 3N 4的1.9倍。自由基捕获实验表明, ·O 2–是RhB 在硅藻土/g-C 3N 4复合材料上光催化降解的主要活性物种。光催化活性提高的主要原因在于硅藻土和g-C 3N 4之间静电作用有利于光生电子-空穴在g-C 3N 4表面的迁移, 进而提高g-C 3N 4的光催化活性。

关 键 词: 硅藻土/g-C 3N 4复合材料; 浸渍-焙烧法; 可见光照射; 静电作用 中图分类号: TB321 文献标识码: A

(整理)CC复合材料的制备及方法.

C/C复合材料的制备及方法 地点:山西大同大学炭研究所 时间:5.31——6.3 学习内容: 一、C/C复合材料简述 C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。 优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。 缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。 二、C/C复合材料的成型技术 化学气相沉积法 气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。 技术关键:热分解的碳均匀沉积到预制体中。 影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。 工艺方法:温度梯度法 温度梯度法 工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。接近

感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。 温度梯度法的设备如下图:

三、预制体的制备 碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。 二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯 三维编织物:改善层间和垂直面方向性能;如热解炭 四、C/C的基体的获得 C/C的基体材料主要有热解碳和浸渍碳两种。 热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。 浸渍碳的前驱体:主要有沥青和树脂 五、预制体和碳基体的复合 碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。 渗碳方法:化学气相沉积法。 基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。 化学气相沉积法制备工艺流程: 碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。 六、碳碳复合材料的机械加工和检测 可以用一般石墨材料的机械加工方法,对C/C制品进行加工。对C/C

4金属基复合材料制备方法及应用

金属基复合材料制备方法及应用 摘要:金属基复合材料是以金属或合金为基体,并以纤维、晶须、颗粒等为增强体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、不老化和无污染等优点。按金属或合金基体的不同,金属基复合材料可分为铝基、镁基、铜基、钛基、高温合金基、金属间化合物基以及难熔金属基复合材料等。由于这类复合材料加工温度高、工艺复杂、界面反应控制困难、成本相对高,应用的成熟程度远不如树脂基复合材料,应用范围较小。但金属基复合材料除了和树脂基复合材料同样具有高强度、高模量外,它能耐高温,同时不燃、不吸潮、导热导电性好、抗辐射。是令人注目的复合材料。 关键字:金属基复合材料制备方法应用 1.复合材料的定义 复合材料的定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料既可保持原材料的某些特点,又能发挥组合后的新特征,它可以根据需要进行设计,从而最合理地达到使用要求的性能。

2.金属基复合材料的基本特点 2.1优点:高比强度和高比模量,耐高温性好,导电导热,热膨胀系数小,尺寸稳定性好,耐磨性与阻尼性好,不吸湿、不老化、无放气污染。 2.2缺点:制造困难,难于形成理想的界面,加工困难,价格昂贵。 3.金属基复合材料的分类 金属基复合材料按组织形态可分为宏观组合型和微观强化型两类;根据复合材料的基体不同可以分为刚基、铁基、铝基、镁基复合材料等;按增强相形态的不同可分为颗粒增强复合材料、晶须或短纤维金属复合材料及连续纤维增强金属基复合材。 4.金属基复合材料制备工艺方法的分类 由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料的复合工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。 4.1粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法,烧结制坯加塑法加成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。该方法在铝基复台材料

浅谈中职学校就业方向英语教学

浅谈中职学校就业方向英语教学 摘要:中职学校英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生性质的不同而有针对性地进行英语教学。中职英语老师需要有针对性的备课,灵活多变的课堂组织教学,以及不可忽略的课后教学。 关键词:中职学生就业方向英语教学 中图分类号: g718 文献标识码: c 文章编号:1672-1578(2011)11-0215-02 许多中等职业学校的教师都认为教学就是把自己所学知识倾囊 相授,这些年教学实践使笔者明白中职英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生的性质不同,而有针对性地进行英语教学。下面笔者主要针对就业方向的中职学生浅谈一下英语教学应该注意的几点: 1 有针对性地备课 中等职业学校学生的文化知识一般比较差,英语老师在教学前是否认真的有针对性的备课是教学是否成功的首要条件,备课时教师要熟悉大纲和教材,把握教学内容;分析教学任务,明确教学目标;研究学生特点和性质以及学生的知识基础,选择教学方法;设计教学过程,编写教学计划,从而为上课做好充分的准备。中等职业学校就业方向的英语教学应以“适用”为备课原则,以求学生能掌握一些基础英语知识以及能说一些日常生活适用的英语,很多属于高

考的英语知识点或难点则可以选择不予讲解。 2 进行有效的课堂组织教学 2.1激发学习英语的激情与兴趣 每个教师都明白学习兴趣对于教学的重要性,而在中职学校教学过程中这一点显得尤为重要,中职学生在中学的文化课已经相对薄弱,这严重导致了他们缺乏对文化课的学习兴趣,进入中职学校还要学习文化课,他们显然没有任何的学习兴趣,尤其是英语这一学科,一些学生甚至连26个英语字母都在中学时没能掌握,不能准确的针对国际音标发音,怎能还有学习兴趣?所以作为一名中职学校的英语教师,怎样唤醒中职学生的英语学习兴趣是一个教学过程中的一个重点也是难点,培养中职学生学习英语的激情与兴趣应该从两点出发:首先,要从教师本身出发。我们很多人都认为老师一般都需要在学生面前建立自己的威信,这点的确需要,但是往往很多老师过于严肃,让学生产生了相当大的畏惧心理,再加上教学内容全是枯燥的英语语法知识,中职学生怎能对英语学习充满学习兴趣?其实老师上英语课应该一改严肃的教学风格,上课可以带上丰富的肢体语言,英语语言可以抑扬顿挫,面部表情可以根据授课内容而变化,同时老师面对学生要少一点架子,多一点的尊重和真诚,少一点尖酸刻薄,多一点赏识和信赖,少一些冷漠,多一点的热情和交流.师生之间只有互相了解,互相沟通,互相平等,学生才会喜欢你,才会爱你,到那时候,“亲其师而信其道”,一名这样的英语教师在学生喜欢的环境下教学必定充满了教学乐趣,学生同时也

金属基复合材料的制备方法

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介 (1)定义:金属基复合材料是以金属或合金为基体,以高性能的第二相为增强体的复合材料。它是一类以金属或合金为基体, 以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物, 其共同点是具有连续的金属基体。 (2)分类:按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料 按用途分为:1.结构复合材料;2.功能复合材料 (3)性能特征:金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

纳米复合材料制备

纳米复合材料制备文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发

生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。) 原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PVA[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合

先进金属基复合材料制备科学基础

项目名称:先进金属基复合材料制备科学基础首席科学家:张荻上海交通大学 起止年限:2012.1-2016.8 依托部门:上海市科委

一、关键科学问题及研究内容 针对国家空天技术、电子通讯和交通运输领域等对先进金属基复合材料的共性重大需求和先进金属基复合材料的国内外发展趋势,本项目以克服制约国内先进金属复合材料制备科学的瓶颈问题为出发点,针对下列三个关键科学问题开展先进金属基复合材料制备科学基础研究: (1). 先进金属基复合材料复合界面形成及作用机制 界面是是增强相和基体相连接的“纽带”,也是力学及其他功能,如导热、导电、阻尼等特性传递的桥梁,其构造及其形成规律将直接影响复合材料的最终的组织结构和综合性能。因此,界面结构、界面结合及界面微区的调控是调控金属复合材料性能的最为关键的一环。揭示基体成分、添加元素、增强体特性复合工艺对复合过程中的界面的形成、加工变形、服役过程中的界面结构、特征的演变规律和效应,以及在多场下的组织演变规律和对复合材料的性能变化极为关键。复合效应的物理基础正是源于金属基体与增强体的性质差异,而在金属基复合材料复合制备过程中,二者的差异无疑会直接或间接地影响最终的复合组织和界面结构。因此,要想建立行之有效的金属基复合材料组分设计准则和有效调控先进金属基复合材料的结构与性能,就必须从理论上认识先进金属基复合材料的复合界面形成及作用机制。 (2). 先进金属基复合材料复合制备、加工成型中组织形成机制及演化规律 金属基复合材料的性能取决于其材料组分和复合结构,二者的形成不仅依赖于复合制备过程,还依赖于包括塑性变形、连接、热处理等后续加工和处理过程。只有在掌握金属基复合材料的组织结构演变规律的基础上,才有可能通过优化工艺参数精确调控微观组织,进而调控复合材料的性能。 (3). 使役条件下复合材料界面、组织与性能耦合响应机制 先进金属基复合材料中,由于增强体与金属基体的物理和力学性能之间存在巨大差异,造成在界面点阵分布不均匀,同时近界面基体中由于热错配,残余应力等导致晶体学缺陷含量较高。因此,在使役过程中,先进金属基复合材料的力学性能不仅取决于其材料组分,更加取决于增强体在基体中的空间分布模式、界面结合状态和组织与性能之间的耦合响应机制。只有揭示使役条件下复合材料界面、组织与性能耦合响应机制,才能真正体现先进金属基复合材料中增强体与基体的优势互补,充分利用其巨大潜力,也才可能优化复合和界面结构设计。

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

纳米复合材料及其制备技术综述

第23卷第4期2002年7月 江苏大学学报(自然科学版) Journal of Jiangsu U niversity(Natur al Science) V ol.23No.4 July2002 纳米复合材料及其制备技术综述 赵晓兵,陈志刚 (江苏大学材料科学与工程学院,江苏镇江212013) [摘 要]纳米材料是一种新型高性能的材料,已在工业生产中得到了广泛的应用 由于它具有特殊的用途和性能,更多地应用于一些特定的场合 纳米材料的制备方法一直是人们关注的热点问题,本文综述了纳米复合材料的制备方法,着重介绍了制备纳米复合材料的关键 纳米粉体的分散技术,重点介绍了几种常用的分散方法及其原理,并较全面地分析了纳米复合材料的应用前景 [关键词]纳米复合材料;制备方法;分散 [中图分类号]TB383 [文献标识码]A [文章编号]1671-7775(2002)04-0052-05 纳米材料是指三维空间中至少有一维处于纳米尺度的范围或由它们作为基本单元构成的材料 在纳米量级的范围内,材料的各种限域效应能够引起各种特性发生相当大的改变[1,2] 这些变化可以提高材料的综合性能,为发展新型高性能材料创造了条件 然而,单一的纳米晶材料在制备技术上存在困难,往往不能满足实际应用的需要,许多研究将纳米粒子和其他材料复合成纳米复合材料,这种复合材料有可能同时兼顾纳米粒子和其他材料的优点,具有特殊的性能 纳米复合材料的概念最早是由Rey和Kom arneni在20世纪80年代提出的[3] 纳米复合材料是由两种或两种以上的不同相材料组成,其复合结构中至少有一个相在一个维度上呈纳米级大小 纳米复合材料的组成可以是金属/金属、金属/陶瓷、陶瓷/陶瓷、无机(金属、陶瓷)/聚合物、聚合物/无机及聚合物/聚合物等不同的组合方式 1 纳米粉体的分散 由于纳米组分粒径小、比表面积大,极易形成尺寸较大的团聚体[4],从而使纳米复合材料中不存在或存在很少的纳米相,难以发挥纳米相的独特作用 因此,纳米组分在基体中的分散是制备纳米复合材料的关键,受到广泛的重视,目前主要采用以下几种方法实现纳米级分散 1 1 超声波分散 利用超声空化时产生的局部高温、高压或强冲击波和微射流等,弱化纳米粒子间的纳米作用能,可有效地防止纳米粒子的团聚 Lu将平均粒径为10nm的CrSi2加到丙烯晴-苯乙烯共聚物的四氢呋喃溶液中,经超声分散得到包裹高分子材料的纳米晶体[5] 采用超声波分散时,若停止超声波振荡,仍有可能使纳米粒子再度团聚 另外,超声波对极细小的纳米颗粒,其分散效果并不理想,因为超声波分散时,颗粒共振加速运动,使颗粒碰撞能量增加,可能导致团聚 1 2 机械搅拌分散 借助外力的剪切作用使纳米粒子分散在介质中 在机械搅拌下纳米粒子的特殊结构容易产生化学反应,形成有机化合物枝链或保护层,使纳米粒子更易分散 但搅拌会造成溶液飞溅,反应物损失 1 3 分散剂分散 1 3 1 加入反絮凝剂形成双电层 选择适当的电解质作分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间的库仑排斥作用使纳米粒子分散 例如,用盐酸处理纳米Al2O3后,在纳米Al2O3粒子表面生成三氯化铝(AlCl3),三氯化铝水解生成AlCl2+和AlCl2+,犹如纳米Al2O3粒子表面吸附了一层AlCl2+和AlCl2+,使纳米Al2O3成为一个带正电荷的胶粒,然后胶粒吸附OH-而形成一个庞大的胶团 如图1所示 由此可得分散较好的悬浮液 [收稿日期]2002-03-04 [基金项目]江苏省教育厅自然科学基金资助项目(99KJD430004) [作者简介]赵晓兵(1975-),男,河北石家庄人,江苏大学硕士生

Ti基复合材料及其制备技术研究进展评述

先进材料制备科学与技术课题报告 ——Ti基复合材料及其制备技术研究进展报告 学院:材料科学与工程学院 学号:SY1401210 姓名:刘正武 2014年12月24日

摘要 钛基复合材料(TMCS)以其高的比强度、比刚度和良好的抗高温、耐腐蚀性能,在航空航天、汽车等领域有着广阔的应用前景,引起了材料研究者的广泛兴趣。国外对钛基复合材料的研究已有近40年的历史,发展相当迅速,开发出来的原位合成工艺、纤维涂层等制备技术已经成功用于制备高性能钦基复合材料。国内TMCS研究起步较晚,虽取得了一定成绩,但与国外相 比还有一定差距。 本文主要从钛基复合材料的研究背景,强化原理,以及存在的主要问题方面做了总结,并对国内外的研究现状作了简要评述。钛合金本身具有较高的室温和高温比强度、低密度、高弹性模量。加入增强相,又进一步提高比弹性模量、比强度和抗蠕变能力。颗粒增强钛基复合材料(PTMCS)与纤维增强钛基复合材料(FTMCS)相比,具有制备工艺较简单,成本较低,无各向异性,可得到近净型零件等优点,是很有前途的复合材料。自生钛基复合材料基体将由纯钛基体向Ti6Al转化,并加入其它的合金元素,会得到实际应用。 关键词:钛基复合材料;性能;制备;研究进展

目录 第1章前言 ----------------------------------------------------------------------------------------------------------------------------- 4 1.1研究背景及原理-------------------------------------------------------------------------------------------------------------- 4 1.2 主要问题 ---------------------------------------------------------------------------------------------------------------------- 5 第2章国内外研究进展及评述 ---------------------------------------------------------------------------------------------------- 6 2.1 Ti基复合材料增强体的种类---------------------------------------------------------------------------------------------- 6 2.2陶瓷颗粒增强钛基复合材料 ---------------------------------------------------------------------------------------------- 7 2.2 自生钛基复合材料--------------------------------------------------------------------------------------------------------- 11 第3章结论 --------------------------------------------------------------------------------------------------------------------------- 13 参考文献 -------------------------------------------------------------------------------------------------------------------------------- 14

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。做了简单的介绍。 关键词:铝基复合材料,制造工艺,性能,应用 Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up. Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史 1.1概述 复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。金属基复合材料在20世纪60年代末才有较快的发展,是复合材料的一个新分支,其以高比强、高比模和耐磨蚀等优异的综合性能,在航空、航天、先进武器系统和汽车等领域有广泛的应用,已成为国内外十分重视发展的先进复合材料。 在金属基复合材料中,铝基复合材料具有密度低、基体合金选择范围广、可热处理性好、制备工艺灵活、比基体更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工性和价格低廉的优点,更加引起人们的注意[2]。铝基复合材料具有很大的应用潜力,并且已有部分铝基复合材料成功地进入了商业化生产阶段。 铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等[3]。 然而不管增强物的类型和形状尺寸如何,大多数铝基复台材料具有以优点: ①重量轻、比强度、比刚度高。 ②具有高的剪切强度。 ③热膨胀系数低,热稳定性高,并有良好的导热性和导电性。 ④具有卓越的抗磨耐磨性。 ⑤能耐有机液体,如燃料和溶剂的侵蚀。 ⑥可用常规工艺和设备进行成型和处理。 1.2分类

ZnO-CNTs纳米复合材料的制备及性能表征

物理化学学报(Wuli Huaxue Xuebao) October Acta Phys.?Chim.Sin.,2006,22(10):1175~1180 ZnO?CNTs纳米复合材料的制备及性能表征朱路平1,2黄文娅3马丽丽4傅绍云1,*余颖4贾志杰4 (1中国科学院理化技术研究所,北京100080;2中国科学院研究生院,北京100049; 3武汉耀华玻璃有限公司,武汉430010;4华中师范大学纳米科技研究院,武汉430079)摘要以醋酸锌(Zn(CH3COO)2·2H2O)和经硝酸处理过的碳纳米管(CNTs)为原料,一缩二乙二醇(DEG)为溶剂, 采用溶胶法制备得到ZnO?CNTs纳米复合材料,并通过XRD、TEM、SEM、IR、PL等手段对样品进行了表征, TEM及SEM结果显示,负载在碳纳米管上的氧化锌纳米颗粒的尺寸小于25nm.讨论了反应时间、反应温度等 因素对产品形貌的影响,并对复合材料的光致发光效应及其形成机理进行了初步的探讨.PL结果表明,相对于 纯ZnO,ZnO?CNTs纳米复合材料的近紫外发射峰峰位发生了明显的蓝移. 关键词:溶胶法,ZnO?CNTs,纳米复合材料,红外吸收,光致发光光谱 中图分类号:O648 Synthesis and Characteristics of ZnO?CNTs Nanocomposites ZHU,Lu?Ping1,2HUANG,Wen?Ya3MA,Li?Li4FU,Shao?Yun1,*YU,Ying4JIA,Zhi?Jie4 (1Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing100080,P.R.China;2Graduate School of the Chinese Academy of Sciences,Beijing100049,P.R.China;3Wuhan Yaohua Pilkington Safety Glass Co.Ltd.,Wuhan 430010,P.R.China;4Institute of Nano?Science and Technology,Central China Normal University,Wuhan430079,P.R.China) Abstract ZnO?CNTs nanocomposites were successfully synthesized by sol method using Zn(CH3COO)2·2H2O and treated multiwalled carbon nanotubes(CNTs)as raw materials and diethyleneglycol(DEG)as regent.The samples were determined by means of X?ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),infrared(IR)absorbence,and photoluminescence(PL)spectrum.TEM and SEM images indicated that the coating layer was composed of ZnO nanoparticles with size less than25nm.The effects of various experimental conditions,such as reaction duration and reaction temperature on the obtained composites were investigated as well.Finally,PL function and possible formation mechanism of ZnO?CNTs nanocomposites were proposed.The PL spectra of ZnO?CNTs nanocomposites showed obvious blue?shifts compared with that of pure ZnO nanomaterial. Keywords:Sol method,ZnO?CNTs,Nanocomposite,IR absorbence,PL spectrum 碳纳米管(CNTs)自从1991年[1]被发现以来,由于其独特的结构、纳米级的尺寸、高的有效比表面积和可呈现导体的性质,使其在工程材料的纳米增强相和半导体材料等方面很受关注.同时,由于其具有极大的比表面积和化学稳定性,以及独特的电子结构、孔腔结构和吸附性能,也被认为是一种良好的载体[2?6].近几年来,由于碳纳米管管壁的官能化的发展,加之其优良的电子传导性,对反应物种和反应产物的特殊吸附及脱附性能,特殊的孔腔空间立体选择性,碳与金属催化剂的金属?载体强相互作用以及碳纳米管的量子效应而导致的特异性催化和光催化性质,使其越来越多地用作催化剂载体[7].目前 [Article]https://www.wendangku.net/doc/b512294701.html, Received:March22,2006;Revised:April14,2006.*Correspondent,E?mail:lpzhu@https://www.wendangku.net/doc/b512294701.html, or syfu@https://www.wendangku.net/doc/b512294701.html,;Tel/Fax:010?82543752.国家自然科学基金(20207002)资助项目 鬁Editorial office of Acta Physico?Chimica Sinica 1175

复合材料的制备方法

聚合物/粘土纳米复合材料的插层制备方法 刘京京 河北联合大学轻工学院11材1,唐山063000 【摘要】:介绍了插层制备聚合物/粘土纳米复合材料的主要方法:剥离—吸附法、原位聚合插层法、熔融插层法和模板合成法;对插层法制备聚合物今后的研究方向提出一些建议。 【关键词】:纳米复合材料粘土聚合物插层 0引言 “纳米材料”作为一种新材料类别的概念是在20世纪80年代早期提出来的,从其一诞生,就因广阔的商业前景而被美国材料学会誉为“21世纪最有前途的材料”。 目前,聚合物纳米复合材料的制备方法主要有:原子分散法、溶胶-凝胶法、分子复合材料形成法、插层复合法等①。 插层复合法师制备高性能聚合物基纳米复合材料的一种重要方法②,它是将单体或聚合物插入粘土片层间,破坏粘土的片层结构,使其以厚度为1nm左右的片层分散于聚合物中,形成聚合物纳米复合材料。

1插层制备聚合物/粘土纳米复合材料的方法插层制备聚合物/粘土纳米复合材料的方法主要有如下4中: 1.1剥离—吸附法 选用一种溶剂将粘土剥离成单层,其中聚合物是可溶的。由于所有粘土中使层结合在一起的作用力较弱,所有容易被分散在一种液态溶剂中,然后在剥离的片层上吸附聚合物,溶剂挥发或混合物沉淀时,片层重组形成三明治状的聚合物。最佳状态下可形成一种有序多层结构,在此过程中,也可通过乳液聚合得到纳米复合材料,其中粘土分散在水相中。 (1)聚合物溶液的剥离—吸附法 此方法广泛采用水溶性的聚合物,如聚乙烯醇(PVOH),聚环氧乙烷(PEO),聚乙烯基吡咯烷酮或聚丙烯酸,制备纳米复合材料。将聚合物水状溶液加入到完全剥离的钠基粘土分散相中,在水溶液宏观大分子和粘土层间所存在的强相互作用力,往往有暖气层面重新聚集。这种状态正对应一种真正的纳米复合材料杂化物的生成。 (2)预聚物溶液的剥离—吸附法 Toyota研究小组③第一个用此法制备聚酰亚胺纳米复合材料,其中聚酰亚胺的前驱体是由4,4—二胺二苯醚与苯均二酐逐步

相关文档