文档库 最新最全的文档下载
当前位置:文档库 › 厦门大学 实验八 集成运算放大器的应用-运算器实验报告

厦门大学 实验八 集成运算放大器的应用-运算器实验报告

厦门大学 实验八 集成运算放大器的应用-运算器实验报告
厦门大学 实验八 集成运算放大器的应用-运算器实验报告

基本运算器实验模板

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成原理 项目名称基本运算器实验 班级 学号 姓名 同组人员无 实验日期 2016.5.17

一、实验目的与要求 (一) 实验目的: (1) 了解运算器的组成结构。 (2) 掌握运算器的工作原理。 (二) 实验要求: (1)实验之前,应认真准备,写出实验步骤和具体设计内容,否则实验效率会特别低,一次实验时间根本无法完成实验内容,即使基本作对了,也很难说懂得了些什么重要教学内容。 (2)应在实验前掌握所有控制信号的作用,写出实验预习报告并带入实验室。 (3)实验过程中,应认真进行实验操作,既不要因为粗心造成短路等事故而破坏设备,又要仔细思考实验有关内容,把自己想不明白的问题通过实验理解清楚。 二、实验逻辑原理图与分析 2.1 画实验逻辑原理图 xxxxxxxxxx xxxxxxxxxx 多路开关 判零 A=xx LOG=xx SHF=xx ART=xx 进位 B=xx & &

2.2 逻辑原理图分析 1)运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要 处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A 和B 的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM)。 2)各部件对操作数进行何种运算由控制信号S3…S0和CN 来决定,任何时候, 多路选择开关只选择三部件中一个部件的结果作为ALU 的输出。如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU 零标志。 ALU 中所有模块集成在一片CPLD 中。 三、数据通路图及分析 1、逻辑运算

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图6-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图6-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表6-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图3-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

计算机组成原理实验-运算器组成实验报告

计算机组成原理课程实验报告 9.3 运算器组成实验 姓名:曾国江 学号: 系别:计算机工程学院 班级:网络工程1班 指导老师: 完成时间: 评语: 得分:

9.3运算器组成实验 一、实验目的 1.熟悉双端口通用寄存器堆的读写操作。 2.熟悉简单运算器的数据传送通路。 3.验证运算器74LS181的算术逻辑功能。 4.按给定数据,完成指定的算术、逻辑运算。 二、实验电路 ALU-BUS# DBUS7 DBUS0 Cn# C 三态门(244) 三态门(244)ALU(181) ALU(181) S3S2S1S0M A7A6A5A4F7F6F5F4 F3F2F1F0B3B2B1B0 Cn+4 Cn Cn Cn+4 LDDR2T2 T2 LDDR1LDRi T3 SW-BUS# DR1(273) DR2(273) 双端口通用寄存器堆RF (ispLSI1016) RD1RD0RS1RS0WR1WR0 数据开关(SW7-SW0)数据显示灯 A3A2A1A0B7B6B5B4 图3.1 运算器实验电路 LDRi T3A B 三态门 R S -B U S # 图3.1示出了本实验所用的运算器数据通路图。参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。

RF(U30)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A端口(左端口)读出的通用寄存器。而WR1、WR0用于选择写入的通用寄存器。LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS 上。 DR1和DR2各由1片74LS273构成,用于暂存参与运算的数据。DR1接ALU的A输入端口,DR2接ALU的B输入端口。ALU由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。 实验台上的八个发光二极管DBUS7-DBUS0显示灯接在DBUS上,可以显示输入数据或运算结果。另有一个指示灯C显示运算器进位标志信号状态。 图中尾巴上带粗短线标记的信号都是控制信号,其中S3、S2、S1、S0、M、Cn#、LDDR1、LDDR2、ALU_BUS#、SW_BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0都是电位信号,在本次实验中用拨动开关K0—K15来模拟;T2、T3为时序脉冲信号,印制板上已连接到实验台的时序电路。实验中进行单拍操作,每次只产生一组T1、T2、T3、T4时序脉冲,需将实验台上的DP、DB开关进行正确设置。将DP开关置1,DB开关置0,每按一次QD 按钮,则顺序产生T1、T2、T3、T4一组单脉冲。 三、实验设备 1.TEC-5计算机组成实验系统1台 2.逻辑测试笔一支(在TEC-5实验台上) 3.双踪示波器一台(公用) 4.万用表一只(公用) 四、实验任务 1、按图3.1所示,将运算器模块与实验台操作板上的线路进行连接。由于运 算器模块内部的连线已由印制板连好,故接线任务仅仅是完成数据开关、控制信号

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

计算机组成原理运算器实验—算术逻辑运算实验

实验报告 、实验名称 运算器实验—算术逻辑运算实验 、实验目的 1、了解运算器的组成原理。 2、掌握运算器的工作原理。 3、掌握简单运算器的数据传送通路。 4、验证运算功能发生器( 74LS181)的组合功能 三、实验设备 TDN-CM++ 计算机组成原理教学实验系统一套,导线若干四、实验原理 实验中所用的运算器数据通路如图1-1 所示。其中两片74LSl81以串行方式构成8 位字长的ALU,ALU 的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-R 控制,控制运算器运算的结果能否送往总线,低电平有效。为实现双操作数的运算,ALU 的两个数据输入端分别由二个锁存器DR1、DR2 (由74LS273实现)锁存数据。要将数据总线上的数据锁存到DRl、DR2 中,锁存器的控制端LDDR1 和DDR2必须为高电平,同时由T4 脉冲到来。 数据开关“( INPUT DEVICE")用来给出参与运算的数据,经过三态 (74LS245) 后送入数据总线,三态门由SW—B控制,低电平有效。数据显示灯“( BUS UNIT") 已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4 为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT ”的相应时序信号引出端,因此,在进行实验时,只需将“W /R UNIT"的T4接至“ STATE UNIT ”的微动开关KK2 的输入端,按动微动开关,即可获得实验所需的单脉冲。 ALU 运算所需的电平控制信号S3、S2、S1、S0 、Cn、M、LDDRl、 LDDR2 、ALU-B 、SW-B均由“ SWITCH UNIT ”中的二进制数据开关来模拟,其中Cn、ALU —B、SW 一 B 为低电平有效LDDR1 、LDDR2 为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

运算器部件实验报告

实验一运算器部件实验报告 班级姓名学号日期 一、实验目的 ●熟悉与深入理解4位运算器芯片Am2901的功能和内部组成,运行中要求 使用的控制信号及其各自的控制作用。 ●熟悉与深入理解用4片4位的运算器芯片构成16位的运算器部件的具体方 案,各数据位信号、各控制位信号的连接关系。 ●熟悉与深入理解用2片GAL20v8芯片解决ALU最低位的进位输入信号和 最高、最低位的移位输入信号、实现4位的标志位寄存器的方案,理解为什么这些功能不能在运算器芯片之内实现而要到芯片之外另外处理。 ●明确教学计算机的运算器部件,使用总计24位的控制信号就完全确定了它 的全部运算与处理功能,脱机运算器实验中可以通过24位的微型开关提供这些控制信号。 二、实验说明 脱机运算器实验,是指让运算器从教学计算机整机中脱离出来,此时,它的全部控制与操作均需通过24位的微型开关来完成,通过开关、按键控制教学机的运算器完成指定的运算功能,并通过指示灯观察运算结果。 三、实验要求 1、实验之前认真预习,写出预习报告,包括操作步骤,实验过程所用数据和运行结果等 2、实验过程当中,要仔细进行,防止损坏设备,分析可能遇到的各种现象,判断结果是否正确,记录运行结果 3、实验之后,认真写出实验报告,包括对遇到的各种现象的分析,实验步骤和实验结果,自己在这次实验的心得体会与收获。 四、实验所使用到的控制信号 AM2901所用的控制信号

1、将教学机设置为单步、16位、脱机状态下,即把教学机左下方的5个控制开关置为1XX00。 2、按一下RESET按键,进行初始化。 3、按照指定功能给出控制信号和数据信息,观察各信号指示灯状态。 4、按压START键,给出脉冲信号,观察各信号灯状态。 六、实验内容 1、下表中所列操作在教学机上进行运算器脱机实验。并将结果填入表中。 运算器功能所用到的控制信号

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

计算机组成原理实验报告运算器组成存储器

计算机组成原理实验报告 一、实验1 Quartus H的使用 一.实验目的 掌握Quartus H的基本使用方法。 了解74 1 38(3:8)译码器、74244、74273的功能。 利用Quartus H 验证74138 (3: 8)译码器、74244、74273 的功能。 二.实验任务 熟悉Quartus H中的管理项目、输入原理图以及仿真的设计方法与流程。新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。 三.74138、74244、74273的原理图与仿真图 1.74138 的原理图与仿真图 74244的原理图与仿真图 1.

实验2运算器组成实验 一、 实验目的 1. 掌握算术逻辑运算单元(ALU 的工作原理。 2. 熟悉简单运算器的数据传送通路。 3. 验证4位运算器(74181)的组合功能。 4. 按给定数据,完成几种指定的算术和逻辑运算。 二、 实验电路 附录中的图示出了本实验所用的运算器数据通路图。 8位字长的ALU 由2 片74181构成。2片74273构成两个操作数寄存器 DR1和DR2用来保存参 与运算的数据。DR1接ALU 的A 数据输入端口,DR2接 ALU 的B 数据输入端 口,ALU 的数据输出通过三态门74244发送到数据总线BUS7-BUS 上。参与 运算的数据可通过一个三态门74244输入到数据总线上,并可送到DR1或 DR2 暂存。 图中尾巴上带粗短线标记的信号都是控制信号。除了 T4是脉冲信号外,其 4. 74273的原理图与仿真图、

他均为电位信号。nCO, nALU-BUS nSW-BU鈞为低电平有效。 三、实验任务按所示实验电路,输入原理图,建立.bdf 文件。 四. 实验原理图及仿真图 ,然后利用ALU的直通功能,检查DR1 DR2中是否保存了所置的数。 其实验原理图如下: 波形图如下: 实验 3 半导体存储器原理实验 (一)、实验目的 (1)熟悉静态随机存储器RAM和只读存储器ROM勺工作特性和使用方法; (2)熟悉半导体存储器存储和读出数据的过程; (3)了解使用半导体存储器电路时的定时要求。 (二)、实验要求 利用Quartus H器件库提供的参数化存储单元,设计一个由128X8 位的RAM和128X8位的ROM勾成的存储器系统。请设计有关逻辑电路,要求仿真通过,并设计波形文件,验证该存储器系统的存储与读出。 (三)、实验原理图与仿真图 ram内所存储的数据: rom 内所存储的数据: 仿真图如下: (四)心得体会 本次试验中,我们应该熟练掌握Quartus H软件的使用方法;熟悉静态随机存储器RAM和只读存储器RO啲工作特性和使用方法;熟悉半导体存储器存

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

计算机组成原理实验1-运算器

《计算机组成原理》 实验报告 实验一运算器实验

一、实验目的 1.掌握运算器的组成及工作原理; 2.了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操 作和逻辑操作的具体实现过程; 3.验证带进位控制的74LS181的功能。 二、实验环境 EL-JY-II型计算机组成原理实验系统一套,排线若干。 三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果) 实验步骤:开关控制操作方式实验 1、按图1-7接线图接线: 连线时应注意:为了使连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。 图1-1 实验一开关实验接线图 2、通过数据输入电路的拨开关开关向两个数据暂存器中置数: 1)拨动清零开关CLR,使其指示灯。再拨动CLR,使其指示灯亮。置ALU-G =1:关闭ALU的三态门;再置C-G=0:打开数据输入电路的三态门; 2)向数据暂存器LT1(U3、U4)中置数:

(1)设置数据输入电路的数据开关“D15……D0”为要输入的数值; (2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号无效; (3)按一下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。 3)向数据暂存器LT2(U5、U6)中置数: (1)设置数据输入电路的数据开关“D15……D0”为想要输入的数值; (2)置LDR1=0:数据暂存器LT1的控制信号无效;置LDR2=1:使数据暂存器LT2的控制信号有效。 (3)按一下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。 (4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号无效。 4)检验两个数据暂存器LT1和LT2中的数据是否正确: (1)置C-G=1,关闭数据输入电路的三态门,然后再置ALU-G=0,打开ALU 的三态门; (2)置“S3S2S1S0M”为“F1”,数据总线显示灯显示数据暂存器LT1中的数,表示往暂存器LT1置数正确; (3)置“S3S2S1S0M”为“15”,数据总线显示灯显示数据暂存器LT2中的数,表示往暂存器LT2置数正确。 3、验证74LS181的算术和逻辑功能: 按实验步骤2往两个暂存器LT1和LT2分别存十六进制数“1234H”和“5678H”,在给定LT1=1234H、LT2=5678H的情况下,通过改变“S3S2S1S0MCn”的值来改变运算器的功能设置,通过数据总线指示灯显示来读出运算器的输出值F,填入上表中,参考表1-1的功能表,分析输出F值是否正确。分别将“AR”开关拨至“1”和“0”的状态,观察进位指示灯“CY”的变化并分析原因。 实验结果表为:

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

运算器实验报告模板

脱机运算器实验报告 理论课教师姓名:高金山实验指导教师:刘万成 组号:姓名:闫麟阁学号:12281212 实验目的: (1)了解脱机操作下AM2901运算器的功能与控制信号的使用,了解运算器AM2901的内部结构及工作时序,观察运算器运算的结果对状态标志的影响。 (2)深入了解AM2901运算器的功能与具体用法,掌握用AM2901完成各种运算操作时各控制信号的使用,观察指令执行的结果对状态标志的影响;了解4片AM2901的级联方式,深化运算器部件的组成、设计、控制与使用等诸项知识。 实验内容: 1.将教学机左下方的5个拨动开关置为1XXOO(单步、16位、脱机);先按一下“RESET”按键,再按一下“START”按键,进行初始化。 2.接下来,按下表所列的操作在机器上进行运算器脱机实验,将结果填入表中:其中D1取为0101H,D2取为1010H;通过两个12位的红色微型开关向运算器提供控制信号,通过16位数据开关向运算器提供数据,通过指示灯观察运算结果及状态标志。 运算器实验(1) 实验结果分析(每人选择2个操作运算进行控制信号取值和运算结果值的分析):

此式的功能是R0∨R1然后将值赋给R1,由于有两个值,所以A、B口均有对应地址输入,B 对应的是R0,所以B的地址为0001,A对应的是R1,所以A的地址为0000。因为最后的值存储到B口多对应的地址并输出,所以I8-I6所选值为011;该式实现的是并运算,所以I5-I3所选值为011;数据来源是A和B,所以I2-I0所选值为001。 该式接受ALU的标志位输出的值,所以SST所选值为001;该式执行的并(SUB),所以SSH SCI 所选值为000。 因为R0=0101,R1=1010,所以按START前ALU的输出值为0F0F,故输出值为0F0F。 此时的功能是实现R0的逻辑左移功能,由于只有一个值,所以只有B口有对应地址输入,B对应的是R0,所以B的地址为0000。因为最后的值存储到B口对应的地址并输出,所以I8-I6所选值为111,;该式实现的是逻辑左移,所以I5-I3取000(加法);数据来源是B,所以I2-I0所选值为011。 该式是左移操作,另三个标志不变,所以SST所选值为110;SSH SCI所选值为100。 因为R0=FEFE,实现逻辑左移后补0,所以按START之前R0为FEFE,按START后R0变为FDFC。 运算器实验(2) 实验步骤 将教学机左下方的5个拨动开关置为1XX00(单步、16位、脱机);先按一下“RESET”按键,再按一下“START”按键,进行初始化。接下来,按下表所列的操作在机器上进行运算器脱机实验,将结果填入表中:

单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结 篇一:单管放大电路实验报告 单管放大电路 一、实验目的 1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻Rw是为调节晶体管静态工作点而设置的。 三、实验原理1.静态工作点的估算 将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。 开路电压Vbb? Rb2 Vcc,内阻

Rb1?Rb2 Rb?Rb1//Rb2 则IbQ? Vbb?VbeQ Rb?(??1)(Re1?Re2) ,IcQ??IbQ VceQ?Vcc?(Rc?Re1?Re2)IcQ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。 一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。 2.放大电路的电压增益与输入、输出电阻 ?u? ??(Rc//RL) Ri?Rb1//Rb2//rbeRo?Rc rbe 式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信

号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。 三、预习计算1.当??????=??????时 由实验原理知计算结果如下: IeQ=IbQ= β+1β1β IcQ=1mA IcQ=4.878μA ucQ=Vcc?IcQ×Rc=8.7VueQ=IeQ×Re=1× 1.2=1.2VuceQ=ucQ?ueQ=8.7?1.2=7.5V rbe=rbb′+1+β uT26 =650+206×=6.006kΩeQubQ=ueQ+0.7=1.9VVcc?ubQubQ =IbQ+wb1b2 可以解出Rw=40.78kΩ

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

相关文档
相关文档 最新文档