文档库 最新最全的文档下载
当前位置:文档库 › 立式容器刚性环耳式支座的计算

立式容器刚性环耳式支座的计算

立式容器刚性环耳式支座的计算
立式容器刚性环耳式支座的计算

吊装中吊耳的选择与计算

钢结构吊装吊耳的选择与计算

前言 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。

一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式: 图例1为方形吊耳,是钢构件在 吊装过程中比较常用的吊耳形式,其 主要用于小构件的垂直吊装(包括立 式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较 大构件的垂直吊装。这一吊耳形式比较 普遍,在构件吊装过程中应用比较广 泛。 图例3为可旋转式垂直提升吊耳, 此吊耳的形式在国外的工程中应用比 较多,它可以使构件在提升的过程中沿 着销轴转动,易于使大型构件在提升过 程中翻身、旋转。

图例4为斜拉式D型吊耳,此 吊耳主要用于构件在吊装时垂直方 向不便安装吊耳,安装吊耳的地方与 吊车起重方向成一平面角度。 图例5为组合式吊耳之一,在 吊装过程中比较少见,根据其结构 和受力形式可用于超大型构件的吊 装,吊耳安装方向与构件的起重方 向可成一空间角度。 图例6为D型组合式吊耳,可 用于超大型构件的垂直吊装, 在D型吊耳的两侧设置劲板 可抵抗吊装过程中产生的瞬 间弯距,此外劲板还可以增加 吊耳与构件的接触面积,增加焊缝长度,增加构件表面的受力点。减少吊装过程中构件表面因过度应力集中而将母材撕裂的现象。 图例7为民建钢结构中钢骨柱安装时常用的吊耳,其特点为吊耳与钢骨柱连接耳板合二为一,快皆、方便、经济便于安装和施工,是民建钢结构中钢骨柱安装时最为常见的吊耳形式之一。如下图所示:

支座计算书

支座计算书 计算依据是《钢结构连接节点设计手册》(第二版)第八章第八节 〖已知参数:〗 考虑水平力及其引起的弯矩的影响,按刚接柱脚的计算方法 支座所用材料: Q235 底板下混凝土强度设计等级: C30 底板长度: 300mm 底板宽度: 300mm 支座高度: 350mm 球直径: 180mm 所受压力: 200kN 所受剪力Vx: 15kN 所受剪力Vy: 15kN 锚拴材料: Q235 锚拴直径: 24mm 锚栓到边缘距离: 60mm 支座劲板正放,四个锚栓对称布置 〖验算Vx方向:〗 根据《钢结构连接节点设计手册》(第二版)8-85条及表8-3 轴向力为压力,按压弯计算 ※底板下混凝土最大压应力验算 根据偏心距的大小判断,属于表8-3的第一类情况,按公式8-130 (公式8-130) 底板混凝土最大受压应力=3.39Mpa 底板下混凝土为C30;fc=14.3Mpa;强度影响系数βc=1 底板下混凝土压应力满足要求! ※锚拴受拉验算 锚拴不受拉! ※水平抗剪验算 根据公式8-127 (公式8-127) 底板底面的摩擦力=80.00kN 无需另加抗剪件!

※底板厚度计算: 底板厚度计算原则《钢结构连接节点设计手册》(第二版)8-86条 底板材料为Q235,强度设计值取为215.00Mpa 计算区格按三边或两邻边支承考虑 计算区格内底板混凝土基础最大分布反力为3.39Mpa 根据b2/a2=0.50查表8-4得α=0.06 根据公式8-120 (公式8-120) 得M2=0.01kN.m 根据公式8-118 (公式8-118) 得t>15.98mm 取板厚为18mm 底板材料强度设计值重新取为205.00Mpa 根据公式8-118 (公式8-118) 得t>16.36mm 按三边或两邻边支承考虑的底板厚度为18mm ※焊缝计算: 垂直焊缝计算: 根据《手册》公式4-19,公式4-20: 垂直劲板厚度取底板厚度0.7倍:14mm 这里的R按底板下最大压应力反算取值为:305.00kN (公式4-19) (公式4-20) 得到偏心弯矩为:5.72kN.m 得到剪力为:76.25kN 其中水平角焊缝长度取为:150mm 垂直角焊缝长度取为:242mm 最小构造焊角尺寸为:7mm 根据《手册》公式4-18:

吊装大件吊耳受力计算

一、吊耳的计算 大型设备的吊装方案的安全平稳实现与吊耳结构形式有直接关系。当正确合理的吊装方案确定后,根据起吊设备的结构特点、外形尺寸,设计出结构合理、 利于操作、安全可靠的吊耳是一个很关键的问题。 目前所使用的吊耳主要分两大类:管式吊耳与板式吊耳,其中板式吊耳在电力建设应用很多,下面主要介绍板式吊耳的计算。 板式吊耳的基本形式如下图所示: 板式吊耳 为了增加板式吊耳的承载能力,可以在耳孔处贴上两块补强环(如下图所示),图中的肋板是为了增加板式吊耳的侧向刚度和根部的焊缝长度而设置的。 带有补强环的板式吊耳 板式吊耳的计算方法很多,据笔者统计有近10种之多,下面主要介绍两种,第一种是根据实践经验简化后的计算方法,第二种就是著名的拉曼公式。 1、简化算法

(1)拉应力计算 如上图所示,拉应力的最不利位置在 c - d 断面,其强度计算公式为: 2()P R r 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, 1.5s (2)剪应力计算 如图所示,最大剪应力在 a-b 断面,其强度计算公式为: ()p P A R r 式中:[τ]—许用剪应力,MPa , 3 (3)局部挤压应力计算局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: c c P d 式中:c :许用挤压应力,MPa , 1.4c 。 (4)焊缝计算: A :当吊耳受拉伸作用,焊缝不开坡口或小坡口,按照角焊缝计算: h h e w k P h l P —焊缝受力, N

k —动载系数,k=1.1, e h —角焊缝的计算厚度,0.7e f h h ,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; h —角焊缝的抗压、抗拉和抗剪许用应力,2h ,为母材的基本许 用应力。 B :当吊耳受拉伸作用,焊缝开双面坡口,按照对接焊缝计算: (2)h h k P L 式中: k —动载系数,k=1.1; L —焊缝长度,mm ; δ—吊耳板焊接处母材板厚,mm ; h —对接焊缝的纵向抗拉、抗压许用应力,0.8h ,为母材的基本许用应力。 2、拉曼公式 目前,国内很多规范和标准采用了著名的拉曼公式, 现根据《水利水电工程 钢闸门设计规范》(SL74-95)介绍吊耳的计算. (1)吊耳的宽度、厚度与吊耳孔直径的关系(下图),可按下式选用:

焊接吊耳的设计计算

焊接吊耳的设计计算 焊接吊耳的设计计算及正确使用方法 1. 目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠, 保证安全施工。 2. 编制依据 《钢结构设计规范》(GB-1986) 3. 适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。 4. 一般规定 4.1 使用焊接吊耳时,必须经过设计计算。 4.2 吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3 吊耳孔应用机械加工,不得用火焊切割。 4.4 吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5 吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6 吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7 吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8 吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。 5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A,A断面,其强度计算公式为: σ,N,S σ?,σ, 1

式中:σ――拉应力 N――荷载 S――A-A断面处的截面积 1 ,σ,――钢材允许拉应力 σ单位:N/mm2 δ ? 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37,11.0,170,I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。 吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m?,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或 8),123.75KN(或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5,15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m?,4.5d×d,19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤)

钢结构吊装吊耳的计算

钢结构施工总结 ——钢结构吊装吊耳的选择 前言: 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。 一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式:

图例1为方形吊耳,是钢构件在吊装 过程中比较常用的吊耳形式,其主要用 于小构件的垂直吊装(包括立式和卧式) 图 例2为D型吊耳,是吊耳的普遍形式,其主要用于吊装时无侧向力较大构件的垂直吊装。这 一吊耳形式比较普遍,在构件吊装过程中应用比较广泛。 图例3为可旋转式垂直提升吊耳,此 吊耳的形式在国外的工程中应用比较多, 它可以使构件在提升的过程中沿着销轴转 动,易于使大型构件在提升过程中翻身、 旋转。 图 例4为斜拉式D型吊耳,此吊耳主要用于构件 在吊装时垂直方向不便安装吊耳,安装 吊耳的地方与吊车起重方向成一平面 角度。 图例5为组合式吊 耳之一,在吊装过程中

API 吊耳强度计算公式

Padeye Strength Check Calculation Padeye Details吊耳参数 Padeye thickness (t)吊耳厚度20 mm Padeye outer radius ?吊耳外圆半径45 mm Hole size (φ)吊耳孔径35 mm Width at base (W)吊耳根部宽度120 mm Height of hole (h)吊耳孔高度100 mm Material材料Q235 Shackle (selected by Owner)选用钢丝绳参数 Shackle WLL 钢丝绳额定载荷 4 T >2T OK! Pin Diameter (d) 卸扣销子直径32 mm Allowable Stress许用应力 Yield point (δy)材料屈服极限235 MPa Allowable shearing stress (0.4δy)许用切应力94 MPa Allowable bearing stress (0.9δy)许用挤压应力211.5 MPa Allowable combined stress (0.6δy)许用组合应力141 MPa Design Load 设计载荷 SWL (Q) 额定载荷 2 T Force direction to horizontal plane (θ)载荷方向与水平面夹 60 degree 角 Dynnamic load Factor (Sf)动态载荷系数 2.0 Design load on padeye (F=Sf*Q*9.81*1000)吊耳设计载荷39240.00 N Vertical Force (Fv=F*sin(θ))垂直载荷33982.84 N In-plane horizontal force (Fh=F*cos(θ))16991.42 N Out-plane horizontal force (Fh0=0.05*9.81*Q*1000) 981.00 N Shearing stress (pin tearout) 剪切应力计算 Shear stress (fv=F/(2*(R-0.5φ)*t)吊耳承受的剪切应力35.7 MPa <94MPa OK! Bearing stress at hole 挤压应力计算 Bearing stress (fp=F/(d*t)吊耳承受的挤压应力61.3 MPa <211.5MPa OK! Combined stress at base 吊耳根部综合应力计算 Tension stress (ft=Fv/(W*t)吊耳根部拉应力14.2 MPa In-plane shearing stress (fv=Fh/(W*t)) 7.1 MPa Out-plane shearing stress (fvo=Fho/(W*t) 0.41 MPa In-plane bending moment (M1=Fh) 1699141.8 N.mm Out-plane bending moment (M2=Fh0*h) 98100 N.mm In-plane bending stress (fa=M1/(t*W^2/6) 35.4 MPa Out-plane bending stress (fa0=M2/(t*W^2/6) 12.26 MPa Combined stress at padeye base 42.1 MPa <141MPa OK! (f max=SQRT(ft^2+fa^2+fa0^2+3*(fv+fvo)^2)

安装工程常用吊耳标准

.. 安装工程常用吊耳标准二○一二年十二月

目录 1、说明 2、吊耳的分类及技术要求 3、圆钢吊耳

1.说明 起重作业是电建施工中最常见的作业,也是最容易引发安全事故的特种作业。其中,吊耳的安全性直接影响到设备、人身安全。为了规范施工中临时吊耳的制作,保证使用安全,编制本标准。 1.1适用范围 本标准适用于公司所有施工项目相关工作。 1.2 参考文件 化工行业标准,HG/T21574-2008《设备吊耳》 《现场起重常用计算》。 2.吊耳的分类和技术要求 2.1 吊耳的分类 施工现场常用的吊耳有三种,一种是圆钢焊制的吊耳,用于较轻工件。一种是钢板焊制的吊耳,用于较重工件。一种是钢管焊制的吊耳,用于大型超重工件,通常由设备厂完成。 由于吊耳的使用场合不同,受力情况不同,可细分为7种型式。 各种吊耳的型式及公称吊重见表1-1

各种吊耳的型式及公称吊重

吊耳的分类及公称吊重范围

2.2 吊耳的材料和制造技术要求 2.2.1 吊耳的材料 圆钢吊耳用3#钢,禁止用螺纹钢。 板式吊耳的吊耳板、筋板和轴式吊耳的档板、材料均为Q235-A,所用钢板或钢带应符合GB3274《碳素结构钢和低合金结构热轧厚钢板和钢带》的规定。 管式吊耳可选用GB8162《结构用无缝钢管》中的钢管,材料为20钢。 垫板材料应于垫板联接的工作母材相同。 2.2.2 吊耳的加工和装配 板式吊耳的吊耳板应平直,垫板与工件紧密贴合,间隙不大于1㎜。吊耳板、垫板、筋板等的切割表面不允许有裂纹,毛刺等缺陷。吊耳内孔需打磨光滑,不能有凹凸棱角。 2.2.3 吊耳的检验 吊耳必须经二级验收后使用:焊工对所有焊缝进行外观检查,不允许存在裂纹与未熔合缺陷,必要时进行磁粉或渗透检查,使用部门应在使用前对吊耳的设置、焊接作全面检查确认。

常用吊耳标准

常用吊耳标准 甘肃火电工程公司工程管理部二○○五年十一月

批准:靳旭东审核:马宝成编写:师自知

1.说明 起重作业是电建施工中最常见的作业,也是最容易引发安全事故的特种作业。其中,吊耳的安全性直接影响到设备、人身安全。为了规范施工中临时吊耳的制作,保证使用安全,编制本标准。 1.1适用范围 本标准适用于公司所有施工项目相关工作。 1.2 参考文件 化工行业标准,HG/T21574-94《设备吊耳》 《现场起重常用计算》。 2.吊耳的分类和技术要求 2.1 吊耳的分类 施工现场常用的吊耳有三种,一种是圆钢焊制的吊耳,用于较轻工件。一种是钢板焊制的吊耳,用于较重工件。一种是钢管焊制的吊耳,用于大型超重工件,通常由设备厂完成。 由于吊耳的使用场合不同,受力情况不同,可细分为7种型式。 各种吊耳的型式及公称吊重见表1-1

各种吊耳的型式及公称吊重 表1-1

吊耳的分类及公称吊重范围 续表1-1

2.2 吊耳的材料和制造技术要求 2.2.1 吊耳的材料 圆钢吊耳用3#钢,禁止用螺纹钢。 板式吊耳的吊耳板、筋板和轴式吊耳的档板、材料均为Q235-A,所用钢板或钢带应符合GB3274《碳素结构钢和低合金结构热轧厚钢板和钢带》的规定。 管式吊耳可选用GB8162《结构用无缝钢管》中的钢管,材料为20钢。 垫板材料应于垫板联接的工作母材相同。 2.2.2 吊耳的加工和装配 板式吊耳的吊耳板应平直,垫板与工件紧密贴合,间隙不大于1㎜。吊耳板、垫板、筋板等的切割表面不允许有裂纹,毛刺等缺陷。吊耳内孔需打磨光滑,不能有凹凸棱角。 2.2.3 吊耳的检验 吊耳必须经二级验收后使用:焊工对所有焊缝进行外观检查,不允许存在裂纹与未熔合缺陷,必要时进行磁粉或渗透检查,使用部门应在使用前对吊耳的设置、焊接作全面检查确认。

焊接吊耳的设计计算

焊接吊耳的设计计算及正确使用方法 1.目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠,保证安全施工。 2.编制依据 《钢结构设计规范》(GB-1986) 3.适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。4.一般规定 4.1使用焊接吊耳时,必须经过设计计算。 4.2吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3吊耳孔应用机械加工,不得用火焊切割。 4.4吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。

5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 σ单位:N/mm2 δ ≤ 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37-11.0-170-I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。

吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m㎡,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或8)=123.75KN (或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5=15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m㎡=4.5d×d=19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤) 此公式二十年前在一本起重机方面的书上学的,工作中运用较方便。对照钢丝绳表查,基本上符合6乘19纤维芯钢丝绳公称抗拉强度1670兆帕的钢丝绳最小破断拉力。 起重吊运用时应将破断拉力除以安全系数6倍等于安全负荷。 圆形钢丝绳直径20mm,公称抗拉强度1700,求最小破断拉力???? 给你说个简单的估算公式:P=50*D*D 式中P---钢丝绳的破断拉力,单位:Kgf;D ---钢丝绳的直径,单位:毫米.适用在钢丝强度为1600-1700MPa的情况下.在吊装作业中,钢丝绳的许用拉力不能等于破断拉力,应低于破断拉力,许用拉力可按下式求得:〔P〕=P/K 式中,:〔P〕---钢丝绳的许用拉力,亦叫安全拉力,单位:Kgf;P---钢丝绳的破断拉力,单位:Kgf;K---安全系数(一般取3-6,特殊情况下,按施技术工要求去执行). 实例:寸绳:直径26-28之间,10倍安全系数可吊3.3T P=26*26*50=33800kg/10=3380kg ≈3.3T P= 10*10*50=5000kg/10=500kg

管轴式吊耳计算(36mm)

管轴材质:Q235-A 管轴规格:φ457×38mm 设备壁厚:δ=40mm 吊装重量:80000Kg 角焊缝系数:φa:0.7 动载综合系数K :1. 许用应力[]21400cm Kg =σ 吊点距设备筒壁的距离L :100mm(吊装时钢丝绳紧贴吊耳根部,计算时按100mm 考虑) 径向弯矩M [][] []2 2222223444411002801722.22117246488000002.2216.361800007.4514.36.37.0172464880000046487 .4532) 5.387.45(14.332) (8000001080000cm kg W M N A N W M cm D d D W cm Kg L Fv M y x f y f x y x =<=+=+=== ==???== <+<==?-?=-=?=?=?ττττττττσσπ焊缝核算:==吊耳根部应力核算: 吊耳截面面积: 径=径 《大型设备吊装工程施工工艺标准》(SHJ 515-90)的方法进行根部焊缝计算: []h h h h W P A P A P τααα≤???? ??++???? ??2 22cos 2sin 2cos 局部应力与补强 R=1820mm

[] [] 求,不需要补强。 结论:管轴满足应力要==周向应力:设备水平状态: =径向应力:设备竖直状态: =应力影响区: 结论 =查表: 周 周径周径σδσσδσδδγ<=????<=???=?=?+=== ===7.10146.309 .067.658000002621.6206.3055 .067.658000002627.6556.109.0,055.0125.03640457 2/5.5036 1820 22221M B M M B M cm R D B j M M R D R 焊接要求:管轴和设备焊接时应按照要求打坡口,焊接完毕后进行磁粉探伤。

工艺吊耳设计规范

欢迎阅读工艺吊耳设计作业标准 1、吊耳材质要求 一般用Q345(结构钢)或AH36(船板)或同级别的钢板,不使用Q235及A级钢板; 2、下料 吊耳用数控下料; 3、坡口 5 P 进行设计,舱盖二线5.5m。并在翻身方案里规定钢丝绳长度,也不小于6m,通常取8m。钢结构产品无特殊情况,吊耳开档设计也小于6m。 吊耳受力示意图 吊耳垂直安装,在正应力一定的情况下,吊耳另增加了剪应力和弯曲应力。 图2 吊耳与钢丝绳同轴线倾斜安装后消除了剪应力和弯曲应力,仅受正应力作用,受力显着改善。

7、吊耳选型计算 两个吊耳均匀受力,倾斜安装状态: 吊耳选型重量=构件重量/2/sinα。 A、舱盖产品吊耳 如侧移式舱盖对于小于36t的舱盖,钢丝绳与构件夹角60度,主吊耳选型 =36/2/sin600=25T,需要在侧板上设置标明2个翻身主吊耳(标准吊耳D25t)标准吊耳;如钢丝绳与构件夹角68度(吊耳开档6m,钢丝绳8m),主吊耳选型=36/2/sin680=20T(标准 要保 舱盖选图3

30mm, 图5 吊离式舱盖翻身可参照上述。 折叠式舱盖按照NE系列MCG吊耳设计,见附图。最终如吊耳保留不切割,需要得到设计师及船东的确认。 B、钢结构产品吊耳 a.平面分段翻身吊耳

一般平面分段重量较小,翻身选用下面型式的B型吊耳,安装根据钢丝绳与构件的夹角,一般倾斜20~30度,吊耳反面要增加硬档。 20~30 吊耳, -1~-500 9、吊耳设计存在问题示例: 1、上下盖板尺寸过大,与卸扣干涉; 2、吊耳开档跨距过大,且没有倾斜安装,造成吊耳拉弯; 3、吊耳上部没有加三角板,吊耳拉弯。

锅炉大件吊装手册 常用计算(吊耳、销轴部分)

锅炉大件吊装手册常用计算 目录 一、吊耳的计算 二、销轴的计算 三、梁 四、支撑腿 五、双承重粱 六、水压试验堵板 一、吊耳的计算 大型设备的吊装方案的安全平稳实现与吊耳结构形式有直接关系。当正确合理的吊装方案确定后,根据起吊设备的结构特点、外形尺寸,设计出结构合理、利于操作、安全可靠的吊耳是一个很关键的问题。 目前所使用的吊耳主要分两大类:管式吊耳与板式吊耳,其中板式吊耳在电力建设应用很多,下面主要介绍板式吊耳的计算。 板式吊耳的基本形式如下图所示: 板式吊耳 为了增加板式吊耳的承载能力,可以在耳孔处贴上两块补强环(如下图所示),图中的肋板是为了增加板式吊耳的侧向刚度和根部的焊缝长度而设置的。 带有补强环的板式吊耳

板式吊耳的计算方法很多,据笔者统计有近10种之多,下面主要介绍两种,第一种是根据实践经验简化后的计算方法,第二种就是著名的拉曼公式。 1、简化算法 (1)拉应力计算 如上图所示,拉应力的最不利位置在c -d 断面,其强度计算公式为: []2()P R r σσδ=≤- 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, [] 1.5s σσ= (2)剪应力计算 如图所示,最大剪应力在a-b 断面,其强度计算公式为: []()p P A R r ττδ==≤- 式中:[τ]—许用剪应力,MPa , [] στ= (3)局部挤压应力计算 局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: []c c P d σσδ=≤? 式中:[]c σ:许用挤压应力,MPa ,[][]1.4c σσ=。 (4)焊缝计算:

板式吊耳设计计算书

抚顺石化分公司120万吨/年催化中压加氢精制(改质)装置 精制反应器(R-101)反应器吊耳设计参考 基本参数: 筒体最小壁厚135mm 封头最小壁厚:80mm 筒体内直径:3613mm 封头半径:1834mm 注:○1L2公式仅适用于标准椭圆形封头 式中:δ—封头名义厚度; h1—封头曲面高度; h2—封头直边高度; 对其它形式封头,L2由设计者自定。

吊耳板材质:Q235-A 许用应力[σ]:130Mpa 许用剪应力[τ]:91Mpa 角焊缝系数:Φn:0.7 动载综合系数:K=1.65 吊耳竖向载荷 Q=332235kg Fv=332235÷2×K=332235÷2×1.65=274093.8 kg 吊角A-A截面拉应力: σ= Fv/S(H-D)= 274093.8/(10-0.13)(53-18)= 274093.8/523.11=523.96kg/cm2σ<[σ],满足要求。 垫板焊缝剪应力: τ= Fv/0.707 a [2(L sp+ H sp )-8×2+2π2] =274093.8/0.707×3.6[2(45.5+93 )-8×2+2π2] =274093.8/696.26 =393.66 kg/cm2 τ<[τ],满足要求。 吊耳板焊缝剪应力: τ= Fv/0.707 aΦn[2(L sp-G+ L1 )+0.5πF+H-F-8r+2πr] =274093.8/0.707×3.6×0.7[2(45.58+22 )+0.5π15+53-15-8×4+2π×4] =274093.8/368.34 =744.13 kg/cm2 τ<[τ] ,满足要求。 吊耳受弯状态分析: R A=P/2(2+3λ) R B=-3Pm/2l M A=-Pm M B=Pm/2 A-C段Q X=-P M X=-Px B-C段Q X=3Pm/2l M X=-Px+R A(x-m) 计算吊耳水平状态下受力状态: P=274093kg

钢结构吊装吊耳的计算

钢结构施工总结——钢结构吊装吊耳的选择 前言: 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。 一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式:

图例1为方形吊耳,是钢构件 在吊装过程中比较常用的吊耳形式,其主要用于小构件的垂直吊装(包括立式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较大构件的垂直吊装。这一吊耳形式比较普遍,在构件吊装过程中应用比 较广泛。 图例3为可旋转式垂直提升吊耳,此吊耳的形式在国外的工程中应用比较多,它可以使构件在提升的过程中沿着销轴转动,易于使大型构件在提升过程中翻身、旋转。 图例4为斜拉式D型吊耳, 此吊耳主要用于构件在吊装时垂直方向不便安装吊耳,安装吊耳的地方与吊车起重方向成一平面

常用吊耳标准

常用吊耳标准甘肃火电工程公司工程管理部 二○○五年十一月

批准:靳旭东审核:马宝成编写:师自知

1.说明 起重作业是电建施工中最常见的作业,也是最容易引发安全事故的特种作业。其中,吊耳的安全性直接影响到设备、人身安全。为了规范施工中临时吊耳的制作,保证使用安全,编制本标准。 1.1适用范围 本标准适用于公司所有施工项目相关工作。 1.2 参考文件 化工行业标准,HG/T21574-94《设备吊耳》 《现场起重常用计算》。 2.吊耳的分类和技术要求 2.1 吊耳的分类 施工现场常用的吊耳有三种,一种是圆钢焊制的吊耳,用于较轻工件。一种是钢板焊制的吊耳,用于较重工件。一种是钢管焊制的吊耳,用于大型超重工件,通常由设备厂完成。 由于吊耳的使用场合不同,受力情况不同,可细分为7种型式。 各种吊耳的型式及公称吊重见表1-1 各种吊耳的型式及公称吊重 表1-1

吊耳的分类及公称吊重范围续表1-1

2.2 吊耳的材料和制造技术要求 2.2.1 吊耳的材料 圆钢吊耳用3#钢,禁止用螺纹钢。 板式吊耳的吊耳板、筋板和轴式吊耳的档板、材料均为Q235-A,所用钢板或钢带应符合GB3274《碳素结构钢和低合金结构热轧厚钢板和钢带》的规定。 管式吊耳可选用GB8162《结构用无缝钢管》中的钢管,材料为20钢。 垫板材料应于垫板联接的工作母材相同。 2.2.2 吊耳的加工和装配 板式吊耳的吊耳板应平直,垫板与工件紧密贴合,间隙不大于1㎜。吊耳板、垫板、筋板等的切割表面不允许有裂纹,毛刺等缺陷。吊耳内孔需打磨光滑,不能有凹凸棱角。 2.2.3 吊耳的检验 吊耳必须经二级验收后使用:焊工对所有焊缝进行外观检查,不允许存在裂纹与未熔合缺陷,必要时进行磁粉或渗透检查,使用部门应在使用前对吊耳的设置、焊接作全面检查确认。

支座强度校核计算

1M 3立式储气罐支座强度校核计算 设备采用支承式支座,参考标准JB/T 4712-2007。已知设备外壳内经mm D i 850=,无法直接选用标准型号的支承式支座,故参考标准采用设计强度大于A1的3个支承式支座用于设备支撑。设备总高度mm H 26000=,设置地区基本风压,地面瞬时最大风速:19.5s /m 风的动压为 wp=0.5·ro·v2 (1) 其中wp 为风压[kN/m2],ro 为空气密度 [kg/m3],v 为风速[m/s]。20/2282000m N q =, 地震设防烈度为7度,(取a=0.12)。 设计压力MPa P 1.1=,外壳设计温度50=t ℃,封头为标准椭圆型 封头,材料为S30408,许用应力137MPa ]σ[=,封头名义厚度mm n 6=δ; 设备总质量Kg m 5770=。 支座强度校核仍按A1(其允许载荷20KN ]Q [=)计算,校核计算如下: 计算支座承受的实际载荷Q 地震载荷:N g am P e 6.6788.957712.00=??== 风载荷:6 000102.1-?=H D q f P i w 1=i f N P w 5429152102300862228200012.16=?????=- 水平力: N P P P w e 1357967 542915225.06.67825.0=?+=+= mm D 600= 取3个支座,故n=3,

3010)(4-??? ????+++=nD P G PH kn G g m Q e e e 3106003113413579674318.9577-??? ???????+??=Q Q = 3424KN < 200KN []Q Q < ,所以满足支座本体许用载荷要求。 i f ——— 风压高度变化系数,按设备质心高度取 ; e G ——— 偏心载荷 ; e S ——— 偏心距 ; k ——— 安装3个支座时k=1 ,安装3个以上时取k=0.85 ; D ——— 支座安装尺寸,(螺栓中心圆直径) 。 设备质心所在高度,m <10 15 20 风压高度变化系数, fi 1.00 1.14 1.25

吊耳计算

[]22 v 22k P R r f d R r σδ+=?≤- (1) 式中: k —动载系数,k=1.1; —板孔壁承压应力,MPa ; P —吊耳板所受外力,N ; δ—板孔壁厚度,mm ; d —板孔孔径,mm ; R —吊耳板外缘有效半径,mm ; r —板孔半径,mm ; []v f —吊耳板材料抗剪强度设计值,N/mm 2; 载荷P=25t 的板式吊耳,材质Q345A 。选择55t 卸扣,卸扣轴直径70mm ,取板孔r=40mm ,R=150mm ,,030mm δ=。Q345A 强度设计值[]v f =180Mpa 。 拉曼公式校核吊耳板孔强度 σ=1.1×25×9800/30×80×(22500+1600)/22500-1600)=129 Mpa <180Mpa 故安全。 a. 当吊耳受拉伸作用,焊缝不开坡口或小坡口时,属于角焊缝焊接,焊缝强度按《钢结构设计规范》中式7.1.3-1校核,即: w f f f e w N f h l σβ=≤? (2) 式中: f σ—垂直于焊缝方向的应力,MPa ; N —焊缝受力, N=kP=1.4P, 其中k=1.4为可变载荷分项系数,N; e h —角焊缝的计算厚度,0.7e f h h =,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; f β—角焊缝的强度设计增大系数,取 1.0f β=;

w f f —角焊缝的强度设计值,N/mm 2; 抬尾吊耳在受力最大时为拉伸状态,按吊耳受拉伸校核焊缝强度。 由式(2)按角焊缝校核 f =1.4×25×98000/0.7×10(600-2×10)1.22×2=34.6MPa <180Mpa

溜尾吊耳设计计算

板式吊耳吊板厚度t =16mm ,孔径d =40mm ,D=200mm,使用12t 级卸扣与φ30mm 钢丝绳相连。吊耳受集中载荷F =25.5/(6×Sin69°) =4.6t,由于下段为锥段,起吊翻转时受力不匀,所以取F=10t 。吊耳焊接于设备裙座,吊耳材质为304,σs =0.56×σb =291.2 N/mm 2 [σ] = 1.6 s σ=182 N/mm 2 [τ] =0.55[σ] =100 N/mm 2 挤压应力:σ= t d F ?? 2 4 =16 2404100000 ?÷? = 78.125N/mm 2 截面剪切应力: τ剪切= t d D F )(2- = ()16 40200100000 2?-? =78.125N/mm 2 截面拉伸应力:σ拉伸= ()t d D F ?- = ()16 40200100000 ?- =39.06N/mm 2 以上应力均<[σ]=182N/mm 2,安全符合要求。

板式吊耳吊板厚度t 1=18mm, t 2=12mm ,孔径d =60mm ,D=260mm,使用25t 级卸扣与φ36.5mm 钢丝绳相连。吊耳受集中载荷F=56/(6×Sin63°) =10.48t,由于下段为锥段,起吊翻转时受力不匀,所以取F =20t 。吊耳焊接于设备裙座,吊耳材质为304,σs =0.56×σb =291.2 N/mm 2 [σ] = 1.6 s σ=182 N/mm 2 [τ] =0.55[σ] =100 N/mm 2 挤压应力:σr = ) 2(2 421t t d F ?+?? = ) 12218(2604200000 ?+?÷? = 39.68N/mm 2 截面剪切应力: τ剪切= ()2 )(221?-+-t d a t d D F = ()()2 12602201860260200000 2??-+?-? =53.76N/mm 2 截面拉伸应力:σ拉伸= ()()2 21?-+?-t d a t d D F = ()()2 12602201860260200000 ??-+?- =26.88N/mm 2 以上应力均<[σ] =182N/mm 2,安全符合要求。

吊耳的设计

夹紧吊耳的设计--非强制性附录 NM4-100 范围 这个非常强制性的附录为环向缠绕或者第二次粘接而附着的吊耳提供了设计方法。建议连续荷载由金属带或者双环支撑的吊耳来处理,可参考非强制性附录NM-5所述。 当向前卷的吊耳承受间歇或者偶然荷载时,比如:起重时由风或小洪灾引起的荷载,建议层压板中复合应力的设计因子为5。如果向前卷的吊耳承受连续荷载,例如:对名义直径不超过4英尺的容器的支撑力,或者对受由内压产生上浮力的平底容器的支撑力,层压板复合应力状态下通常的设计因子为10。用于锚固容器的夹紧吊耳易于受到由内压产生的上浮力荷载。设计者应注意,按照3A-260中的规定,平底水槽的底部没有够足的刚度可以允许用水槽中液体的重量抵抗风载或者是地震倾覆力。这种夹紧系统应该以总的基底力矩来进行设计。 NM4-200 术语 B,C,D:螺栓圆直径,in.(英寸) D:名义容器直径,ft(英尺) D i:容器内直径,in. D0:容器外直径,in. d:钢筋直径,in. E ax:轴向拉伸模量,psi(磅/平方英寸) E hp:环向拉伸模量,psi e:荷载偏心距,in.(参见图NM4-1,NM4-2A和NM4-2B) F:吊耳的总荷载或者总反力,lb(磅) F H:水平方向的力(径向),lb G:风载,psf(磅/平方英尺) H:容器直边高度,ft H D:上封头的高度,ft h:吊耳的高度,in. h min=吊耳的最小高度,in. h l:缠绕外包裹层或覆盖层高度,in. L:钢筋的长度,in. M ax:轴向力矩,in.-lb M hp:环向力矩,in.-lb M L::力矩系数,无量纲(见图NM4-3) M Q:风载引起的弯矩,ft-lb N:吊耳的数量 P:由力矩引起的总的径向荷载,lb P*:单位荷载,lb/in. p:压力,psi R m:上卷的平均半径,in. S a:许可拉伸应力,取10倍的安全系数,psi S f:风荷载形状系数,无量纲,圆柱形容器取0.7

焊接吊耳的设计计算及正确使用方法

焊接吊耳的设计计算及正确使用方法 1、编制依据 《钢结构设计规范》(GB-1986) 2、一般规定 2.1 使用焊接吊耳时,必须经过设计计算。 2.2 吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 2.3 吊耳孔应用机械加工,不得用火焊切割。 2.4 吊耳板与构件的焊接,必须选择与母材相适应的焊条。 2.5 吊耳板与构件的焊接,必须由合格的持证焊工施焊。 2.6 吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距离为1.5~2D(D为吊耳孔的直径)。 2.7 吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要求;焊缝高度不得小于6mm。 2.8 吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于或等于吊耳板的厚度。 3、吊耳计算 3.1拉应力计算 [attachment=40916] 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1 σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 3.2 剪应力计算 如图所示,剪应力的最不利位置在B-B断面,其强度计算公式为: τ=N/S2 τ≤[τ] 式中:τ――剪应力 N――荷载 S2――B-B断面处的截面积 [τ]――钢材允许剪应力 3.3 局部挤压应力计算 如图所示,局部挤压应力的最不利位置在吊耳与销轴的结合处,其强度计算公式为: F=N/(t×d)υ F≤[σ] 式中:F――局部挤压应力 N――荷载 t――吊耳厚度 d――销轴直径 υ――局部挤压系数 [σ]――钢材允许压应力 3.4 角焊缝计算 P=N/l×h×k P≤[σ1] 式中:P――焊缝应力 N――荷载

相关文档